PERIPHERAL DRIVERS FOR
 HIGH-VOLTAGE, HIGH-CURRENT DRIVER APPLICATIONS

- Characterized for Use to 300 mA
- High-Voltage Outputs
- No Output Latch-Up at 30 V (After Conducting 300 mA)
- Medium-Speed Switching
- Circuit Flexibility for Varied Applications and Choice of Logic Function
- TTL-Compatible Diode-Clamped Inputs
- Standard Supply Voltages
- Plastic DIP (P) With Copper Lead Frame for Cooler Operation and Improved Reliability
- Package Options Include Plastic Small Outline Packages, Ceramic Chip Carriers, and Standard Plastic and Ceramic 300-mil DIPs

SUMMARY OF SERIES 55461/75461

DEVICE	LOGIC	PACKAGES
SN55461	AND	FK, JG
SN55462	NAND	FK, JG
SN55463	OR	FK, JG
SN75461	AND	D, P
SN75462	NAND	D, P
SN75463	OR	D, P

SN55461, SN55462, SN55463 . . . JG PACKAGE SN75461, SN75462, SN75463 ... D OR P PACKAGE (TOP VIEW)

SN55461, SN55462, SN55463 . . . FK PACKAGE (TOP VIEW)

NC - No internal connection

description

These dual peripheral drivers are functionally interchangeable with SN55451B through SN55453B and SN75451B through SN75453B peripheral drivers, but are designed for use in systems that require higher breakdown voltages than those devices can provide at the expense of slightly slower switching speeds. Typical applications include logic buffers, power drivers, relay drivers, lamp drivers, MOS drivers, line drivers, and memory drivers.
The SN55461/SN75461, SN55462/SN75462, and SN55463/SN75463 are dual peripheral AND, NAND, and OR drivers respectively (assuming positive logic), with the output of the gates internally connected to the bases of the npn output transistors.

Series SN55461 drivers are characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. Series SN75461 drivers are characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

		SN55'	SN75'	UNIT
Supply voltage, V_{CC} (see Note 1)		7	7	V
Input voltage, $\mathrm{V}_{\text {I }}$		5.5	5.5	V
Intermitter voltage (see Note 2)		5.5	5.5	V
Off-state output voltage, V_{O}		35	35	V
Continuous collector or output current (see Note 3)		400	400	mA
Peak collector or output current ($\mathrm{t}_{\mathrm{w}} \leq 10 \mathrm{~ms}$, duty cycle $\leq 50 \%$, see Note 4)		500	500	mA
Continuous total power dissipation		See Dissipation Rating Table		
Operating free-air temperature range, T_{A}		-55 to 125	0 to 70	${ }^{\circ} \mathrm{C}$
Storage temperature range, $T_{\text {stg }}$		-65 to 150	-65 to 150	${ }^{\circ} \mathrm{C}$
Case temperature for 60 seconds, T_{C}	FK package	260		${ }^{\circ} \mathrm{C}$
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds	JG package	300		${ }^{\circ} \mathrm{C}$
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	D or P package		260	${ }^{\circ} \mathrm{C}$

\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. Voltage values are with respect to network GND unless otherwise specified.
2. This is the voltage between two emitters A and B.
3. This value applies when the base-emitter resistance ($R_{B E}$) is equal to or less than 500Ω.
4. Both halves of these dual circuits may conduct rated current simultaneously; however, power dissipation averaged over a short time interval must fall within the continuous dissipation rating.

DISSIPATION RATING TABLE

PACKAGE	$\mathrm{T}_{\mathrm{A}} \leq 25^{\circ} \mathrm{C}$ POWER RATING	DERATING FACTOR ABOVE $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$ POWER RATING	$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$ POWER RATING
D	725 mW	$5.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	464 mW	-
FK	1375 mW	11.0 mW/ ${ }^{\circ} \mathrm{C}$	880 mW	275 mW
JG	1050 mW	$8.4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	672 mW	210 mW
P	1000 mW	8.0 mW/ ${ }^{\circ} \mathrm{C}$	640 mW	-

recommended operating conditions

	SN55'			SN75'			UNIT
	MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage, V_{CC}	4.5	5	5.5	4.75	5	5.25	V
High-level input voltage, $\mathrm{V}_{\text {IH }}$	2			2			V
Low-level input voltage, $\mathrm{V}_{\text {IL }}$			0.8			0.8	V
Operating free-air temperature, T_{A}	-55		125	0		70	${ }^{\circ} \mathrm{C}$

logic symbol \dagger

† This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.
Pin numbers shown are for D, JG, and P packages.

FUNCTION TABLE

(each driver)

A	B	Y
L	L	L (on state)
L	H	L (on state)
H	L	L (on state)
H	H	H (off state)

positive logic:
$Y=A B$ or $\bar{A}+\bar{B}$

logic diagram (positive logic)

electrical characteristics over recommended operating free-air temperature range

PARAMETER		TEST CONDITIONS \dagger		SN55461			SN75461			UNIT		
		MIN	TYPキ	MAX	MIN	TYP\#	MAX					
VIK	Input clamp voltage			$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$,	$\mathrm{I}_{\mathrm{I}}=-12 \mathrm{~mA}$		-1.2	-1.5		-1.2	-1.5	V
${ }^{\text {IOH }}$	High-level output current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\mathrm{OH}}=35 \mathrm{~V} \\ & \hline \end{aligned}$	$\mathrm{V}_{\mathrm{IH}}=\mathrm{MIN},$			300			100	$\mu \mathrm{A}$		
VOL	Low-level output voltage	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{IOL}=100 \mathrm{~mA} \\ & \hline \end{aligned}$	$\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V},$		0.25	0.5		0.25	0.4	V		
		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{IOL}=300 \mathrm{~mA} \end{aligned}$	$\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V},$		0.5	0.8		0.5	0.7			
11	Input current at maximum input voltage	$V_{C C}=M A X$,	$\mathrm{V}_{1}=5.5 \mathrm{~V}$			1			1	mA		
${ }^{\text {IIH }}$	High-level input current	$V_{C C}=$ MAX,	$\mathrm{V}_{\mathrm{I}}=2.4 \mathrm{~V}$			40			40	$\mu \mathrm{A}$		
IIL	Low-level input current	$V_{C C}=$ MAX,	$\mathrm{V}_{1}=0.4 \mathrm{~V}$		-1	-1.6		-1	-1.6	mA		
ICCH	Supply current, outputs high	$V_{C C}=$ MAX,	$\mathrm{V}_{\mathrm{I}}=5 \mathrm{~V}$		8	11		8	11	mA		
ICCL	Supply current, outputs low	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}$,	$\mathrm{V}_{\mathrm{I}}=0$		56	76		56	76	mA		

\dagger For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
\ddagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
switching characteristics, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER			TEST CONDITIONS		MIN	TYP	MAX	UNIT
tPLH	Propagation delay time, low-to-high-level output		$\begin{aligned} & \mathrm{lO} \approx 200 \mathrm{~mA}, \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \end{aligned}$	$C_{L}=15 \mathrm{pF},$ See Figure 1		30	55	ns
tphL	Propagation delay time, high-to-low-level output					25	40	
t ${ }^{\text {LLH }}$	Transition time, low-to-high-level output					8	20	
tTHL	Transition time, high-to-low-level output					10	20	
V OH	High-level output voltage after switching	SN55461	$\mathrm{V}_{\mathrm{S}}=30 \mathrm{~V},$ See Figure 2	$\mathrm{I}=300 \mathrm{~mA},$	$\mathrm{V}_{\mathrm{S}}-10$			mV
		SN75461			$\mathrm{V}_{\mathrm{S}}-10$			

logic symbol \dagger

\dagger This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.
Pin numbers shown are for D, JG, and P packages.
FUNCTION TABLE (each driver)

A	B	Y
L	L	H (off state)
L	H	H (off state)
H	L	H (off state)
H	H	L (on state)

positive logic: $\mathrm{Y}=\overline{\mathrm{AB}}$ or $\overline{\mathrm{A}}+\overline{\mathrm{B}}$

logic diagram (positive logic)

schematic (each driver)

Resistor values shown are nominal.
electrical characteristics over recommended operating free-air temperature range

PARAMETER		TEST CONDITIONS \dagger	SN55462			SN75462			UNIT	
		MIN	TYPキ	MAX	MIN	TYPキ	MAX			
$\mathrm{V}_{\text {IK }}$	Input clamp voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \quad \mathrm{I}=-12 \mathrm{~mA}$		-1.2	-1.5		-1.2	-1.5	V
${ }^{\mathrm{IOH}}$	High-level output current	$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \quad \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{OH}}=35 \mathrm{~V} & \\ \hline \end{array}$			300			100	$\mu \mathrm{A}$	
VOL	Low-level output voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \quad \mathrm{~V}_{\mathrm{IH}}=\mathrm{MIN}, \\ & \mathrm{IOL}=100 \mathrm{~mA} \\ & \hline \end{aligned}$		0.25	0.5		0.25	0.4	V	
		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \quad \mathrm{~V}_{\mathrm{IH}}=\mathrm{MIN}, \\ & \mathrm{l} \mathrm{OL}=300 \mathrm{~mA} \\ & \hline \end{aligned}$		0.5	0.8		0.5	0.7		
1	Input current at maximum input voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad \mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V}$			1			1	mA	
IIH	High-level input current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad \mathrm{V}_{\mathrm{I}}=2.4 \mathrm{~V}$			40			40	$\mu \mathrm{A}$	
IIL	Low-level input current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad \mathrm{V}_{\mathrm{I}}=0.4 \mathrm{~V}$		-1.1	-1.6		-1.1	-1.6	mA	
ICCH	Supply current, outputs high	$V_{C C}=M A X, \quad V_{l}=0$		13	17		13	17	mA	
${ }^{\text {I CCL }}$	Supply current, outputs low	$V_{C C}=\mathrm{MAX}, \quad \mathrm{V}_{1}=5 \mathrm{~V}$		61	76		61	76	mA	

\dagger For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
\ddagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
switching characteristics, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER		TEST CONDITIONS		MIN	TYP	MAX	UNIT
Propagation delay time, low-to-high-level output		$\begin{aligned} & \mathrm{l}=200 \mathrm{~mA}, \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \end{aligned}$	$C_{L}=15 \mathrm{pF},$ See Figure 1		45	65	ns
Propagation delay time, high-to-low-level output					30	50	
Transition time, low-to-high-level output					13	25	
Transition time, high-to-low-level output					10	20	
High-level output voltage after switching	SN55462	$V_{S}=30 \mathrm{~V},$ See Figure 2	$\mathrm{l}=300 \mathrm{~mA}$,		S-10		mV
	SN75462			$\mathrm{V}_{\mathrm{S}}-10$			

logic symbol \dagger

\dagger This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.
Pin numbers shown are for D, JG, and P packages.
FUNCTION TABLE (each driver)

A	B	Y
L	L	L (on state)
L	H	H (off state)
H	L	H (off state)
H	H	H (off state)

positive logic: $Y=A+B$ or $\bar{A} \bar{B}$

logic diagram (positive logic)

electrical characteristics over recommended operating free-air temperature range

PARAMETER		TEST CONDITIONS \dagger	SN55463			SN75463			UNIT	
		MIN	TYP\#	MAX	MIN	TYP\#	MAX			
VIK	Input clamp voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \quad \mathrm{I}=-12 \mathrm{~mA}$		-1.2	-1.5		-1.2	-1.5	V
${ }^{\text {IOH }}$	High-level output current	$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \quad \mathrm{~V}_{\mathrm{IH}}=\mathrm{MIN}, \\ \mathrm{~V}_{\mathrm{OH}}=35 \mathrm{~V} & \\ \hline \end{array}$			300			100	$\mu \mathrm{A}$	
VOL	Low-level output voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \quad \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \\ & \mathrm{IOL}=100 \mathrm{~mA} \end{aligned}$		0.25	0.5		0.25	0.4	V	
		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \quad \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \\ & \mathrm{IOL}=300 \mathrm{~mA} \end{aligned}$		0.5	0.8		0.5	0.7		
11	Input current at maximum input voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad \mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V}$			1			1	mA	
$\mathrm{IIH}^{\text {H }}$	High-level input current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad \mathrm{V}_{\mathrm{I}}=2.4 \mathrm{~V}$			40			40	$\mu \mathrm{A}$	
IIL	Low-level input current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad \mathrm{V}_{\mathrm{I}}=0.4 \mathrm{~V}$		-1	-1.6		-1	-1.6	mA	
${ }^{\text {I CCH }}$	Supply current, outputs high	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad \mathrm{V}_{\mathrm{I}}=5 \mathrm{~V}$		8	11		8	11	mA	
ICCL	Supply current, outputs low	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad \mathrm{V}_{\mathrm{l}}=0$		58	76		58	76	mA	

\dagger For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
\ddagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
switching characteristics, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER			TEST CONDITIONS		MIN	TYP	MAX	UNIT
tPLH	Propagation delay time, low-to-high-level output		$\begin{aligned} & \mathrm{I}=200 \mathrm{~mA}, \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \end{aligned}$	$C_{L}=15 \mathrm{pF},$ See Figure 1		30	55	ns
tPHL	Propagation delay time, high-to-low-level output					25	40	
tTLH	Transition time, low-to-high-level output					8	25	
tTHL	Transition time, high-to-low-level output					10	25	
V OH	High-level output voltage after switching	SN55463	$V_{S}=30 \mathrm{~V},$ See Figure 2	$\mathrm{l}=300 \mathrm{~mA}$,	$\mathrm{V}_{\mathrm{S}}-10$			mV
		SN75463			$\mathrm{V}_{\mathrm{S}}-10$			

PARAMETER MEASUREMENT INFORMATION

TEST CIRCUIT

VOLTAGE WAVEFORMS

NOTES: A. The pulse generator has the following characteristics: $\mathrm{PRR} \leq 1 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}} \approx 50 \Omega$.
B. C_{L} includes probe and jig capacitance.

Figure 1. Test Circuit and Voltage Waveforms for Switching Times

NOTES: A. The pulse generator has the following characteristics: $\mathrm{PRR} \leq 12.5 \mathrm{kHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega$.
B. C_{L} includes probe and jig capacitance.

Figure 2. Test Circuit and Voltage Waveforms for Latch-Up Test

Lia Texas Instruments

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish (6)	MSL Peak Temp (3)	Op Temp (${ }^{\circ} \mathrm{C}$)	Device Marking (4/5)	Samples
JM38510/12908BPA	ACTIVE	CDIP	JG	8	1	TBD	A42	N/ A for Pkg Type	-55 to 125	$\begin{aligned} & \hline \text { JM38510 } \\ & \text { /12908BPA } \end{aligned}$	Samples
JM38510/12909BPA	OBSOLETE	CDIP	JG	8		TBD	Call TI	Call TI	-55 to 125		
M38510/12908BPA	ACTIVE	CDIP	JG	8	1	TBD	A42	N/ A for Pkg Type	-55 to 125	$\begin{aligned} & \hline \text { JM38510 } \\ & / 12908 \mathrm{BPA} \end{aligned}$	Samples
SN55461JG	OBSOLETE	CDIP	JG	8		TBD	Call TI	Call TI	-55 to 125		
SN55462JG	OBSOLETE	CDIP	JG	8		TBD	Call TI	Call TI	-55 to 125		
SN55463JG	OBSOLETE	CDIP	JG	8		TBD	Call TI	Call T	-55 to 125		
SN75461D	OBSOLETE	SOIC	D	8		TBD	Call TI	Call TI			
SN75461P	OBSOLETE	PDIP	P	8		TBD	Call TI	Call TI			
SN75462D	ACTIVE	SOIC	D	8	75	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	75462	Samples
SN75462DR	ACTIVE	SOIC	D	8	2500	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	75462	Samples
SN75462P	ACtive	PDIP	P	8	50	Pb-Free (RoHS)	CU NIPDAU	N/ A for Pkg Type	0 to 70	SN75462P	Samples
SN75462PE4	ACtive	PDIP	P	8	50	Pb-Free (RoHS)	CU NIPDAU	N/ A for Pkg Type	0 to 70	SN75462P	Samples
SN75463D	OBSOLETE	S SOIC	D	8		TBD	Call TI	Call TI	0 to 70		
SN75463DR	OBSOLETE	SOIC	D	8		TBD	Call TI	Call TI	0 to 70		
SN75463P	ACTIVE	PDIP	P	8	50	Pb-Free (RoHS)	CU NIPDAU	N/A for Pkg Type	0 to 70	SN75463P	Samples
SNJ55461FK	OBSOLETE	LCCC	FK	20		TBD	Call TI	Call TI	-55 to 125		
SNJ55461JG	OBSOLETE	CDIP	JG	8		TBD	Call TI	Call TI	-55 to 125		
SNJ55462FK	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N/ A for Pkg Type	-55 to 125	$\begin{aligned} & \text { SNJ55 } \\ & \text { 462FK } \end{aligned}$	Samples
SNJ55462JG	ACtive	CDIP	JG	8	1	TBD	A42	N/ A for Pkg Type	-55 to 125	SNJ55462JG	Samples
SNJ55463JG	OBSOLETE	CDIP	JG	8		TBD	Call TI	Call TI	-55 to 125		

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available
OBSOLETE: TI has discontinued the production of the device.
${ }^{(2)}$ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS \& no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, Tl Pb -Free products are suitable for use in specified lead-free processes. Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
Green (RoHS \& no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
${ }^{(3)}$ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature
${ }^{(4)}$ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
${ }^{(5)}$ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
${ }^{(6)}$ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents Tl's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF SN55461, SN55462, SN55463, SN75461, SN75462, SN75463 :

- Catalog: SN75461, SN75462, SN75463
- Military: SN55461, SN55462, SN55463

NOTE: Qualified Version Definitions:

- Catalog - TI's standard catalog product

TAPE AND REEL INFORMATION

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	$\begin{array}{\|c\|} \hline \text { Reel } \\ \text { Width } \\ \text { W1 }(\mathrm{mm}) \\ \hline \end{array}$	A0 (mm)	B0 (mm)	K0 (mm)	$\begin{gathered} \mathrm{P} 1 \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{W} \\ (\mathrm{~mm}) \end{gathered}$	Pin1 Quadrant
SN75462DR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN75462DR	SOIC	D	8	2500	340.5	338.1	20.6

JG (R-GDIP-T8)

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. This package can be hermetically sealed with a ceramic lid using glass frit.
D. Index point is provided on cap for terminal identification.
E. Falls within MIL STD 1835 GDIP1-T8

FK (S-CQCC-N**)
LEADLESS CERAMIC CHIP CARRIER 28 TERMINAL SHOWN

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. This package can be hermetically sealed with a metal lid.
D. Falls within JEDEC MS-004
$P(R-P D I P-T 8)$
PLASTIC DUAL-IN-LINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Falls within JEDEC MS-001 variation BA.

D (R-PDSO-G8)

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.

Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shal not exceed $0.006(0,15)$ each side.
D. Body width does not include interlead flash. Interlead flash shall not exceed $0.017(0,43)$ each side
E. Reference JEDEC MS-012 variation AA.

D (R-PDSO-G8)

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Publication IPC-7351 is recommended for alternate designs.
D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to Tl's terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in Tl's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.
TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.
Resale of Tl components or services with statements different from or beyond the parameters stated by Tl for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, Tl's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.
Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	$\underline{\text { microcontroller.ti.com }}$	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessco		

