

Sample &

Buv

SN74AUP1G34

SCES603K - AUGUST 2004 - REVISED OCTOBER 2014

SN74AUP1G34 Low-Power Single Buffer Gate

Technical

Documents

1 Features

- Available in the Ultra Small 0.64 mm² Package (DPW) with 0.5-mm Pitch
- Low Static-Power Consumption; I_{CC} = 0.9 μA Max
- Low Dynamic-Power Consumption; C_{pd} = 4.1 pF Typ at 3.3 V
- Low Input Capacitance; C_i = 1.5 pF Typ
- Low Noise Overshoot and Undershoot < 10% of V_{CC}
- I_{off} Supports Live Insertion, Partial Power Down Mode, and Back Drive Protection
- Input Hysteresis Allows Slow Input Transition and Better Switching Noise Immunity at the Input (V_{hvs} = 250 mV Typ at 3.3 V)
- Wide Operating V_{CC} Range of 0.8 V to 3.6 V
- Optimized for 3.3-V Operation
- 3.6-V I/O Tolerant to Support Mixed-Mode Signal Operation
- t_{pd} = 4.1 ns Max at 3.3 V
- Suitable for Point-to-Point Applications
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Performance Tested Per JESD 22
 - 2000-V Human-Body Model (A114-B, Class II)
 - 1000-V Charged-Device Model (C101)

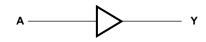
2 Applications

Tools &

Software

- ATCA Solutions
- Active Noise Cancellation (ANC)
- Barcode Scanner
- Blood Pressure Monitor
- CPAP Machine
- Cable Solutions
- DLP 3D Machine Vision, Hyperspectral Imaging, Optical Networking, and Spectroscopy
- E-Book
- Embedded PC
- Field Transmitter: Temperature or Pressure Sensor
- Fingerprint Biometrics
- HVAC: Heating, Ventilating, and Air Conditioning
- Network-Attached Storage (NAS)
- Server Motherboard and PSU
- Software Defined Radio (SDR)
- TV: High-Definition (HDTV), LCD, and Digital
- Video Communications System
- Wireless Data Access Card, Headset, Keyboard, Mouse, and LAN Card
- X-ray: Baggage Scanner, Medical, and Dental

3 Description


This single buffer gate performs the Boolean function Y = A in positive logic.

Device information '								
PART NUMBER	PACKAGE	BODY SIZE (NOM)						
	SOT (5)	1.60 mm × 1.20 mm						
SN74AUP1G34	USON (6)	1.45 mm × 1.00 mm						
SIN/4AUP1G34	X2SON (4)	0.80 mm × 0.80 mm						
	DSBGA (4)	0.79 mm × 0.79 mm						

Device Information⁽¹⁾

(1) For all available packages, see the orderable addendum at the end of the data sheet.

4 Simplifed Schematic

2

Table of Contents 1 Pulse Width 8

9

9.1

9.3

1	Feat	ures 1
2	Арр	lications 1
3	Des	cription 1
4	Sim	plifed Schematic1
5	Revi	ision History 2
6	Pin	Configuration and Function 3
7	Spe	cifications3
	7.1	Absolute Maximum Ratings 3
	7.2	Handling Ratings 4
	7.3	Recommended Operating Conditions 4
	7.4	Thermal Information 4
	7.5	Electrical Characteristics5
	7.6	Switching Characteristics, C _L = 5 pF 5
	7.7	Switching Characteristics, C _L = 10 pF 6
	7.8	Switching Characteristics, C _L = 15 pF 6
	7.9	Switching Characteristics, $C_L = 30 \text{ pF}$
	7.10	
	7.11	Typical Characteristics 7
8	Para	meter Measurement Information

8.1 Propaga

5 Revision History

Ch	anges from Revision J (June 2014) to Revision K Pa	age
•	Updated Device Information table.	1

Changes from Revision I (November 2012) to Revision J

hanges from Revision H (October 2012) to Revision I	Page
Added Typical Characteristics.	
Added Thermal Information table.	4
Added Handling Ratings table	4
Added Device Information table.	1
Updated Description.	1
Deleted Ordering Information table.	1
Updated document to new TI data sheet format	1
	Deleted Ordering Information table. Updated Description. Added Device Information table. Added Handling Ratings table. Added Thermal Information table. Added Typical Characteristics.

I Characteristics	13.3 Glossary Mechanical, Packaging, and Orderable Information	

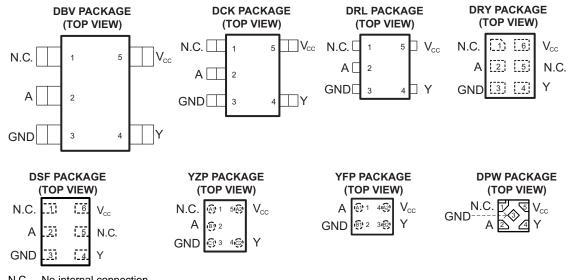
www.ti.com

STRUMENTS

XAS

Detailed Description 10

9.2 Functional Block Diagram 10


9.4 Device Functional Modes...... 10 10 Application and Implementation...... 11 10.1 Application Information..... 11 10.2 Typical Application 11 11 Power Supply Recommendations 12 12 Layout...... 12 12.1 Layout Guidelines 12 12.2 Layout Example 12 13 Device and Documentation Support 13 13.1 Trademarks 13 13.2 Electrostatic Discharge Caution 13

Feature Description......10

Page

6 Pin Configuration and Function

N.C. – No internal connection

See mechanical drawings for dimensions.

Pin Functions

			PIN				
NAME	DBV, DCK, DRL	DSF, DRY	YFP	DPW	YFP	I/O	DESCRIPTION
NC	1	1, 5	-	1		-	No connect
А	2	2	A1	2	A1	I	Input A
GNY	3	3	B1	3	B1	-	Ground
Y	4	4	B2	4	B2	0	Output Y
V _{CC}	5	6	A2	5	A2	-	Power Pin

7 Specifications

7.1 Absolute Maximum Ratings⁽¹⁾

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V _{CC}	Supply voltage range		-0.5	4.6	V
VI	Input voltage range ⁽²⁾		-0.5	4.6	V
Vo	Voltage range applied to any output in the high-in	Voltage range applied to any output in the high-impedance or power-off state ⁽²⁾			V
Vo	Output voltage range in the high or low state ⁽²⁾		-0.5	V _{CC} + 0.5	V
I _{IK}	Input clamp current	V ₁ < 0		-50	mA
I _{OK}	Output clamp current	V _O < 0		-50	mA
I _O	Continuous output current	Continuous output current		±20	mA
	Continuous current through V_{CC} or GND			±50	mA

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) The input and output negative-voltage ratings may be exceeded if the input and output current ratings are observed.

STRUMENTS

EXAS

7.2 Handling Ratings

			MIN	MAX	UNIT
T _{stg}	Storage temperature rang	Storage temperature range			
V _(ESD)	Electrostatic discharge	Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins ⁽¹⁾	0	2000	M
		Charged device model (CDM), per JEDEC specification JESD22-C101, all pins ⁽²⁾	0	1000	V

JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. (1)

(2)

7.3 Recommended Operating Conditions⁽¹⁾

			MIN	MAX	UNIT	
V _{CC}	Supply voltage		0.8	3.6	V	
		V _{CC} = 0.8 V	V _{CC}			
.,	L Park Jacob Constant on Research	V _{CC} = 1.1 V to 1.95 V	0.65 × V _{CC}			
VIH	High-level input voltage	V_{CC} = 2.3 V to 2.7 V	1.6		V	
		$V_{CC} = 3 V \text{ to } 3.6 V$	2			
		V _{CC} = 0.8 V		0		
.,		V _{CC} = 1.1 V to 1.95 V		$0.35 \times V_{CC}$	V	
V _{IL}	Low-level input voltage	V_{CC} = 2.3 V to 2.7 V		0.7	V	
		$V_{CC} = 3 V$ to 3.6 V		0.9		
VI	Input voltage		0	3.6	V	
Vo	Output voltage		0	V _{CC}	V	
		$V_{CC} = 0.8 V$		-20	μA	
		V _{CC} = 1.1 V		-1.1		
ı (2)		$V_{CC} = 1.4 V$		-1.7	mA	
IOH (=/	Hign-level output current	V _{CC} = 1.65 V		-1.9		
		V _{CC} = 2.3 V		-3.1		
	/ _I Input voltage	$V_{CC} = 3 V$		-4		
		V _{CC} = 0.8 V		20	μA	
		V _{CC} = 1.1 V		1.1		
. (2)		$V_{CC} = 1.4 V$		1.7		
I _{OL} (=)	Low-level output current	V _{CC} = 1.65 V		1.9	mA	
		V _{CC} = 2.3 V		3.1		
		$V_{CC} = 3 V$		4		
Δt/Δv	Input transition rise or fall rate	$V_{CC} = 0.8 V \text{ to } 3.6 V$		200	ns/V	
T _A	Operating free-air temperature	· · · · · · · · · · · · · · · · · · ·	-40	85	°C	

All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs,* literature number SCBA004. (1)

Defined by the signal integrity requirements and design goal priorities (2)

7.4 Thermal Information

THERMAL METRIC ⁽¹⁾		DBV	DCK	DRL	DSF	DRY	UNUT
		5 PINS	5 PINS	5 PINS	6 PINS	6 PINS	UNIT
R _{0JA}	Junction-to-ambient thermal resistance	271.4	338.4	349.7	407.1	554.9	
R _{0JC(top)}	Junction-to-case (top) thermal resistance	213.5	110.6	120.5	232.0	385.4	
R _{0JB}	Junction-to-board thermal resistance	108.2	118.8	171.4	306.9	388.2	°C/W
Ψ_{JT}	Junction-to-top characterization parameter	89.3	3.0	10.8	40.3	159.0	
Ψ_{JB}	Junction-to-board characterization parameter	107.6	117.8	169.4	306.0	384.1	

(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

7.5 Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted)

DADAMETED	TEST CONDITIONS			TA	= 25°C		T _A = -40°0	UNIT			
PARAMETER	TEST CONDIT	IONS	V _{cc}	MIN	TYP	MAX	MIN	MIN MAX			
	I _{OH} = -20 μA		0.8 V to 3.6 V	V _{CC} – 0.1			V _{CC} – 0.1				
	I _{OH} = -1.1 mA		1.1 V	0.75 × V _{CC}			$0.7 \times V_{CC}$				
	I _{OH} = -1.7 mA		1.4 V	1.11			1.03				
V _{OH}	I _{OH} = -1.9 mA		1.65 V	1.32			1.3		V		
	I _{OH} = -2.3 mA		2.3 V	2.05			1.97		v		
	I _{OH} = -3.1 mA			1.9			1.85				
	I _{OH} = -2.7 mA		3 V	2.72			2.67				
	$I_{OH} = -4 \text{ mA}$			2.6			2.55				
	I _{OL} = 20 μA		0.8 V to 3.6 V			0.1		0.1			
	I _{OL} = 1.1 mA		1.1 V		0.	3 × V _{CC}		$0.3 \times V_{CC}$			
	I _{OL} = 1.7 mA		1.4 V			0.31		0.37	V		
N/	I _{OL} = 1.9 mA		1.65 V			0.31		0.35			
V _{OL}	I _{OL} = 2.3 mA		0.0.1/		0.31			0.33	v		
	I _{OL} = 3.1 mA		2.3 V			0.44		0.45	l		
	I _{OL} = 2.7 mA		2.14			0.31		0.33			
	$I_{OL} = 4 \text{ mA}$		3 V			0.44		0.45			
II A input	$V_I = GND$ to 3.6 V		0 V to 3.6 V			0.1		0.5	μA		
I _{off}	$V_{\rm I}$ or $V_{\rm O}$ = 0 V to 3.6 V		0 V			0.2		0.6	μA		
ΔI _{off}	$V_1 \text{ or } V_0 = 0 \text{ V to}$ 3.6 V		0 V to 0.2 V			0.2		0.6	μA		
I _{CC}	$V_1 = GND \text{ or}$ (V _{CC} to 3.6 V)	I _O = 0	0.8 V to 3.6 V			0.5		0.9	μA		
ΔI _{CC}	$V_{I} = V_{CC} - 0.6 V$	$I_{O} = 0$	3.3 V			40		50	μA		
0			0 V		1.5				- F		
Ci	$V_I = V_{CC}$ or GND		3.6 V		1.5				pF		
Co	V _O = GND		0 V		2.5				pF		

7.6 Switching Characteristics, $C_L = 5 \text{ pF}$

over recommended operating free-air temperature range (unless otherwise noted) (see Figure 3 and Figure 4)

PARAMETER	FROM	то	V	T,	_λ = 25°C		T _A = −40°C t	o 85°C	UNIT
FARAMETER	(INPUT)) (OUTPUT)	V _{cc}	MIN	TYP	MAX	MIN	MAX	UNIT
			0.8 V	1.8	14.5	27.4			
	A	Y	1.2 V ± 0.1 V	3	5.6	11.2	0.4	13.9	
+			1.5 V ± 0.1 V	2.5	4	7.2	0.7	9.2	-
t _{pd}			1.8 V ± 0.15 V	2.2	3.2	6	0.8	7.3	ns
			$2.5 \text{ V} \pm 0.2 \text{ V}$	1.8	2.4	3.9	0.6	5.1	
			3.3 V ± 0.3 V	1.4	2	3.2	0.6	4.1	

7.7 Switching Characteristics, $C_L = 10 \text{ pF}$

over recommended operating free-air temperature range (unless otherwise noted) (see Figure 3 and Figure 4

PARAMETER	FROM	TO (OUTPUT)	V	T,	₄ = 25°C		$T_A = -40^{\circ}C$	UNIT	
PARAMETER	(INPUT)		V _{cc}	MIN	TYP	MAX	MIN	MAX	UNIT
			0.8 V	2.7	16.6	28.2			
		1.2 V ± 0.1 V	3.6	6.6	12.7	0.3	15.4		
	А	V	1.5 V ± 0.1 V	3	4.8	8.3	1.2	10.3	20
Lpd	A	Y	1.8 V ± 0.15 V	2.7	3.9	6.9	1.3	8.3	ns
			2.5 V ± 0.2 V	2.3	2.9	4.5	1.2	5.8	
			3.3 V ± 0.3 V	2	2.4	3.8	1.1	4.8	1

7.8 Switching Characteristics, $C_L = 15 \text{ pF}$

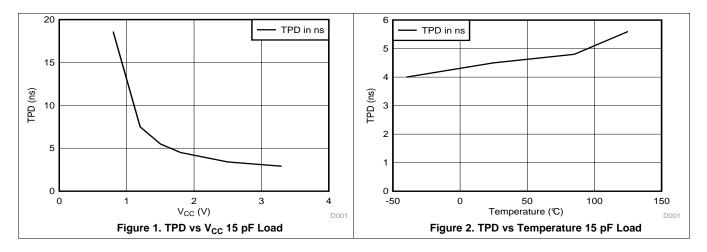
over recommended operating free-air temperature range (unless otherwise noted) (see Figure 3 and Figure 4

PARAMETER	FROM	то	V	T,	₄ = 25°C		T _A = −40°C	to 85°C	UNIT
FARAMETER	(INPUT)	(OUTPUT)	V _{cc}	MIN	TYP	MAX	MIN	MAX	UNIT
			0.8 V	5.1	18.6	30.2			
		Y	1.2 V ± 0.1 V	4.3	7.5	13.6	1.3	16.5	-
	А		1.5 V ± 0.1 V	3.6	5.5	9	1.9	11.2	
t _{pd}	A		1.8 V ± 0.15 V	3.2	4.5	7.5	1.9	8.9	ns
			2.5 V ± 0.2 V	2.6	3.4	5.2	1.7	6.5	
		3.3 V ± 0.3 V	2.3	2.9	4.2	1.5	5		

7.9 Switching Characteristics, $C_L = 30 \text{ pF}$

over recommended operating free-air temperature range (unless otherwise noted) (see Figure 3 and Figure 4

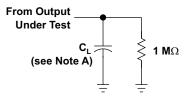
PARAMETER	FROM	то	N	T _A	= 25°C		T _A = -40°C	to 85°C	UNIT
PARAMETER	(INPUT)	(OUTPUT)	V _{cc}	MIN	TYP	MAX	MIN	MAX	UNIT
			0.8 V	9.9	24.2	36.3			
		Y	1.2 V ± 0.1 V	6.3	10.1	16.3	3.6	18.9	
	А		1.5 V ± 0.1 V	5.1	7.4	11	3.4	13	20
t _{pd}	A		1.8 V ± 0.15 V	4.5	6.1	9.3	3.2	10.6	ns
			$2.5 \text{ V} \pm 0.2 \text{ V}$	3.7	4.7	6.4	2.7	7.8	
			$3.3 \text{ V} \pm 0.3 \text{ V}$	3.3	4	5.3	2.5	6.5	


7.10 Operating Characteristics

 $T_A = 25^{\circ}C$

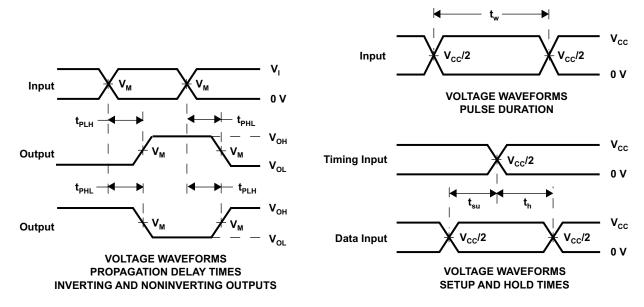
	PARAMETER	TEST CONDITIONS	V _{CC}	TYP	UNIT	
			0.8 V	3.8		
			1.2 V ± 0.1 V	3.8		
<u>_</u>	Dever dissinction conscitance	f 10 MU	1.5 V ± 0.1 V	3.8	~ F	
C _{pd}	Power dissipation capacitance	f = 10 MHz	1.8 V ± 0.15 V	3.8	pF	
			2.5 V ± 0.2 V	3.9		
			3.3 V ± 0.3 V	4.1		

7.11 Typical Characteristics



TEXAS INSTRUMENTS

www.ti.com


8 Parameter Measurement Information

8.1 Propagation Delays, Setup and Hold Times, and Pulse Width

	V _{cc} = 0.8 V	V _{cc} = 1.2 V ± 0.1 V	V _{cc} = 1.5 V ± 0.1 V	V _{cc} = 1.8 V ± 0.15 V	V _{cc} = 2.5 V ± 0.2 V	V _{cc} = 3.3 V ± 0.3 V
C _L	5, 10, 15, 30 pF	5, 10, 15, 30 pF	5, 10, 15, 30 pF	5, 10, 15, 30 pF	5, 10, 15, 30 pF	5, 10, 15, 30 pF
V _M	V _{cc} /2	V _{cc} /2	V _{cc} /2	V _{cc} /2	V _{cc} /2	V _{cc} /2
V _I	V _{cc}	V _{cc}	V _{cc}	V _{cc}	V _{cc}	V _{cc}

LOAD CIRCUIT

NOTES: A. C_L includes probe and jig capacitance.

B. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 Mhz, Z₀ = 50 Ω , t/t_f = 3 ns.

C. The outputs are measured one at a time, with one transition per measurement.

D. t_{PLH} and t_{PHL} are the same as t_{pd} .

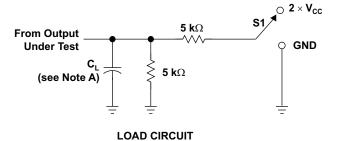
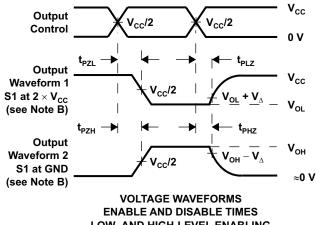

E. All parameters and waveforms are not applicable to all devices.

Figure 3. Load Circuit and Voltage Waveforms

8



8.2 **Enable and Disable Times**

TEST	S1
t _{PLZ} /t _{PZL}	$2 \times \mathbf{V}_{\mathbf{CC}}$
t _{PHZ} /t _{PZH}	GND

	V _{cc} = 0.8 V	V _{cc} = 1.2 V ± 0.1 V	V _{cc} = 1.5 V ± 0.1 V	V _{cc} = 1.8 V ± 0.15 V	V _{cc} = 2.5 V ± 0.2 V	V_{cc} = 3.3 V ± 0.3 V
CL	5, 10, 15, 30 pF	5, 10, 15, 30 pF	5, 10, 15, 30 pF	5, 10, 15, 30 pF	5, 10, 15, 30 pF	5, 10, 15, 30 pF
V _M	V _{cc} /2	V _{cc} /2	V _{cc} /2	V _{cc} /2	V _{cc} /2	V _{cc} /2
V _I	V _{cc}	V _{cc}	V _{cc}	V _{cc}	V _{cc}	V _{cc}
\mathbf{V}_{Δ}	0.1 V	0.1 V	0.1 V	0.15 V	0.15 V	0.3 V

LOW- AND HIGH-LEVEL ENABLING

- NOTES: A. CL includes probe and jig capacitance.
 - B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
 - C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z₀ = 50 Ω , t/t_f = 3 ns.
 - D. The outputs are measured one at a time, with one transition per measurement.
 - E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
 - F. t_{PZL} and t_{PZH} are the same as t_{en} .
 - G. All parameters and waveforms are not applicable to all devices.

Figure 4. Load Circuit and Voltage Waveforms

9 Detailed Description

9.1 Overview

This single buffer gate operates from 0.8 V to 3.6 V and performs the Boolean function Y = A in positive logic. The AUP family of devices has quiescent power consumption less than 1 µA and comes in the ultra small DPW package. The DPW package technology is a major breakthrough in IC packaging. Its tiny 0.64 mm square footprint saves significant board space over other package options while still retaining the traditional manufacturing friendly lead pitch of 0.5 mm.

This device is fully specified for partial-power-down applications using I_{off} . The I_{off} circuitry disables the outputs, preventing damaging current back-flow through the device when it is powered. The I_{off} feature also allows for live insertion.

9.2 Functional Block Diagram

9.3 Feature Description

- Wide operating V_{CC} range of 0.8 V to 3.6 V
- 3.6-V I/O tolerant to support down translation
- Input hysteresis allows slow input transition and better switching noise immunity at the input
- I_{off} feature allows voltages on the inputs and outputs when V_{CC} is 0 V
- Low noise due to slower edge rates

9.4 Device Functional Modes

INPUT A	OUTPUT Y
Н	Н
L	L

Table 1. Function Table

10 Application and Implementation

10.1 Application Information

The AUP family is TI's premier solution to the industry's low-power needs in battery-powered portable applications. This family ensures a very low static and dynamic power consumption across the entire V_{CC} range of 0.8 V to 3.6 V, resulting in an increased battery life. This product also maintains excellent signal integrity. It has a small amount of hysteresis built in allowing for slower or noisy input signals. The lowered drive produces slower edges and prevents overshoot and undershoot on the outputs.

The AUP family of single gate logic makes excellent translators for the new lower voltage Micro- processors that typically are powered from 0.8 V to 1.2 V. They can drop the voltage of peripheral drivers and accessories that are still powered by 3.3 V to the new uC power levels.

10.2 Typical Application

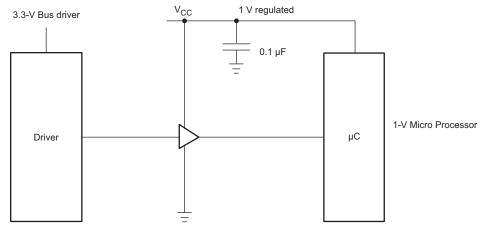


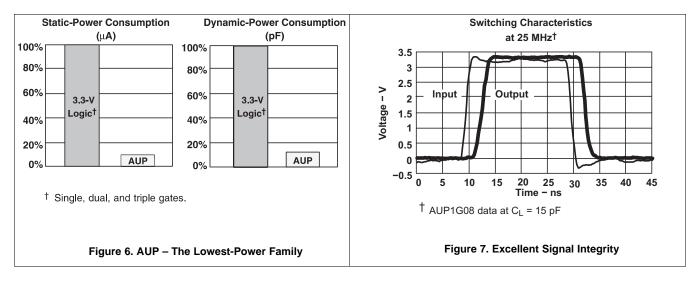
Figure 5. Typical Application

10.2.1 Design Requirements

This device uses CMOS technology and has balanced output drive. Care should be taken to avoid bus contention because it can drive currents that would exceed maximum limits.

10.2.2 Detailed Design Procedure

- 1. Recommended Input conditions
 - Rise time and fall time specifications. See $(\Delta t / \Delta V)$ in *Recommended Operating Conditions* table.
 - Specified high and low levels. See (V_{IH} and V_{IL}) in *Recommended Operating Conditions* table.
 - Inputs are overvoltage tolerant allowing them to go as high as 3.6 V at any valid V_{CC}
- 2. Recommend output conditions
 - Load currents should not exceed 20 mA on the output and 50 mA total for the part
 - Outputs should not be pulled above V_{CC}


SCES603K-AUGUST 2004-REVISED OCTOBER 2014

www.ti.com

Typical Application (continued)

10.2.3 Application Curves

11 Power Supply Recommendations

The power supply can be any voltage between the Min and Max supply voltage rating located in the *Recommended Operating Conditions* table.

Each V_{CC} terminal should have a good bypass capacitor to prevent power disturbance. For devices with a single supply, 0.1 μ F is recommended and if there are multiple V_{CC} terminals then .01 μ F or .022 μ F is recommended for each power terminal. It is ok to parallel multiple bypass caps to reject different frequencies of noise. A 0.1 μ F and 1 μ F are commonly used in parallel. The bypass capacitor should be installed as close to the power terminal as possible for best results.

12 Layout

12.1 Layout Guidelines

When using multiple bit logic devices inputs should not ever float.

In many cases, functions or parts of functions of digital logic devices are unused, for example, when only two inputs of a triple-input AND gate are used or only 3 of the 4 buffer gates are used. Such input pins should not be left unconnected because the undefined voltages at the outside connections result in undefined operational states. Specified below are the rules that must be observed under all circumstances. All unused inputs of digital logic devices must be connected to a high or low bias to prevent them from floating. The logic level that should be applied to any particular unused input depends on the function of the device. Generally they will be tied to GND or V_{CC} whichever make more sense or is more convenient. It is generally OK to float outputs unless the part is a transceiver. If the transceiver has an output enable pin it will disable the outputs section of the part when asserted. This will not disable the input section of the I.O's so they also cannot float when disabled.

12.2 Layout Example

13 Device and Documentation Support

13.1 Trademarks

All trademarks are the property of their respective owners.

13.2 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

13.3 Glossary

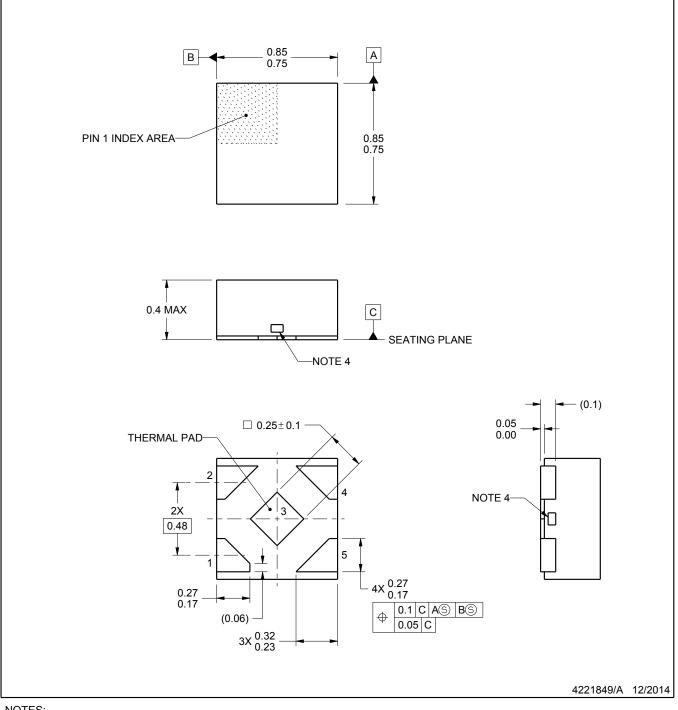
SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

14 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

SN74LVC1GXX and SN74AUP1GXX


DPW0005A-C01

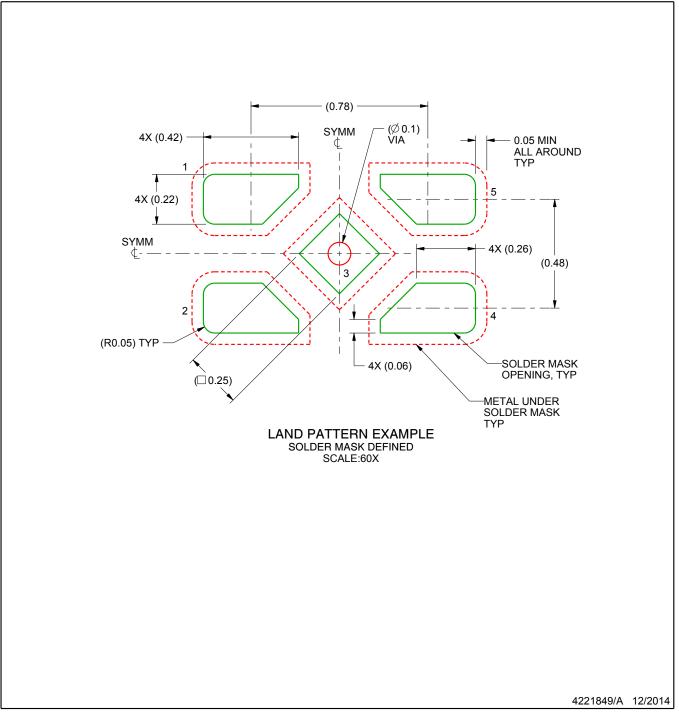
PACKAGE OUTLINE

X2SON - 0.4 mm max height

PLASTIC SMALL OUTLINE - NO LEAD

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice.
- The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.
 The size and shape of this feature may vary.


SN74LVC1GXX and SN74AUP1GXX

EXAMPLE BOARD LAYOUT

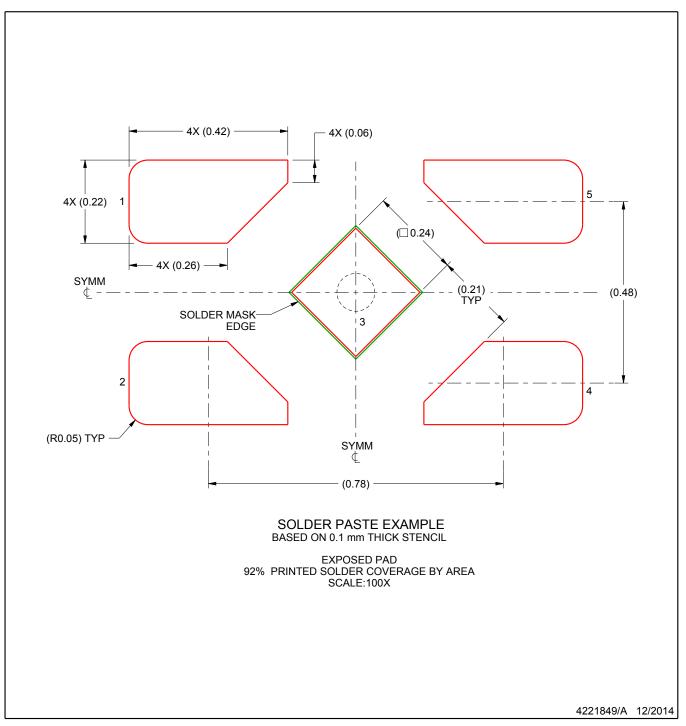
DPW0005A-C01

X2SON - 0.4 mm max height

PLASTIC SMALL OUTLINE - NO LEAD

NOTES: (continued)

5. This package is designed to be soldered to a thermal pad on the board. For more information, refer to QFN/SON PCB application note in literature No. SLUA271 (www.ti.com/lit/slua271).


SN74LVC1GXX and SN74AUP1GXX

EXAMPLE STENCIL DESIGN

DPW0005A-C01

X2SON - 0.4 mm max height

PLASTIC SMALL OUTLINE - NO LEAD

NOTES: (continued)

6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

25-Oct-2016

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
SN74AUP1G34DBVR	(1) ACTIVE	SOT-23	DBV	5	3000	(2) Green (RoHS & no Sb/Br)	(6) CU NIPDAU	(3) Level-1-260C-UNLIM	-40 to 85	(4/5) H34R	Samples
SN74AUP1G34DBVT	ACTIVE	SOT-23	DBV	5	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	H34R	Samples
SN74AUP1G34DCKR	ACTIVE	SC70	DCK	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	(H95 ~ H9F ~ H9K ~ H9R)	Samples
SN74AUP1G34DCKT	ACTIVE	SC70	DCK	5	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	(H95 ~ H9R)	Samples
SN74AUP1G34DCKTG4	ACTIVE	SC70	DCK	5	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	(H95 ~ H9R)	Samples
SN74AUP1G34DPWR	ACTIVE	X2SON	DPW	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	G4	Samples
SN74AUP1G34DRLR	ACTIVE	SOT	DRL	5	4000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	(H97 ~ H9R)	Samples
SN74AUP1G34DRYR	ACTIVE	SON	DRY	6	5000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	H9	Samples
SN74AUP1G34DSFR	ACTIVE	SON	DSF	6	5000	Green (RoHS & no Sb/Br)	CU NIPDAU CU NIPDAUAG	Level-1-260C-UNLIM		H9	Samples
SN74AUP1G34YFPR	ACTIVE	DSBGA	YFP	4	3000	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM		H9 N	Samples
SN74AUP1G34YZPR	ACTIVE	DSBGA	YZP	5	3000	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	-40 to 85	H9N	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

PACKAGE OPTION ADDENDUM

25-Oct-2016

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

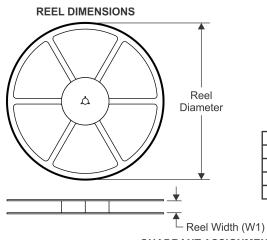
⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

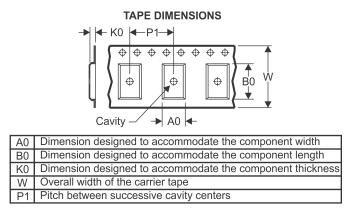
⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

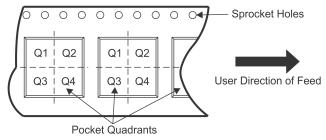
⁽⁶⁾ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

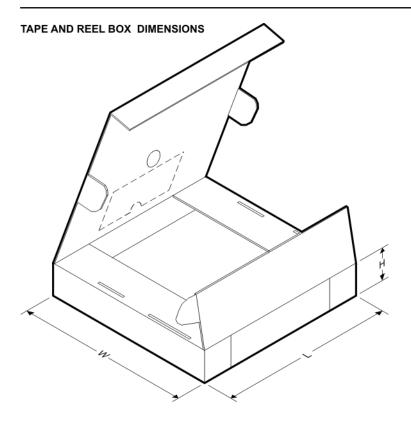

PACKAGE MATERIALS INFORMATION

www.ti.com


Texas Instruments

TAPE AND REEL INFORMATION

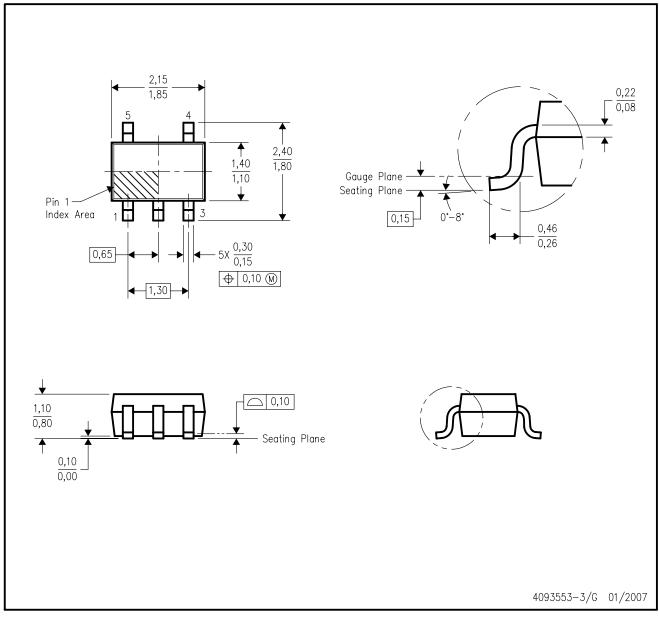
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE


*All dimensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74AUP1G34DBVR	SOT-23	DBV	5	3000	180.0	8.4	3.23	3.17	1.37	4.0	8.0	Q3
SN74AUP1G34DBVT	SOT-23	DBV	5	250	180.0	8.4	3.23	3.17	1.37	4.0	8.0	Q3
SN74AUP1G34DCKR	SC70	DCK	5	3000	180.0	9.2	2.3	2.55	1.2	4.0	8.0	Q3
SN74AUP1G34DCKR	SC70	DCK	5	3000	178.0	9.2	2.4	2.4	1.22	4.0	8.0	Q3
SN74AUP1G34DCKT	SC70	DCK	5	250	178.0	9.2	2.4	2.4	1.22	4.0	8.0	Q3
SN74AUP1G34DPWR	X2SON	DPW	5	3000	178.0	8.4	0.91	0.91	0.5	2.0	8.0	Q3
SN74AUP1G34DRLR	SOT	DRL	5	4000	180.0	9.5	1.78	1.78	0.69	4.0	8.0	Q3
SN74AUP1G34DRLR	SOT	DRL	5	4000	180.0	8.4	1.98	1.78	0.69	4.0	8.0	Q3
SN74AUP1G34DRYR	SON	DRY	6	5000	180.0	9.5	1.15	1.6	0.75	4.0	8.0	Q1
SN74AUP1G34DSFR	SON	DSF	6	5000	180.0	9.5	1.16	1.16	0.5	4.0	8.0	Q2
SN74AUP1G34YFPR	DSBGA	YFP	4	3000	178.0	9.2	0.89	0.89	0.58	4.0	8.0	Q1
SN74AUP1G34YZPR	DSBGA	YZP	5	3000	178.0	9.2	1.02	1.52	0.63	4.0	8.0	Q1

TEXAS INSTRUMENTS

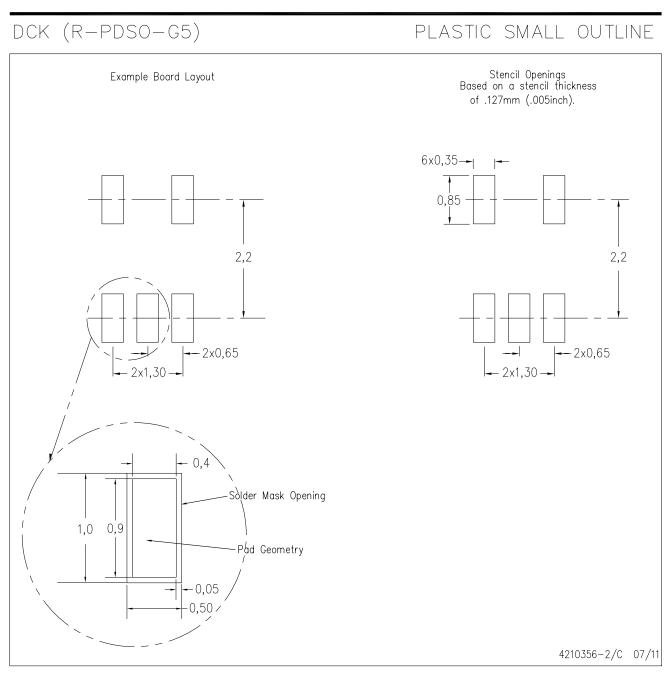
www.ti.com

PACKAGE MATERIALS INFORMATION


19-Jul-2016

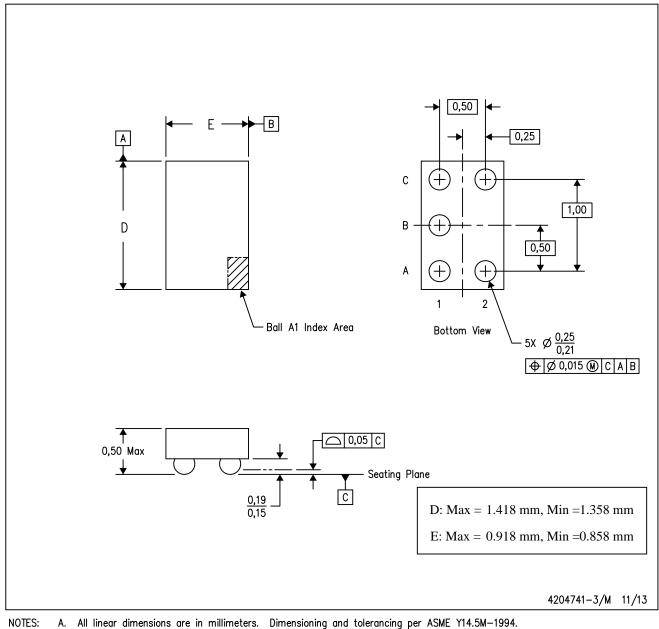
*All dimensions are nominal		-					
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74AUP1G34DBVR	SOT-23	DBV	5	3000	202.0	201.0	28.0
SN74AUP1G34DBVT	SOT-23	DBV	5	250	202.0	201.0	28.0
SN74AUP1G34DCKR	SC70	DCK	5	3000	205.0	200.0	33.0
SN74AUP1G34DCKR	SC70	DCK	5	3000	180.0	180.0	18.0
SN74AUP1G34DCKT	SC70	DCK	5	250	180.0	180.0	18.0
SN74AUP1G34DPWR	X2SON	DPW	5	3000	205.0	200.0	33.0
SN74AUP1G34DRLR	SOT	DRL	5	4000	184.0	184.0	19.0
SN74AUP1G34DRLR	SOT	DRL	5	4000	202.0	201.0	28.0
SN74AUP1G34DRYR	SON	DRY	6	5000	184.0	184.0	19.0
SN74AUP1G34DSFR	SON	DSF	6	5000	184.0	184.0	19.0
SN74AUP1G34YFPR	DSBGA	YFP	4	3000	220.0	220.0	35.0
SN74AUP1G34YZPR	DSBGA	YZP	5	3000	220.0	220.0	35.0

DCK (R-PDSO-G5)


PLASTIC SMALL-OUTLINE PACKAGE

- NOTES: A. All linear dimensions are in millimeters.
 - B. This drawing is subject to change without notice.
 - C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side.
 - D. Falls within JEDEC MO-203 variation AA.

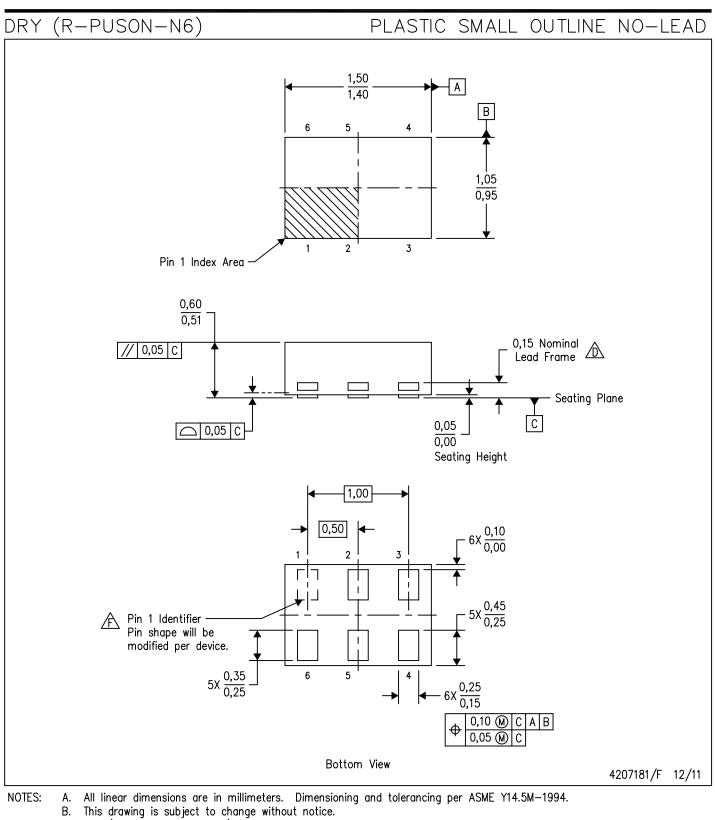
LAND PATTERN DATA


NOTES:

- A. All linear dimensions are in millimeters.B. This drawing is subject to change without notice.
- C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad.
- D. Publication IPC-7351 is recommended for alternate designs.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.

YZP (R-XBGA-N5)

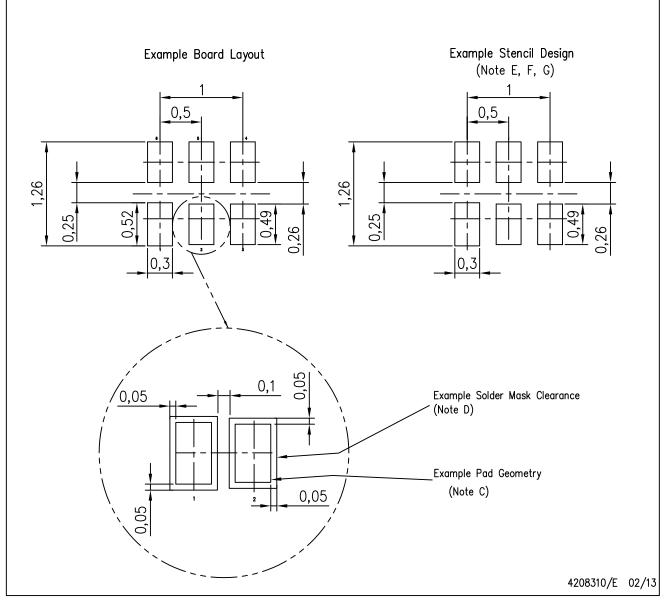
DIE-SIZE BALL GRID ARRAY



- Α.
- This drawing is subject to change without notice. Β.
- C. NanoFree™ package configuration.

NanoFree is a trademark of Texas Instruments.

MECHANICAL DATA



- C. SON (Small Outline No-Lead) package configuration.
- Δ The exposed lead frame feature on side of package may or may not be present due to alternative lead frame designs.
- E. This package complies to JEDEC MO-287 variation UFAD.
- 🖄 See the additional figure in the Product Data Sheet for details regarding the pin 1 identifier shape.

DRY (R-PUSON-N6)

PLASTIC SMALL OUTLINE NO-LEAD

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Customers should contact their board fabrication site for minimum solder mask web tolerances between signal pads.
- E. Maximum stencil thickness 0,127 mm (5 mils). All linear dimensions are in millimeters.
- F. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
- G. Side aperture dimensions over-print land for acceptable area ratio > 0.66. Customer may reduce side aperture dimensions if stencil manufacturing process allows for sufficient release at smaller opening.

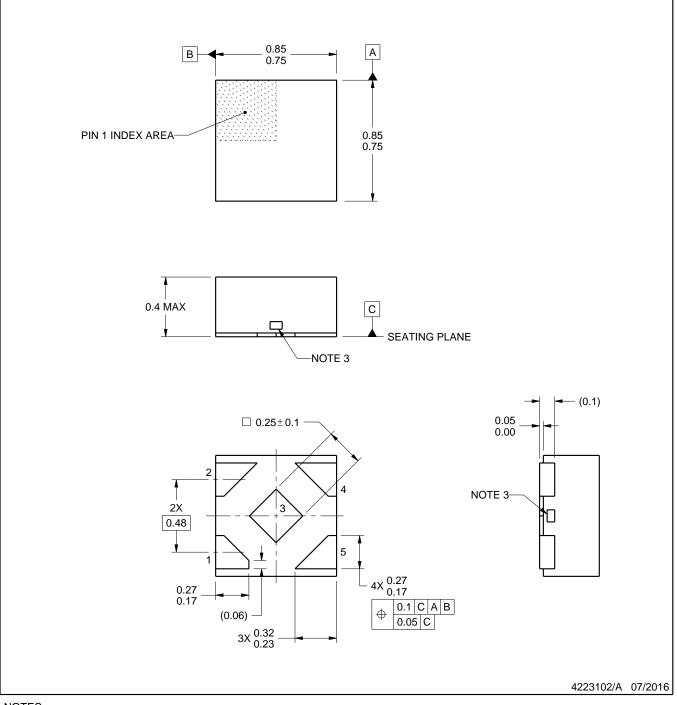
TEXAS INSTRUMENTS www.ti.com

GENERIC PACKAGE VIEW

X2SON - 0.4 mm max height PLASTIC SMALL OUTLINE - NO LEAD

Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

4211218-3/D

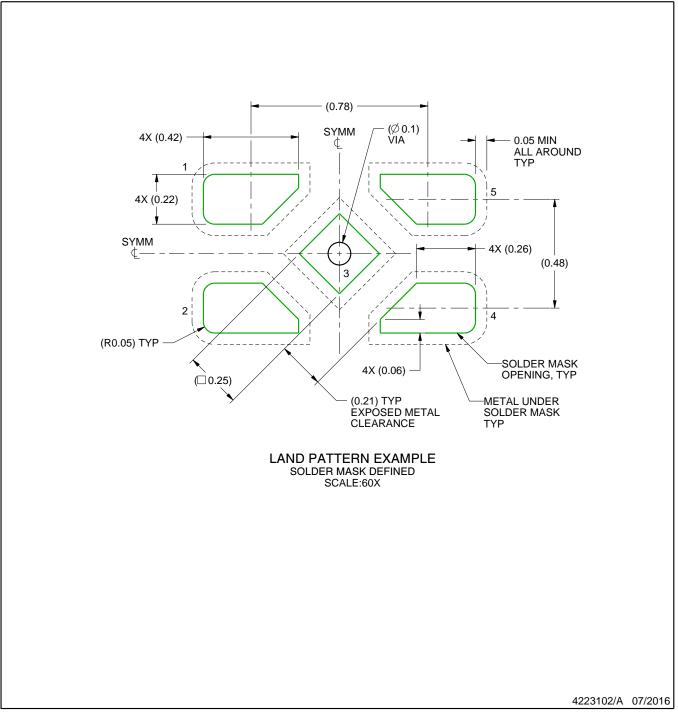

DPW0005A

PACKAGE OUTLINE

X2SON - 0.4 mm max height

PLASTIC SMALL OUTLINE - NO LEAD

- NOTES:
- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice.
- 3. The size and shape of this feature may vary.



DPW0005A

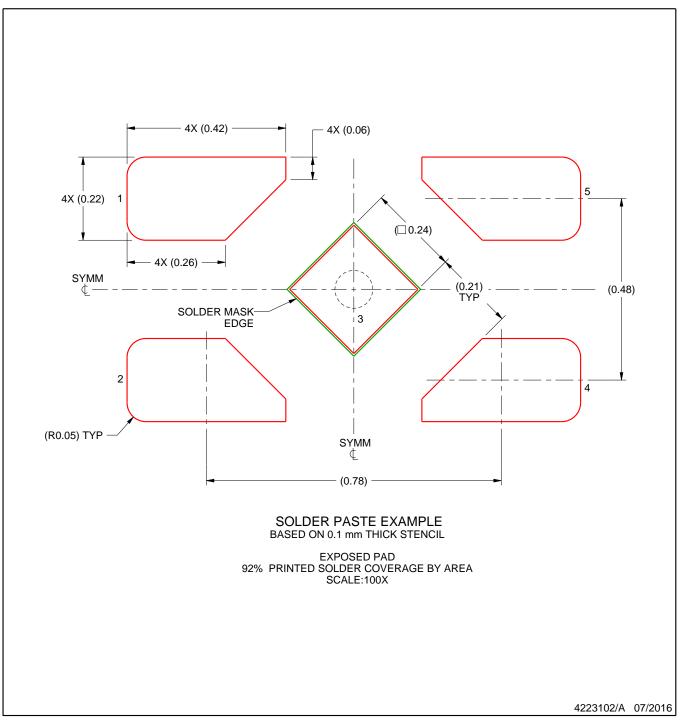
EXAMPLE BOARD LAYOUT

X2SON - 0.4 mm max height

PLASTIC SMALL OUTLINE - NO LEAD

NOTES: (continued)

4. This package is designed to be soldered to a thermal pad on the board. For more information, refer to QFN/SON PCB application note in literature No. SLUA271 (www.ti.com/lit/slua271).

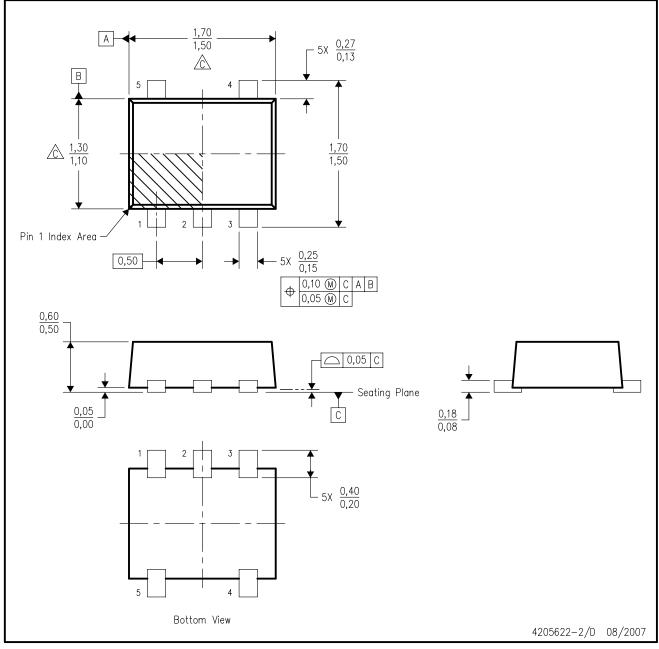


DPW0005A

EXAMPLE STENCIL DESIGN

X2SON - 0.4 mm max height

PLASTIC SMALL OUTLINE - NO LEAD


NOTES: (continued)

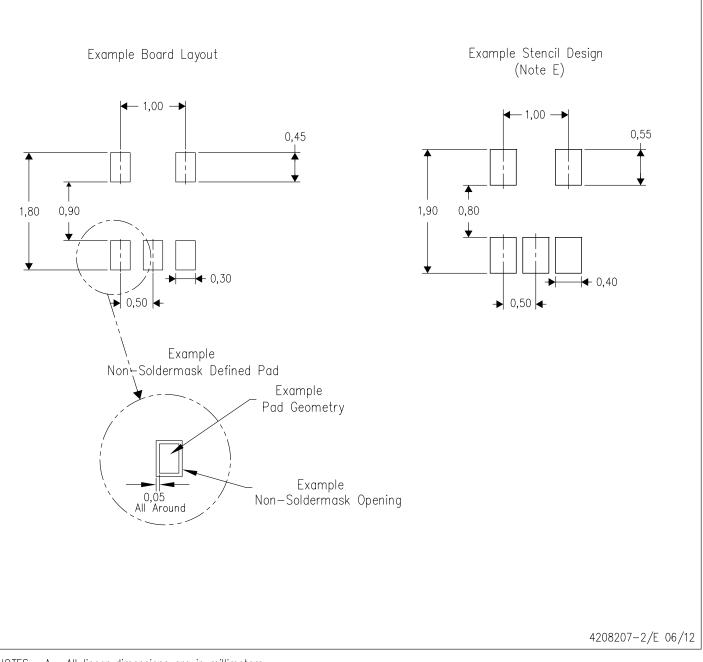
5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

DRL (R-PDSO-N5)

PLASTIC SMALL OUTLINE

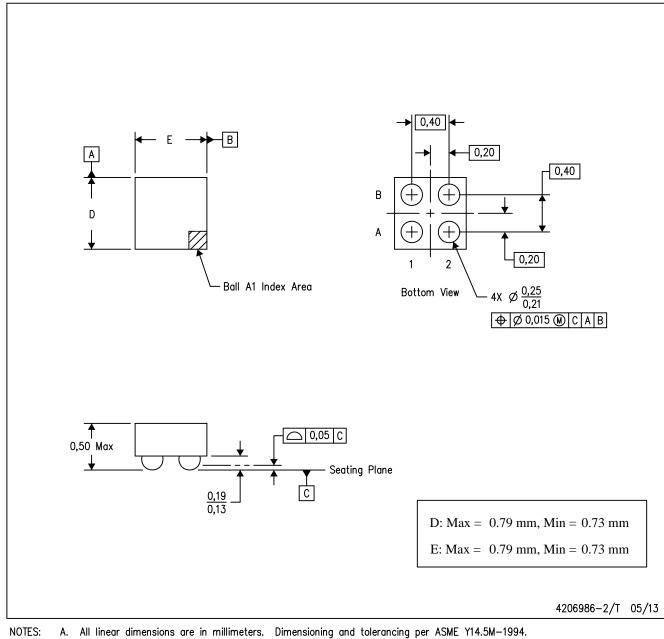
NOTES:

All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994. Α. B. This drawing is subject to change without notice.


🖄 Body dimensions do not include mold flash, interlead flash, protrusions, or gate burrs. Mold flash, interlead flash, protrusions, or gate burrs shall not exceed 0,15 per end or side.

DRL (R-PDSO-N5)

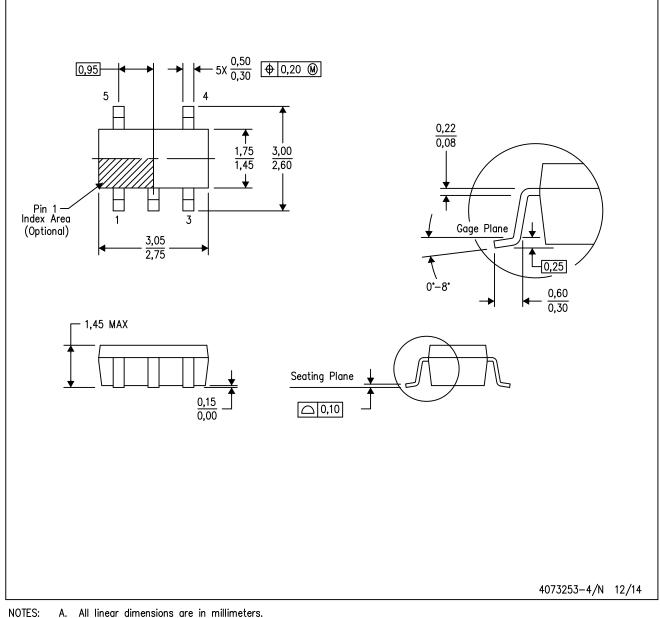
PLASTIC SMALL OUTLINE


NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Customers should contact their board fabrication site for minimum solder mask web tolerances between signal pads.
- E. Maximum stencil thickness 0,127 mm (5 mils). All linear dimensions are in millimeters.
- F. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
- G. Side aperture dimensions over-print land for acceptable area ratio > 0.66. Customer may reduce side aperture dimensions if stencil manufacturing process allows for sufficient release at smaller opening.

YFP (S-XBGA-N4)

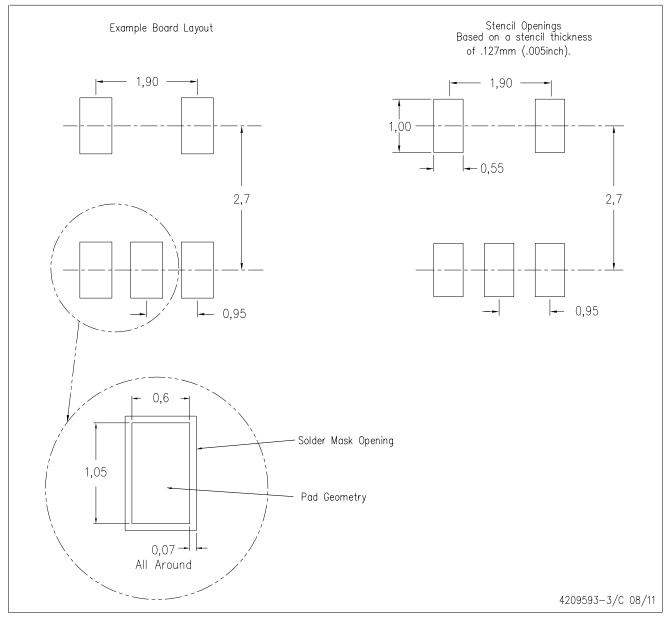
DIE-SIZE BALL GRID ARRAY


- B. This drawing is subject to change without notice.
- C. NanoFree™ package configuration.

NanoFree is a trademark of Texas Instruments

DBV (R-PDSO-G5)

PLASTIC SMALL-OUTLINE PACKAGE

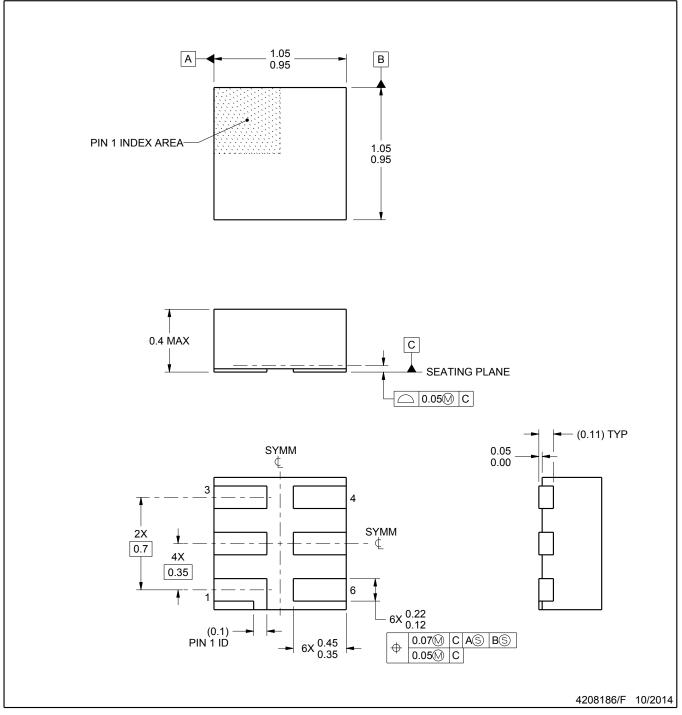


- All linear dimensions are in millimeters. A.
 - This drawing is subject to change without notice. Β.
 - Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side. C.
 - D. Falls within JEDEC MO-178 Variation AA.

DBV (R-PDSO-G5)

PLASTIC SMALL OUTLINE

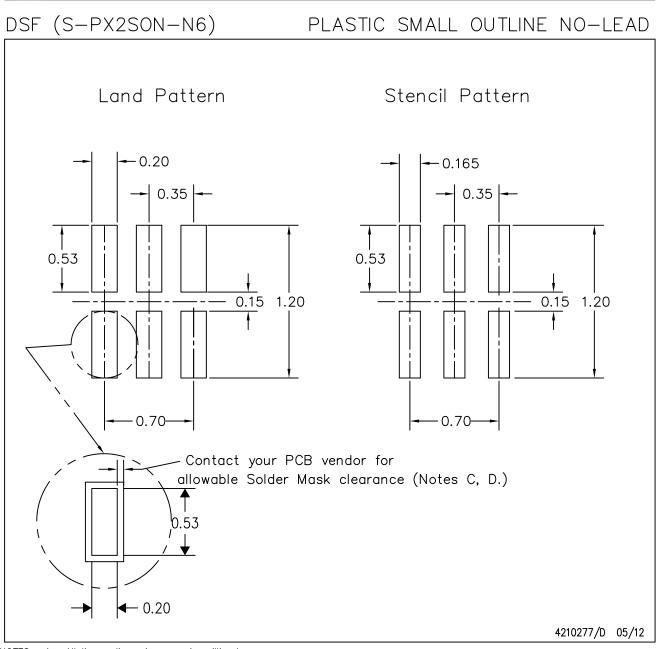
NOTES:


A. All linear dimensions are in millimeters.B. This drawing is subject to change without notice.

- C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad.
- D. Publication IPC-7351 is recommended for alternate designs.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.

MECHANICAL DATA

PLASTIC SMALL OUTLINE NO-LEAD



NOTES:

DSF (S-PX2SON-N6)

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing Per ASME Y14.5M.
 This drawing is subject to change without notice.
 Reference JEDEC registration MO-287, variation X2AAF.

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Customers should contact their board fabrication site for minimum solder mask web tolerances between signal pads. If 2 mil solder mask is outside PCB vendor capability, it is advised to omit solder mask.
- E. Maximum stencil thickness 0,1016 mm (4 mils). All linear dimensions are in millimeters.
- F. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
- G. Suggest stencils cut with lasers such as Fiber Laser that produce the greatest positional accuracy.
- H. Component placement force should be minimized to prevent excessive paste block deformation.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconne	ctivity	

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2016, Texas Instruments Incorporated