

LMV116, LMV118

SNOSA87C - OCTOBER 2003 - REVISED OCTOBER 2016

LMV11x Low-Voltage, 45-MHz, Rail-To-Rail Output Operational Amplifiers With Shutdown Option

Features

- -3-dB BW 45 MHz
- Supply Voltage Range 2.7 V to 12 V
- Slew Rate 40 V/µs
- Supply Current 600 µA
- Power Down Supply Current 15 µA
- Output Short Circuit Current 32 mA
- Linear Output Current ±20 mA
- Input Common Mode Voltage -0.3 V to 1.7 V
- Output Voltage Swing 20 mV from Rails
- Input Voltage Noise 40 nV/√Hz
- Input Current Noise 0.75 pA/√Hz

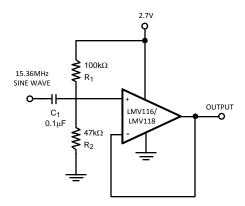
Applications

- High-Speed Clock Buffer/Driver
- Active Filters
- **High-Speed Portable Devices**
- Multiplexing Applications (LMV118)
- **Current Sense Amplifier**
- High-Speed Transducer Amplifier

3 Description

The LMV116 (single) rail-to-rail output voltage feedback amplifiers offer high-speed (45 MHz), and low-voltage operation (2.7 V) in addition to micropower shutdown capability (LMV118).

Output voltage range extends to within 20 mV of either supply rail, allowing wide dynamic range especially in low voltage applications. Even with low supply current of 600 µA, output current capability is kept at a respectable ±20 mA for driving heavier loads. Important device parameters such as BW, slew and output current are kept relatively independent of the operating supply voltage by a combination of process enhancements and design architecture.


For portable applications, the LMV118 provides shutdown capability while keeping the turnoff current to 15 µA. Both turnon and turnoff characteristics are well behaved with minimal output fluctuations during transitions, thus the device can be used in powersaving mode, as well as multiplexing applications. Miniature packages (5-pin and 6-pin SOT-23) are further means to ease the adoption of these lowpower, high-speed devices in applications where board area is at a premium.

Device Information⁽¹⁾

PART NUMBER	PACKAGE BODY SIZE (N		
LMV116	SOT-23 (5)	2.90 mm x 1.60 mm	
	SOT-23 (6)	2.90 mm × 1.60 mm	
LMV118	SOT-23 (5)	2.90 mm × 1.60 mm	
	SOT-23 (6)	2.90 mm × 1.60 mm	

(1) For all available packages, see the orderable addendum at the end of the data sheet.

Typical Application

Table of Contents

1	Features 1	7.4 Device Functional Modes1
2	Applications 1	8 Application and Implementation 1
3	Description 1	8.1 Application Information 15
4	Revision History2	8.2 Typical Application: 2.7-V Single Supply 2:1 MUX 1
5	Pin Configuration and Functions3	9 Power Supply Recommendations 16
6	Specifications4	10 Layout 17
	6.1 Absolute Maximum Ratings 4	10.1 Layout Guidelines 17
	6.2 ESD Ratings	10.2 Layout Example 1
	6.3 Recommended Operating Conditions 4	11 Device and Documentation Support 18
	6.4 Thermal Information	11.1 Related Documentation 18
	6.5 Electrical Characteristics: 2.7 V 5	11.2 Related Links 18
	6.6 Electrical Characteristics: 5 V	11.3 Receiving Notification of Documentation Updates 18
	6.7 Electrical Characteristics: ±5 V	11.4 Community Resources 18
	6.8 Typical Characteristics8	11.5 Trademarks18
7	Detailed Description 12	11.6 Electrostatic Discharge Caution 1
	7.1 Overview 12	11.7 Glossary18
	7.2 Functional Block Diagram	12 Mechanical, Packaging, and Orderable
	7.3 Feature Description	Information 18

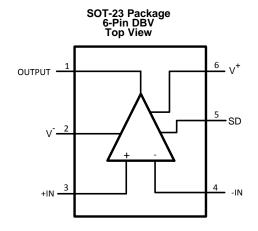
4 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision B (May 2013) to Revision C

Page

Added Device Information and Pin Configuration and Functions sections, ESD Ratings and Thermal Information tables, Functional Block Diagram, Feature Description, Device Functional Modes, Application and Implementation, Power Supply Recommendations, Layout, Device and Documentation Support, and Mechanical, Packaging, and Orderable Information sections
 Changed R_{0,JA} from 265°C/W to 182.7°C/W


Changes from Revision A (May 2013) to Revision B

Page

5 Pin Configuration and Functions

Pin Functions

PIN		1/0	DESCRIPTION				
NAME	LMV116	LMV118	I/O	DESCRIPTION			
+IN	3	3	Input	Non-inverting input			
-IN	4	4	Input	Inverting input			
OUTPUT	1	1	Output	Output			
SD	_	5	Input	Shutdown input. Active high, must be tied to V– with resistor for normal operation.			
V+	5	6	Power	Positive (highest) power supply			
V-	2	2	Power	Negative (lowest) power supply			

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) (1)(2)

		MIN	MAX	UNIT	
Supply voltage (V ⁺ - V ⁻)			12.6	V	
Voltage at INPUT and OUTPUT pins			$V^{+} + 0.8$	V	
Output short-circuit duration			See ⁽³⁾ , ⁽⁴⁾		
Junction temperature ⁽⁵⁾			150	°C	
Caldania a infarmatica	Infrared or convection (20 seconds)		235	°C	
Soldering information	Wave soldering lead temperature (10 seconds)		260	°C	
Storage temperature, T _{stg}			150	°C	

- (1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
- (2) If Military/Aerospace specified devices are required, contact the TI Sales Office/ Distributors for availability and specifications.
- (3) Applies to both single-supply and split-supply operation. Continuous short circuit operation at elevated ambient temperature can result in exceeding the maximum allowed junction temperature of 150°C.
- (4) Output short circuit duration is infinite for V_S < 6 V at room temperature and below. For V_S > 6 V, allowable short circuit duration is 1.5 ms.
- (5) The maximum power dissipation is a function of $T_{J(MAX)}$, $R_{\theta JA}$, and T_A . The maximum allowable power dissipation at any ambient temperature is $P_D = (T_{J(MAX)} T_A) / R_{\theta JA}$. All numbers apply for packages soldered directly onto a PC board.

6.2 ESD Ratings

			VALUE	UNIT
	Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±2000	.,	
V _(ESD)	Electrostatic discharge	Machine model	±200	V

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

	MIN	NOM MAX	UNIT
Supply voltage (V ⁺ – V ⁻)	2.5	12	٧
Temperature ⁽¹⁾	-40	85	°C

¹⁾ The maximum power dissipation is a function of $T_{J(MAX)}$, $R_{\theta JA}$, and T_A . The maximum allowable power dissipation at any ambient temperature is $P_D = (T_{J(MAX)} - T_A)/R_{\theta JA}$. All numbers apply for packages soldered directly onto a PC board.

6.4 Thermal Information

			LMV118	
	THERMAL METRIC ⁽¹⁾	DBV (SOT-23)	DBV (SOT-23)	UNIT
		5 PINS	6 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	182.7	182.7	°C/W
$R_{\theta JC(top)}$	Junction-to-case (top) thermal resistance	139.9	139.9	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	41.4	41.4	°C/W
ΨЈТ	Junction-to-top characterization parameter	28.5	28.5	°C/W
ΨЈВ	Junction-to-board characterization parameter	40.9	40.9	°C/W

(1) For more information about traditional and new thermal metrics, see Semiconductor and IC Package Thermal Metrics.

Submit Documentation Feedback

6.5 Electrical Characteristics: 2.7 V

Unless otherwise specified, all limits apply for $T_J = 25$ °C, $V^+ = 2.7$ V, $V^- = 0$ V, $V_{CM} = V_O = V^+ / 2$, and $R_F = 2$ k Ω , and $R_1 = 1 k\Omega \text{ to } V^+/2.$

	PARAMETER	TEST CONDITIONS	MIN ⁽¹⁾	TYP ⁽²⁾	MAX ⁽¹⁾	UNIT
		0 V ≤ V _{CM} ≤ 1.7 V		±1	±5	mV
V _{OS}	Input offset voltage	0 V ≤ V _{CM} ≤ 1.7 V -40°C to 85°C			±6	
TC V _{OS}	Input offset average drift	See ⁽³⁾		±5		μV/C
	Input bigg gurrent	See ⁽⁴⁾	-2	-0.4		^
I _B	Input bias current	See ⁽⁴⁾ , –40°C to 85°C	-2.2			μΑ
Ios	Input offset current			1	500	nA
CMRR	Common mode rejection ratio	V _{CM} stepped from 0 V to 1.55 V	73	88		dB
PSRR	Power supply rejection ratio	$V^{+} = 2.7 \text{ V to } 3.7 \text{ V or } V^{-} = 0 \text{ V to } -1 \text{ V}$	72	85		dB
R _{IN}	Common mode input resistance			3		ΜΩ
C _{IN}	Common mode input capacitance			2		pF
CM//D	Input common-mode voltage	CMRR ≥ 50 dB	-0.3		1.7	
CMVR	range	CMRR ≥ 50 dB, -40°C to 85°C	-0.1			V
^	Lanca simulation made	V _O = 0.35 V to 2.35 V	73	87		dB
A_{VOL}	Large signal voltage gain	V _O = 0.35 V to 2.35 V, -40°C to 85°C	70			
	Outrat and a high	$R_L = 1 k\Omega$ to $V^+/2$	2.55	2.66		V
	Output swing high	$R_L = 10 \text{ k}\Omega \text{ to V}^+/2$		2.68		
Vo		$R_L = 1 k\Omega$ to $V^+/2$	150	40		mV
	Output swing low	$R_L = 10 \text{ k}\Omega \text{ to V}^+/2$		20		
	Outrot short singuit surrent	Sourcing to V ⁻ V _{ID} = 200 mV ⁽⁵⁾	25	35		
I _{SC}	Output short-circuit current	Sinking to V ⁺ $V_{ID} = -200 \text{ mV}^{(5)}$	25	32		mA
I _{OUT}	Output current	V _{OUT} = 0.5 V from rails		±20		mA
	Outside summed	Normal operation		600	900	^
I _S	Supply current	Shutdown mode (LMV118)		15	50	μΑ
SR	Slew rate ⁽⁶⁾	$A_V = +1, V_O = 1 V_{PP}$		40		V/μs
BW	−3 dB BW	$A_V = +1$, $V_{OUT} = 200 \text{ mV}_{PP}$		45		MHz
_	logest referred veltere and a	f = 100 kHz		40		>//-\/\-
e _n	Input-referred voltage noise	f = 1 kHz		60		nV/√Hz
	Land astamada	f = 100 kHz 0.7	0.75			
i _n	Input-referred current noise	f = 1 kHz		1.2		pA/√Hz
t _{on}	Turnon time (LMV118)			250		ns
t _{off}	Turnoff time (LMV118)			560		ns
TH _{SD}	Shutdown threshold (LMV118)	I _S ≤ 50 μA		1.95	2.3	V
I _{SD}	SHUTDOWN pin input current (LMV118)	See ⁽⁴⁾		-20		μА

All limits are specified by testing or statistical analysis.

Copyright © 2003-2016, Texas Instruments Incorporated

Typical values represent the most likely parametric norm.

 ⁽³⁾ Offset voltage average drift determined by dividing the change in V_{OS} at temperature extremes into the total temperature change.
 (4) Positive current corresponds to current flowing into the device.

⁽⁵⁾ Short-circuit test is a momentary test. See Absolute Maximum Ratings, note 4.

Slew rate is the average of the rising and falling slew rates.

6.6 Electrical Characteristics: 5 V

Unless otherwise specified, all limits apply for $T_J = 25^{\circ}C$, $V^+ = 5$ V, $V^- = 0$ V, $V_{CM} = V_O = V^+/2$, and $R_F = 2$ k Ω , and $R_L = 1$ k Ω to V+/2.

	PARAMETER	TEST CONDITIONS	MIN ⁽¹⁾	TYP ⁽²⁾	MAX ⁽¹⁾	UNIT
		0 V ≤ V _{CM} ≤ 1.7 V		±1	±5	
V _{OS}	Input offset voltage	0 V ≤ V _{CM} ≤ 1.7 V -40°C to 85°C			±6	mV
TC V _{OS}	Input offset average drift	See ⁽³⁾		±5		μV/C
	Land Manager	See ⁽⁴⁾	-2	-0.4		^
I _B	Input bias current	See ⁽⁴⁾ , –40°C to 85°C	-2.2			μА
Ios	Input offset current			1	500	nA
CMRR	Common mode rejection ratio	V _{CM} stepped from 0 V to 3.8 V	77	85		dB
PSRR	Power supply rejection ratio	$V^{+} = 5 \text{ V to } 6 \text{ V or } V^{-} = 0 \text{ V to } -1 \text{ V}$	72	95		dB
R _{IN}	Common mode input resistance			3		ΜΩ
C _{IN}	Common mode input capacitance			2		pF
	Input common-mode voltage	CMRR ≥ 50 dB	-0.3		4	
CMVR	range	CMRR ≥ 50 dB, -40°C to 85°C	-0.1			V
_		V _O = 1.5 V to 3.5 V	73	87		dB
A _{VOL}	Large signal voltage gain	V _O = 1.5 V to 3.5 V, -40°C to 85°C	70			
		$R_L = 1 \text{ k}\Omega \text{ to V}^+/2$	4.8	4.95		V
	Output swing high	$R_L = 10 \text{ k}\Omega \text{ to V}^+/2$		4.98		
Vo		$R_L = 1 \text{ k}\Omega \text{ to V}^+/2$	200	50		mV
	Output swing low	$R_L = 10 \text{ k}\Omega \text{ to V}^+/2$		20		
		Sourcing to V ⁻ V _{ID} = 200 mV ⁽⁵⁾	35	45		
Isc	Output short-circuit current	Sinking to V ⁺ $V_{ID} = -200 \text{ mV}^{(5)}$	35	43		mA
I _{OUT}	Output current	V _{OUT} = 0.5 V from rails		±20		mA
	0 1	Normal operation		600	900	
I _S	Supply current	Shutdown mode (LMV118)		10	50	μΑ
SR	Slew rate (6)	$A_V = +1, V_O = 1 V_{PP}$		40		V/μs
BW	-3 dB BW	$A_V = +1$, $V_{OUT} = 200 \text{ mV}_{PP}$		45		MHz
		f = 100 kHz		40		\ //
e _n	Input-referred voltage noise	f = 1 kHz		60		nV/√Hz
		f = 100 kHz		0.75		A / /II
i _n	Input-referred current noise	f = 1 kHz		1.2		pA/√Hz
t _{on}	Turnon time (LMV118)			210		ns
t _{off}	Turnoff time (LMV118)			500		ns
TH _{SD}	Shutdown threshold (LMV118)	I _S ≤ 50 μA		4.25	4.6	V
I _{SD}	SHUTDOWN pin input current (LMV118)	See ⁽⁴⁾		-20		μА

All limits are specified by testing or statistical analysis.

Typical values represent the most likely parametric norm.

Offset voltage average drift determined by dividing the change in VOS at temperature extremes into the total temperature change.

Positive current corresponds to current flowing into the device.

Short-circuit test is a momentary test. See *Absolute Maximum Ratings*, note 4.

Slew rate is the average of the rising and falling slew rates.

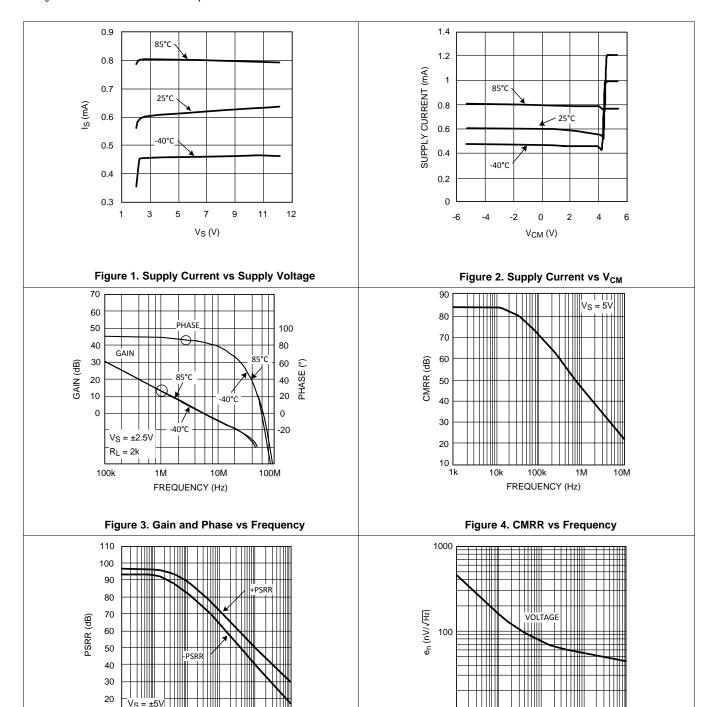
6.7 Electrical Characteristics: ±5 V

Unless otherwise specified, all limits apply for $T_J = 25^{\circ}C$, $V^+ = 5$ V, $V^- = -5$ V, $V_{CM} = V_O = 0$ V, and $R_F = 2$ k Ω , and $R_L = 1$ k Ω to V+/2.

	PARAMETER	TEST CONDITIONS	MIN ⁽¹⁾	TYP ⁽²⁾	MAX ⁽¹⁾	UNIT
		0 V ≤ V _{CM} ≤ 1.7 V		±1	±5	
V _{OS}	Input offset voltage	0 V ≤ V _{CM} ≤ 1.7 V -40°C to 85°C			±6	mV
TC V _{OS}	Input offset average drift	See ⁽³⁾		±5		μV/C
	lanut hisa sumant	See ⁽⁴⁾	-2	-0.4		^
I _B	Input bias current	See ⁽⁴⁾ , –40°C to 85°C	-2.2			μА
Ios	Input offset current			3	500	nA
CMRR	Common mode rejection ratio	V _{CM} stepped from 0 V to 3.8 V	78	104		dB
PSRR	Power supply rejection ratio	$V^{+} = 5 \text{ V to } 6 \text{ V or } V^{-} = 0 \text{ V to } -1 \text{ V}$	72	95		dB
R _{IN}	Common mode input resistance			3		МΩ
C _{IN}	Common mode input capacitance			2		pF
		CMRR ≥ 50 dB	-5.3		4	.,
CMVR	Input common-mode voltage range	CMRR ≥ 50 dB, -40°C to 85°C	-5.1			V
		V _O = 1.5 V to 3.5 V	74	85		
A_{VOL}	Large signal voltage gain	V _O = 1.5 V to 3.5 V, -40°C to 85°C	71			dB
		$R_L = 1 k\Omega$ to V ⁺ /2	4.7	4.92		V
	Output swing high	$R_L = 10 \text{ k}\Omega \text{ to V}^+/2$		4.97		
Vo		$R_L = 1 k\Omega$ to V ⁺ /2	-4.7	-4.92		V
	Output swing low	$R_{L} = 10 \text{ k}\Omega \text{ to V}^{+}/2$		-4.98		
	O test short size it seemed	Sourcing to V ⁻ V _{ID} = 200 mV ⁽⁵⁾	40 57			
I _{SC}	Output short-circuit current	Sinking to V ⁺ $V_{ID} = -200 \text{ mV}^{(5)}$	40	54		mA
I _{OUT}	Output current	V _{OUT} = 0.5 V from rails		±20		mA
	Cumply gurrant	Normal operation		600	900	^
I _S	Supply current	Shutdown mode (LMV118)		15	50	μА
SR	Slew rate ⁽⁶⁾	$A_V = 1$, $V_O = 1$ V_{PP}		35		V/μs
BW	−3 dB BW	A _V = 1, V _{OUT} = 200 mV _{PP}		45		MHz
_	land of the same development of the	f = 100 kHz		40		->4//
e _n	Input-referred voltage noise	f = 1 kHz		60		nV/√Hz
		f = 100 kHz	:Hz 0.75			
i _n	Input-referred current noise	f = 1 kHz		1.2		pA/√Hz
t _{on}	Turnon time (LMV118)			200		ns
t _{off}	Turnoff time (LMV118)			700		ns
TH _{SD}	Shutdown threshold (LMV118)	I _S ≤ 50 μA		4.25	4.6	V
I _{SD}	SHUTDOWN pin input current (LMV118)	See ⁽⁴⁾		-20		μА

Typical values represent the most likely parametric norm. Offset voltage average drift determined by dividing the change in V_{OS} . All limits are specified by testing or statistical analysis.

at temperature extremes into the total temperature change.


Positive current corresponds to current flowing into the device.
Short-circuit test is a momentary test. See *Absolute Maximum Ratings*, note 4.

Slew rate is the average of the rising and falling slew rates.

6.8 Typical Characteristics

At $T_J = 25$ °C. Unless otherwise specified.

100k

FREQUENCY (Hz)

Figure 5. PSRR vs Frequency

1M

10k

10

100

FREQUENCY (Hz)

Figure 6. Input Voltage Noise vs Frequency

100k

10

10

Typical Characteristics (continued)

At $T_J = 25$ °C. Unless otherwise specified.

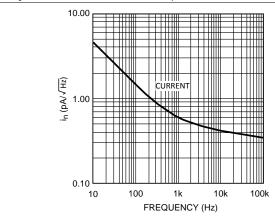


Figure 7. Input Current Noise vs Frequency

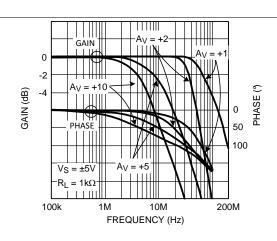


Figure 8. Closed-Loop Frequency Response for Various Temperature

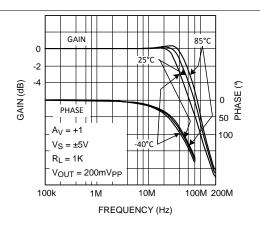


Figure 9. Frequency Response For Various (A_V)

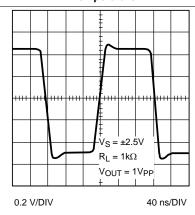


Figure 10. Large Signal Step Response

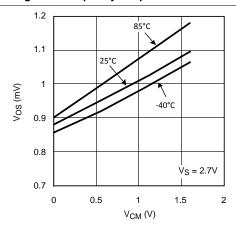


Figure 11. Offset Voltage vs Common Mode Voltage (a Typical Unit)

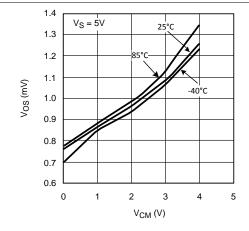


Figure 12. Offset Voltage vs Common Mode Voltage (a Typical Unit)

TEXAS INSTRUMENTS

Typical Characteristics (continued)

At $T_J = 25$ °C. Unless otherwise specified.

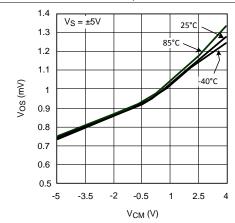


Figure 13. Offset Voltage vs Common Mode Range (a Typical Unit)

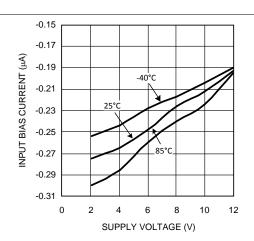


Figure 14. Input Bias Current vs Supply Voltage

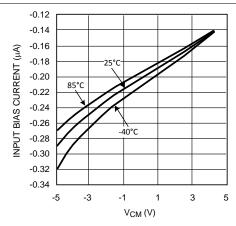


Figure 15. Input Bias Current vs V_{CM}

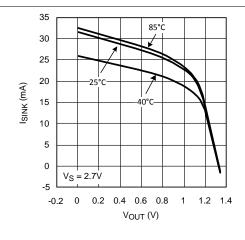


Figure 16. Sink Current vs V_{OUT}

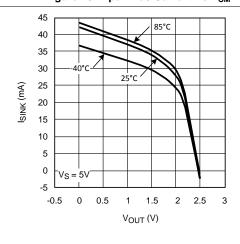


Figure 17. Sink Current vs V_{OUT}

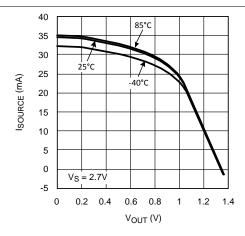
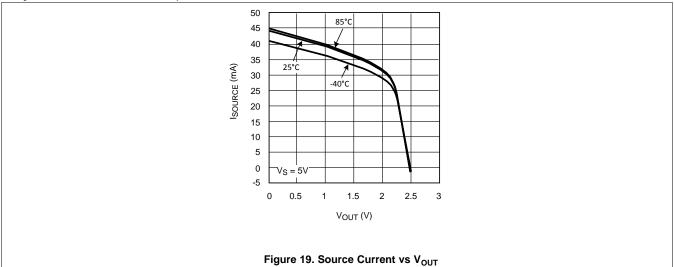
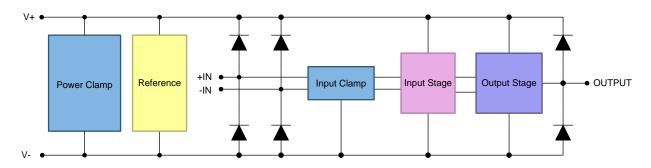



Figure 18. Souce Current vs Vout

Typical Characteristics (continued)

At $T_J = 25$ °C. Unless otherwise specified.

7 Detailed Description


7.1 Overview

The LMV116 and LMV118 are based on TI's proprietary VIP10 dielectrically isolated bipolar process.

The LMV116 and LMV118 architecture features the following:

- Complementary bipolar devices with exceptionally high f_t (approximately 8 GHz) even under low supply voltage (2.7 V) and low collector bias current.
- Common emitter push-pull output stage capable of 20-mA output current (at 0.5 V from the supply rails) while consuming only 600 μA of total supply current. This architecture allows output to reach within milli-volts of either supply rail at light loads.
- Consistent performance from any supply voltage (2.7 V to 10 V) with little variation with supply voltage for the
 most important specifications (for example, BW, SR, I_{OUT}, etc.)

7.2 Functional Block Diagram

Copyright © 2016, Texas Instruments Incorporated

7.3 Feature Description

The amplifier's differential inputs consist of a non-inverting input (+IN) and an inverting input (-IN). The amplifier amplifies only the difference in voltage between the two inputs, which is called the differential input voltage. The output voltage of the op-amp V_{OUT} is given by Equation 1:

$$V_{OUT} = A_{VOL} (+IN - -IN)$$

where

A_{VOL} is the open-loop gain of the amplifier, typically around 85 dB.

(1)

7.4 Device Functional Modes

7.4.1 Quasi-Saturated State

When the output swing approaches either supply rail, the output transistor enters a quasi-saturated state. A subtle effect of this operational region is that there is an increase in supply current in this state (up to 1 mA). The onset of quasi-saturation region is a function of output loading (current) and varies from 100 mV at no load to about 1 V when output is delivering 20 mA, as measured from supplies. Both input common mode voltage and output voltage level affect the supply current (see *Typical Characteristics* for plot).

7.4.2 Micro-Power Shutdown

The LMV118 can be shut down to save power and reduce its supply current to less than the 50 μ A specified by applying a voltage to the SD pin. The SD pin is *active high* and needs to be tied to V⁻ for normal operation. This input is low current (< 20- μ A, 4-pF equivalent capacitance) and a resistor to V⁻ (≤ 20 k Ω) results in normal operation. Shutdown is specified when SD pin is 0.4 V or less from V⁺ at any operating supply voltage and temperature.

In the shutdown mode, essentially all internal device biasing is turned off in order to minimize supply current flow, and the output goes into Hi-Z (high impedance) mode. Complete device turnon and turnoff times vary considerably relative to the output loading conditions, output voltage, and input impedance, but is generally limited to less than 1 μ s (see *Electrical Characteristics: 2.7 V, Electrical Characteristics: 5 V*, and *Electrical Characteristics: ±5 V*)

During shutdown, the input stage has an equivalent circuit as shown in Figure 20.

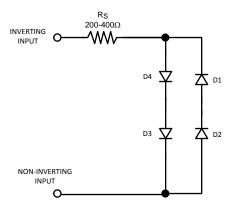


Figure 20. Input Stage Shutdown Equivalent Circuit

As can be seen from Figure 20, in shutdown there may be current flow through the internal diodes shown, caused by input potential, if present. This current may flow through the external feedback resistor and result in an apparent output signal. In most shutdown applications the presence of this output is inconsequential. However, if the output is *forced* by another device such as in a multiplexer, the other device must conduct the current described in order to maintain the output potential.

To keep the output at or near ground during shutdown when there is no other device to hold the output low, a switch (transistor) could be used to shunt the output to ground. Figure 21 shows a circuit where a NPN bipolar is used to keep the output near ground (approximately 80 mV):

Copyright © 2003–2016, Texas Instruments Incorporated

Device Functional Modes (continued)

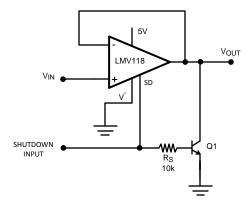


Figure 21. Active Pulldown Schematic

Figure 22 shows the output waveform.

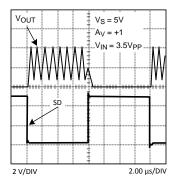


Figure 22. Output Held Low by Active Pulldown Circuit

If bipolar transistor power dissipation is not tolerable, the switch can be done by an N-channel enhancement-mode MOSFET.

8 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

8.1 Application Information

The LMV11x rail-to-rail output voltage feedback amplifiers offer high-speed (45 MHz) operation with low input voltage (2.7 V). Output voltage range extends to within 20 mV of either supply rail, allowing wide dynamic range especially in low voltage applications. Even with low supply current of 600 μ A, output current capability is kept at a respectable ±20 mA. For portable applications, the LMV118 provides shutdown capability while keeping the turnoff current to 15 μ A. Both turnon and turnoff characteristics are well behaved with minimal output fluctuations during transitions which enables the use of LMV118 in multiplexing applications.

8.2 Typical Application: 2.7-V Single Supply 2:1 MUX

The schematic shown in Figure 23 functions as a 2:1 MUX operating on a single 2.7-V power supply, by utilizing the shutdown feature of the LMV118. Select input signal is connected to the shutdown pin of the first LMV118 through 74HC04 inverter. This signal is connected to the shutdown pin of the second LMV118 through another inverter. With this setup one of the LMV118 operational amplifiers is always in shutdown mode while the other is in active mode.

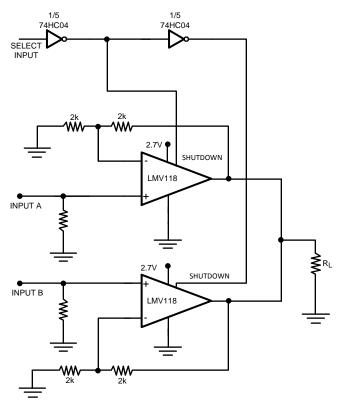


Figure 23. 2:1 MUX Operating Off a 2.7-V Single Supply

Typical Application: 2.7-V Single Supply 2:1 MUX (continued)

8.2.1 Design Requirements

For typical operational-amplifier applications, use the parameters listed in Table 1.

Table 1. Design Parameters

DESIGN PARAMETER	EXAMPLE VALUE
Supply voltage	2.7 V
Linear output current	±20 mA (typical)
PSRR	85 dB (typical)

8.2.2 Detailed Design Procedure

It is important to carefully select the values of the external resistors. Choosing large valued external resistors affects the closed-loop behavior of the stage because of the interaction of these resistors with parasitic capacitances. These capacitors could be inherent to the device or a by-product of the board layout and component placement. Either way, keeping the resistor values lower diminishes this interaction. On the other hand, choosing very low-value resistors could load down nodes and contribute to higher overall power dissipation.

8.2.3 Application Curve

Figure 24 shows the MUX output when selecting between a 1-MHz sine and a 250-kHz triangular waveform.

As can be seen in Figure 24, the output is well behaved, and there are no spikes or glitches due to the switching. Switching times are approximately around 500 ns based on the time when the output is considered *valid*.

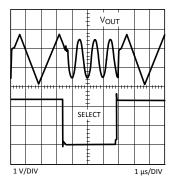


Figure 24. 2:1 MUX Output

9 Power Supply Recommendations

The LMV11x is specified for operation from 2.7 V to 12 V (±1.35 V to ±6 V) over a -40°C to +85°C temperature range. For proper operation, the power supplies must be properly decoupled. For decoupling the supply lines it is suggested that 100-nF capacitors be placed as close as possible to the operational amplifier power supply pins. For single supply, place a capacitor between V+ and V- supply leads. For dual supplies, place one capacitor between V+ and ground, and one capacitor between V- and ground.

Submit Documentation Feedback

10 Layout

10.1 Layout Guidelines

Generally, a good high-frequency layout keeps power supply and ground traces away from the inverting input and output pins. Parasitic capacitances on these nodes to ground cause frequency response peaking and possible circuit oscillations (see *OA-15 Frequent Faux Pas in Applying Wideband Current Feedback Amplifiers* for more information).

TI suggests the following evaluation boards as a guide for high-frequency layout and as an aid in device testing and characterization:

DEVICE	PACKAGE	EVALUATION BOARD P/N		
LMV116	SOT-23-5	CLC730068		
LMV118	SOT-23-6	CLC730116		

10.2 Layout Example

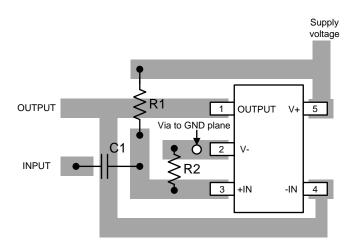


Figure 25. LMV116/LMV118 Layout

11 Device and Documentation Support

11.1 Related Documentation

For additional information, see the following:

OA-15 Frequent Faux Pas in Applying Wideband Current Feedback Amplifiers

11.2 Related Links

Table 2 lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy.

Table 2. Related Links

PARTS	PRODUCT FOLDER	SAMPLE & BUY	TECHNICAL DOCUMENTS	TOOLS & SOFTWARE	SUPPORT & COMMUNITY	
LMV116	Click here	Click here	Click here	Click here	Click here	
LMV118	Click here	Click here	Click here	Click here	Click here	

11.3 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on *Alert me* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

11.4 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Lise

TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support *TI's Design Support* Quickly find helpful E2E forums along with design support tools and contact information for technical support.

11.5 Trademarks

E2E is a trademark of Texas Instruments.

All other trademarks are the property of their respective owners.

11.6 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

11.7 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

12 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

Submit Documentation Feedback

14-Sep-2016

PACKAGING INFORMATION

Orderable Device	Status	Package Type	_		_		Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
LMV116MF/NOPB	ACTIVE	SOT-23	DBV	5	1000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	-40 to 85	AC1A	Samples
LMV116MFX/NOPB	ACTIVE	SOT-23	DBV	5	3000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	-40 to 85	AC1A	Samples
LMV118MF	NRND	SOT-23	DBV	6		TBD	Call TI	Call TI	-40 to 85	AD1A	
LMV118MF/NOPB	ACTIVE	SOT-23	DBV	6	1000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	-40 to 85	AD1A	Samples
LMV118MFX/NOPB	ACTIVE	SOT-23	DBV	6	3000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	-40 to 85	AD1A	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

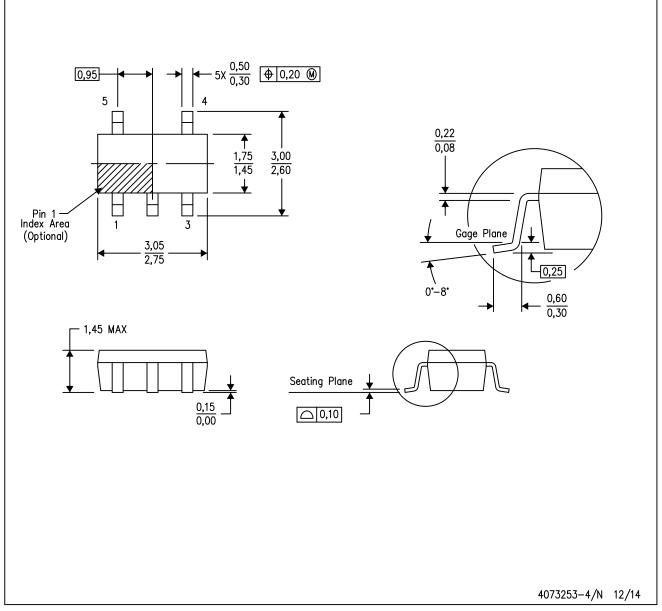
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free** (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between

the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

PACKAGE OPTION ADDENDUM

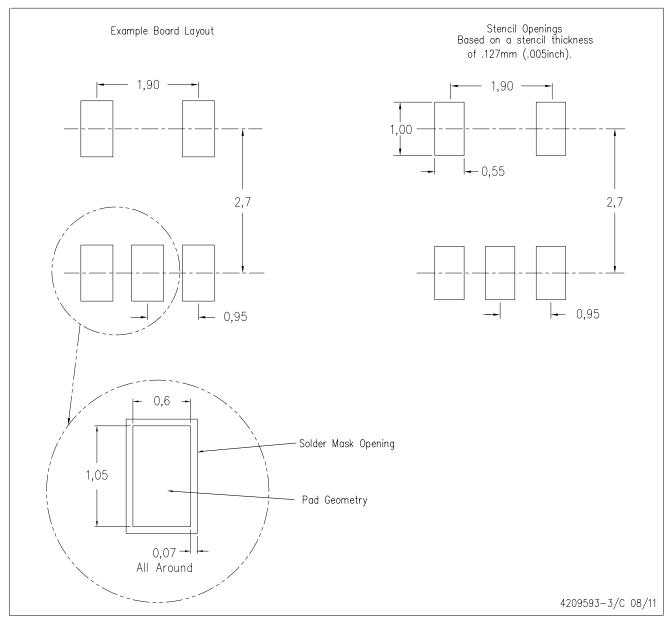

14-Sep-2016

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

DBV (R-PDSO-G5)

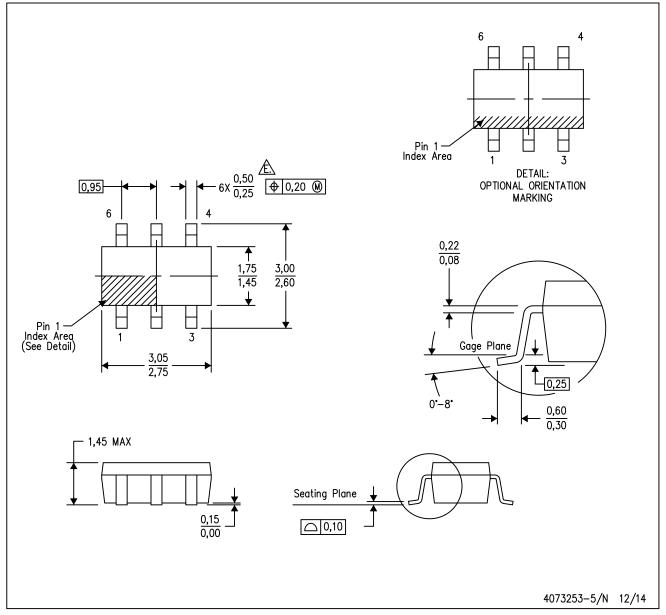
PLASTIC SMALL-OUTLINE PACKAGE


NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side.
- D. Falls within JEDEC MO-178 Variation AA.

DBV (R-PDSO-G5)

PLASTIC SMALL OUTLINE


NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad.
- D. Publication IPC-7351 is recommended for alternate designs.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.

DBV (R-PDSO-G6)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side.
- D. Leads 1,2,3 may be wider than leads 4,5,6 for package orientation.
- Falls within JEDEC MO-178 Variation AB, except minimum lead width.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive **Amplifiers** amplifier.ti.com Communications and Telecom www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com **Energy and Lighting** www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic Security www.ti.com/security logic.ti.com

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity www.ti.com/wirelessconnectivity