

Sample &

Buy

SLWS224E - AUGUST 2010 - REVISED JANUARY 2016

TRF372017 Integrated IQ Modulator PLL/VCO

Technical

Documents

1 Features

- Fully Integrated PLL/VCO and IQ Modulator
- LO Frequency from 300 MHz to 4.8 GHz
- 76-dBc Single-Carrier WCDMA ACPR at –8-dBm Channel Power
- OIP3 of 26 dBm
- P1dB of 11.5 dBm
- Integer/Fractional PLL
- Phase Noise –132 dBc/Hz (at 1 MHz, f_{VCO} of 2.3 GHz)
- Low Noise Floor: -160 dBm/Hz
- Input Reference Frequency Range: Up to 160 MHz
- VCO Frequency Divided by 1-2-4-8 Output

2 Applications

- Wireless Infrastructure
 - CDMA: IS95, UMTS, CDMA2000, TD-SCDMA
 - TDMA: GSM, IS-136, EDGE/UWC-136
 - LTE
- Wireless Local Loop
- Point-to-Point Wireless Access
- Wireless MAN Wideband Transceivers

3 Description

Tools &

Software

TRF372017 is a high-performance, direct upconversion device, integrating a high-linearity, lownoise IQ modulator and an integer-fractional PLL/VCO. The VCO uses integrated frequency dividers to achieve a wide, continuous tuning range of 300 MHz to 4800 MHz. The LO is available as an output with independent frequency dividers. The device also accepts input from an external LO or VCO. The modulator baseband inputs can be biased either internally or externally. Internal DC offset adjustment enables carrier cancellation. The device is controlled through a 3-wire serial programming interface (SPI). A control pin invokes power-save mode to reduce power consumption while keeping the VCO locked for fast start-up.

Support &

Community

20

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)
TRF372017	VQFN (48)	7.00 mm × 7.00 mm

(1) For all available packages, see the orderable addendum at the end of the data sheet.

Block Diagram

Texas Instruments

www.ti.com

Page

Page

Page

Page

Table of Contents

1	Feat	tures	. 1
2	Арр	lications	. 1
3	Des	cription	. 1
4	Rev	ision History	2
5	Pin	Configuration and Functions	3
6	Spe	cifications	5
	6.1	Absolute Maximum Ratings	5
	6.2	Recommended Operating Conditions	5
	6.3	Thermal Information	5
	6.4	Electrical Characteristics	6
	6.5	Timing Requirements - SPI: Writing Phase	. 8
	6.6	Timing Requirements - SPI: Read-Back Phase	8
	6.7	Typical Characteristics	10
7	Deta	ailed Description	23
	7.1	Overview	23
	7.2	Functional Block Diagram	23
	7.3	Feature Description	23

	7.4	Device Functional Modes	33
	7.5	Register Maps	34
8	Арр	lication and Implementation	46
	8.1	Application Information	46
	8.2	Typical Application	46
9	Pow	er Supply Recommendations	50
10	Lay	out	51
	10.1	Layout Guidelines	51
	10.2	Layout Example	<mark>51</mark>
11	Dev	ice and Documentation Support	52
	11.1	Device Support	52
	11.2	Community Resources	52
	11.3	Trademarks	<mark>52</mark>
	11.4	Electrostatic Discharge Caution	<mark>52</mark>
	11.5	Glossary	<mark>52</mark>
12	Mec	hanical, Packaging, and Orderable	
	Info	rmation	52

4 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision D (September 2013) to Revision E

•	Added Feature Description section, Device Functional Modes section, Application and Implementation section,	
	Power Supply Recommendations section, Layout section, Device and Documentation Support section, and	
	Mechanical, Packaging, and Orderable Information section 1	

Changes from Revision C (May 2012) to Revision D

•	Changed text string from Reg 1, B[3028] = [000] to Reg 0, B[3028] = [000] in the Description column associated	
	with RB_REG<0>, RB_REG<1>, and RB_REG<2>	44

Changes from Revision B (March 2012) to Revision C

•	Added graph titles to Figure 56 and 57	hat wore missing in Povician R	7
•	Added graph lilles to Figure 56 and 57	That were missing in Revision B	1

Changes from Revision A (August 2010) to Revision B

•	Deleted Comments column from Table 1
•	Changed Figures 12 through Figure 27 10
•	Changed the text under Integer and Fractional Mode Selection through Practical Limit on Maximum PFD Frequency 23
•	Changed RDIV = 20 to RDIV = 2 in Setup Example for Fractional Mode
•	Changed Recommended Value of EN_LD_ISOURCE from 1 to 0 in Table 1 27
•	Changed column heading from Default Value to Reset Value in register tables 1, 2, 3, 4, 5, 6, and 7 34
•	Added recommended programming [xx] to various Description statements in register tables 2, 5, 6, and 7
•	Changed Register 4, Bit21/Bit22 Description statement from Off to Normal
•	Changed Column heading from Default Value to Reset Value in Readback mode section, Register 0 43
•	Changed Bit5 name from CHIP_ID to CHIP_ID _0 and changed Bit6 name from NU to CHIP_ID_1, Reset Value to 1 44
•	Changed image in Figure 87 48
•	Changed the text in the Application Layout, and added link to Figure 95

TRF372017 SLWS224E – AUGUST 2010–REVISED JANUARY 2016

5 Pin Configuration and Functions

Pin Functions

PIN		1/0	DESCRIPTION	
NAME	NO.	1/0	DESCRIPTION	
BBI_P	27	I	Base-band in-phase input: positive terminal. Internal 5 k Ω to VCM generator. If VCM is internally generated (PWD_BB_VCM = 0), external AC coupling caps and 100- Ω differential termination to BBI_N is required.	
BBI_N	28	I	base-band in-phase input: negative terminal. Internal 5 kΩ to VCM generator. If VCM is nternally generated (PWD_BB_VCM = 0), external AC coupling caps and 100-Ω differential ermination to BBI_P is required.	
BBQ_N	9	I	se-band in-quadrature input: negative terminal. Internal 5 k Ω to VCM generator. If VCM is ernally generated (PWD_BB_VCM = 0), external AC coupling caps and 100- Ω differential mination to BBQ_P is required.	
BBQ_P	10	I	Base-band in-quadrature input: positive terminal. Internal 5 k Ω to VCM generator. If VCM is internally generated (PWD_BB_VCM = 0), external AC coupling caps and 100- Ω differential termination to BBQ_N is required.	
CLK	47	I	SPI clock input. Digital input. High impedance.	
CP_OUT	40	0	Charge pump output	
DATA	46	I	SPI data input. Digital input. High impedance.	
EXT_VCO	36	I	External local oscillator input. High impedance. Normally AC-coupled.	
GND	6, 8, 11, 12, 13, 15, 16, 17, 19, 22, 23, 24, 25, 26, 29, 31, 37, 39, 42, 44	_	Ground	
GND_DIG	4	_	Digital ground	
LD	5	0	PLL lock detect output, as configured by MUX_CTRL. Digital output pins can source or sink up to 8 mA of current.	
LE	45	I	SPI latch enable. Digital input. High impedance.	

TRF372017 SLWS224E – AUGUST 2010–REVISED JANUARY 2016

www.ti.com

Pin Functions (continued)

PIN		1/0	DESCRIPTION	
NAME	NO.	1/0	DESCRIPTION	
LO_OUT_N	33	0	Local oscillator output: negative terminal. Open collector output. A pullup is required. Normally AC-coupled.	
LO_OUT_P	34	0	Local oscillator output: positive terminal. Open collector output. A pullup is required. Normally AC-coupled.	
PS	1	I	Power saving mode enable (Low = normal mode; High = power saving mode)	
RDBK	2	0	SPI internal registers readback output. Digital output pins can source or sink up to 8 mA of current.	
REFIN	43	I	Reference clock input. High impedance. Normally AC-coupled.	
RFOUT	18	0	RF output. Internally matched to 50-Ω output. Normally AC-coupled.	
RSVD	14	—	Reserved. Normally open.	
SCAN_EN	48	I	Internal testing mode digital input. Connect to ground in normal operation	
VCC_D2S	20	—	5-V modulator output buffer power supply	
VCC_DIG	3	_	3.3-V digital power supply	
VCC_LO1	7	_	3.3-V Tx path local oscillator chain power supply	
VCC_LO2	30	—	3.3-V output local oscillator chain power supply	
VCC_MIX	21	—	5-V modulator power supply	
VCC_PLL	41	—	3.3-V PLL power supply	
VCC_VCO1	35		3.3-V VCO power supply	
VCC_VCO2	32	_	3.3-V to 5-V VCO power supply	
VTUNE	38	I	VCO control voltage input	

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)⁽¹⁾⁽²⁾

		MIN	MAX	UNIT
	Supply voltage ⁽³⁾	-0.3	5.5	V
	Digital I/O voltage	-0.3	$V_{CC} + 0.5$	V
TJ	Operating virtual junction temperature	-40	150	°C
T _A	Operating ambient temperature	-40	85	°C
T _{stg}	Storage temperature	-40	150	°C

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) ESD rating not valid for RF sensitive pins.

(3) All voltage values are with respect to network ground terminal.

6.2 Recommended Operating Conditions

		MIN	NOM	MAX	UNIT
V _{CC5V}	5-V power supply voltage	4.5	5	5.5	V
V _{CC3V}	3.3-V power supply voltage	3	3.3	3.6	V
VCC_VCO2	3.3-V to 5-V power supply voltage	3	3.3	5.5	V
T _A	Operating ambient temperature	-40		85	°C
TJ	Operating virtual junction temperature	-40		125	°C

6.3 Thermal Information

		TRF372017	
	THERMAL METRIC ⁽¹⁾	RGZ (VQFN)	UNIT
		48 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	30.0	°C/W
R _{0JC(top)}	Junction-to-case (top) thermal resistance	10.0	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	8.0	°C/W
Ψυτ	Junction-to-top characterization parameter	0.5	°C/W
ΨЈВ	Junction-to-board characterization parameter	7.0	°C/W
R _{0JC(bot)}	Junction-to-case (bottom) thermal resistance	0.5	°C/W

 For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953. TRF372017

SLWS224E - AUGUST 2010 - REVISED JANUARY 2016

www.ti.com

6.4 Electrical Characteristics

 $V_{CC5V} = 5 V$, $V_{CC3V} = 3.3 V$, $VCC_VCO2 = 3.3 V$, $T_A = 25^{\circ}C$, internal LO, internal VCM (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
DC PAR	AMETERS		- L			
		3.3-V power supply, LO on		200	250	mA
ICC	Total supply current, LO on (1)	5-V power supply, LO on		117	148	mA
		VCC_DIG, LO on		3	5	mA
	VCC_LO1 and VCC_LO2		121	130	mA	
	VCC_D2S		43	60	mA	
	(1)	VCC_MIX		74	90	mA
	Supply current, LO on (1)	VCC_VCO1		20	28	
		VCC_VCO2		17	20	mA
		LO_OUT_N and LO_OUT_P		17	28	mA
		VCC_PLL		24	40	mA
	T :	3.3-V power supply, LO off		165	204	mA
	Total supply current, LO off	5-V power supply, LO off		117	149	mA
	T () (1)	3.3-V power supply, PS on		65	94	mA
	Total supply current, PS on "	5-V power supply, PS on		51	73	mA
BASEBA	ND INPUTS					
		Externally generated		1.7		V
V _{cm}	I and Q input DC common voltage	Set internally	1.6	1.7	1.85	V
BW	1-dB input frequency bandwidth			1000		MHz
-		Resistance		5		kΩ
ZI	Input Impedance	Parallel Capacitance		3		pF
BASEBA	ND INPUT DC OFFSET CONTROL D/A ⁽³⁾					
	Number of bits	Programmed through SPI		8		
	Programmable DC offset setting	BBI_P - BBI_N or BBQ_P - BBQ_N , 100-Ω differential load			0.02	V
DIGITAL	INTERFACE					
V _{IH}	High-level input voltage		2	3.3		V
VIL	Low-level input voltage		0		0.8	V
V _{OH}	High-level output voltage	Referenced to VCC_DIG	0.8 × Vcc			V
V _{OL}	Low-level output voltage	Referenced to VCC_DIG			0.2 × Vcc	V
REFERE	NCE OSCILLATOR PARAMETERS					
F _{ref}	Reference frequency				160	MHz
	Reference input sensitivity		0.2		3.3	Vp-p
	Reference input impedance	Parallel capacitance		5		pF
	Reference input impedance	Parallel resistance	3900			Ω
PFD CH/	ARGE PUMP				1	
	PFD frequency ⁽⁴⁾				100	MHz
I _{CP}	Charge pump current	SPI programmable		1.94		mA
	JLATOR OUTPUT, F _{LO} = 750 MHz		<u>.</u>			
G	Voltage gain	Output RMS voltage over se input I (or Q) RMS voltage	-4	-3.2	-2.4	dB
P1dB	Output compression point			11		dBm
IP3	Output IP3	2 input tones at 4.5 and 5.5 MHz		26		dBm
IP2	Output IP2	2 input tones at 4.5 and 5.5 MHz		56.5		dBm
	Carrier feedthrough	Unadjusted		-43.5		dBm
	Sideband suppression	Unadjusted		-46		dBc
	Output return loss			10		dB

(1) Maximum current is worst-case overvoltage, temperature, and expected process variations.

(2) The TRF372017 can generate the input common voltage internally or can accept an external common mode voltage. The two modes are selectable through SPI.

(3) When the internal input common mode voltage is selected, it is possible to apply some DC offset with the integrated D/A.

(4) See Application Information for discussion on selection of PFD frequency.

Electrical Characteristics (continued)

V_{CC5V} = 5 V, V_{CC3V} = 3.3 V, VCC_VCO2 = 3.3 V, T_A = 25°C, internal LO, internal VCM (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
	Output noise	DC only to BB inputs; 13-MHz offset from LO; $P_{out} = -10 \text{ dBm}$		-162		dBm/Hz	
	JLATOR OUTPUT, F _{LO} = 900 MHz						
G	Voltage gain	Output RMS voltage over se input I (or Q) RMS voltage	-4	-3.4	-2.4	dB	
P1dB	Output compression point			11		dBm	
IP3	Output IP3	2 input tones at 4.5 and 5.5 MHz		26.5		dBm	
IP2	Output IP2	2 input tones at 4.5 and 5.5 MHz		56.5		dBm	
	Carrier feedthrough	Unadjusted		-43		dBm	
	Sideband suppression	Unadjusted		-45		dBc	
	Output return loss			10		dB	
	Output noise	DC only to BB inputs; 13-MHz offset from LO; $P_{out} = -10 \text{ dBm}$		-160		dBm/Hz	
	JLATOR OUTPUT, F _{LO} = 2150 MHz						
G	Voltage gain	Output RMS voltage over se input I (or Q) RMS voltage	-4.2	-3.1	-2	dB	
P1dB	Output compression point			11.5		dBm	
IP3	Output IP3	2 input tones at 4.5 and 5.5 MHz		25		dBm	
IP2	Output IP2	2 input tones at 4.5 and 5.5 MHz		56		dBm	
	Carrier feedthrough	Unadjusted	-40			dBm	
	Sideband suppression	Unadjusted		-32		dBc	
	Output return loss			10		dB	
	Output noise	DC only to BB inputs; 13-MHz offset from LO; $P_{out} = -10 \text{ dBm}$		-158		dBm/Hz	
	Adiagant channel never ratio	1 WCDMA signal; P _{out} = -8 dBm	-75			dBc	
ACPR	Adjacent-channel power ratio	2 WCDMA signals; P _{out} = -11 dBm per carrier		71		uвс	
	JLATOR OUTPUT, F _{LO} = 2700 MHz						
G	Voltage gain	Output RMS voltage over se input I (or Q) RMS voltage	-4.1	-2.7	-1.3	dB	
P1dB	Output compression point			12		dBm	
IP3	Output IP3	2 input tones at 4.5 and 5.5 MHz		26.5		dBm	
IP2	Output IP2	2 input tones at 4.5 and 5.5 MHz		50		dBm	
	Carrier feedthrough	Unadjusted		-43		dBm	
	Sideband suppression	Unadjusted		-41		dBc	
	Output return loss			10		dB	
	Output noise	DC only to BB inputs; 13-MHz offset from LO; $P_{out} = -10 \text{ dBm}$		-153		dBm/Hz	
LOCAL	DSCILLATOR						
		VCO range	2400		4800		
Even	Frequency range	Divide by 2	1200		2400	MH-7	
1 000	Trequency range	Divide by 4	600		1200	MHZ	
		Divide by 8	300		600		
	Free running VCO	10 kHz		-85		dBc/Hz	
	Phase noise, Fout = 2.3 GHz	1 MHz		-132		dBc/Hz	
		10 MHz		-150		dBc/Hz	
		50 MHz		-153		dBc/Hz	
P _{LO}	LO output power ⁽⁵⁾	100-Ω differential, external load; single-ended	-2.5	3		dBm	

(5) With VCO frequency at 4.6 GHz and LO in divide-by-2 mode at 2.3 GHz

INSTRUMENTS

Texas

6.5 Timing Requirements - SPI: Writing Phase⁽¹⁾

		MIN	TYP	MAX	UNIT
t _h	Hold time, data to clock	20			ns
t _{SU1}	Setup time, data to clock	20			ns
T _(CH)	Clock low duration	20			ns
T _(CL)	Clock high duration	20			ns
t _{SU2}	Setup time, clock to enable	20			ns
t _(CLK)	Clock period	50			ns
t _W	Enable time	50			ns
t _{SU3}	Setup time, latch to data	70			ns

(1) See Figure 1 for timing diagram.

Timing Requirements - SPI: Read-Back Phase⁽¹⁾ 6.6

		MIN	TYP	MAX	UNIT
t _h	Hold time, data to clock	20			ns
t _{SU1}	Setup time, data to clock	20			ns
T _(CH)	Clock low duration	20			ns
T _(CL)	Clock High duration	20			ns
t _{SU2}	Setup time, clock to enable	20			ns
t _d	Delay time, clock to readback data output	10			ns
t _W	Enable time ⁽²⁾	50			ns
t _(CLK)	Clock period	50			ns

See Figure 2 for timing diagram. Equals Clock period (1)

(2)

TRF372017 SLWS224E – AUGUST 2010–REVISED JANUARY 2016

Figure 2. SPI Read-Back Timing Diagram

Texas Instruments

TRF372017

SLWS224E - AUGUST 2010 - REVISED JANUARY 2016

www.ti.com

6.7 Typical Characteristics

Typical Characteristics (continued)

TEXAS INSTRUMENTS

TRF372017 SLWS224E – AUGUST 2010–REVISED JANUARY 2016

www.ti.com

Typical Characteristics (continued)

Typical Characteristics (continued)

TRF372017 SLWS224E – AUGUST 2010– REVISED JANUARY 2016

www.ti.com

Typical Characteristics (continued)

Typical Characteristics (continued)

TEXAS INSTRUMENTS

TRF372017 SLWS224E – AUGUST 2010–REVISED JANUARY 2016

www.ti.com

Typical Characteristics (continued)

Typical Characteristics (continued)

TRF372017

SLWS224E - AUGUST 2010 - REVISED JANUARY 2016

www.ti.com

Typical Characteristics (continued)

 $V_{CM} = 1.7 \text{ V}$ (internal), $V_{inBB} = 300 \text{ mVrms}$ single-ended sine wave in quadrature, $V_{CC3V} = 3.3 \text{ V}$, $V_{CC5V} = 5 \text{ V}$, $f_{BB} = 4.5 \text{ MHz}$ and 5.5 MHz, internal LO, $T_A = 25^{\circ}\text{C}$; $F_{PFD} = 1.6 \text{ MHz}$ (unless otherwise noted).

Typical Characteristics (continued)

TRF372017 SLWS224E – AUGUST 2010– REVISED JANUARY 2016

www.ti.com

Typical Characteristics (continued)

Typical Characteristics (continued)

TRF372017 SLWS224E – AUGUST 2010– REVISED JANUARY 2016

www.ti.com

Typical Characteristics (continued)

7 Detailed Description

7.1 Overview

The TRF372017 is a high-performance, direct up-conversion device, integrating a high-linearity, low-noise IQ modulator and an integer-fractional PLL/VCO. The VCO uses integrated frequency dividers to achieve a wide, continuous tuning range of 300 MHz to 4800 MHz. The LO is available as an output with independent frequency dividers. The device also accepts input from an external LO or VCO. The modulator baseband inputs can be biased either internally or externally. Internal DC offset adjustment enables carrier cancellation. The device is controlled through a 3-wire serial programming interface (SPI). A control pin invokes power-save mode to reduce power consumption while keeping the VCO locked for fast start-up.

7.2 Functional Block Diagram

7.3 Feature Description

7.3.1 Integer and Fractional Mode Selection

The PLL is designed to operate in either Integer mode or Fractional mode. If the desired local oscillator (LO) frequency is an integer multiple of the phase frequency detector (PFD) frequency, f_{PFD}, then Integer mode can be selected. The normalized in-band phase noise floor in Integer mode is lower than in Fractional mode. In Integer mode, the feedback divider is an exact integer, and the fraction is zero. While operating in Integer mode, the register bits corresponding to the fractional control are *don't care*.

In Fractional mode, the feedback divider fractional portion is non-zero on average. With 25-bit fractional resolution, RF stepsize $f_{PFD}/2^{25}$ is less than 1 Hz with a f_{PFD} up to 33 MHz. The appropriate fractional control bits in the serial register must be programmed.

Feature Description (continued)

7.3.2 Description of PLL Structure

Figure 79. Block Diagram of the PLL Loop

The output frequency is given by Equation 1:

$$f_{VCO} = \frac{f_{REF}}{RDIV} (PLL_DIV_SEL) \left[NINT + \frac{NFRAC}{2^{25}} \right]$$
(1)

The rate at which phase comparison occurs is $f_{REF}/RDIV$. In Integer mode, the fractional setting is ignored and Equation 2 is applied.

$$\frac{f_{VCO}}{f_{PED}} = NINT \times PLL_DIV_SEL$$

(2)

The feedback divider block consists of a programmable RF divider, a prescaler divider, and an NF divider. The prescaler can be programmed as either a 4/5 or an 8/9 prescaler. The NF divider includes an *A* counter and an *M* counter.

7.3.2.1 Selecting PLL Divider Values

Operation of the PLL requires the LO_DIV_SEL, RDIV, PLL_DIV_SEL, NINT, and NFRAC bits to be calculated. The LO or mixer frequency is related to f_{VCO} according to divide-by-1/-2/-4/-8 blocks and the operating range of f_{VCO} .

a. LO_DIV_SEL

.

 $LO_DIV_SEL = \begin{cases} 1 & 2400 \text{ MHz} \le f_{\text{RF}} \le 4800 \text{ MHz} \\ 2 & 1200 \text{ MHz} \le f_{\text{RF}} \le 2400 \text{ MHz} \\ 3 & 600 \text{ MHz} \le f_{\text{RF}} \le 1200 \text{ MHz} \\ 4 & 300 \text{ MHz} \le f_{\text{RF}} \le 600 \text{ MHz} \end{cases}$

Therefore:

 $f_{VCO} = LO_DIV_SEL \times f_{RF}$

Feature Description (continued)

b. PLL_DIV_SEL

Given f_{VCO} , select the minimum value for PLL_DIV_SEL so that the programmable RF divider limits the input frequency into the prescaler block, f_{PM} , to a maximum of 3000 MHz.

PLL _ DIV _ SEL = min(1, 2, 4) such that $f_{PM} \le 3000$ MHz

This calculation can be restated as Equation 3.

$$PLL_DIV_SEL = Ceiling\left(\frac{LO_DIV_SEL \times f_{RF}}{3000 \text{ MHz}}\right)$$
(3)

Higher values of f_{PFD} correspond to better phase noise performance in Integer mode or Fractional mode. f_{PFD} , along with PLL_DIV_SEL, determines the f_{VCO} stepsize in Integer mode. Therefore, in Integer mode, select the maximum f_{PFD} that allows for the required RF stepsize, as shown by Equation 4.

$$f_{PFD} = \frac{f_{VCO, Stepsize}}{PLL_DIV_SEL} = \frac{f_{RF, Stepsize} \times LO_DIV_SEL}{PLL_DIV_SEL}$$
(4)

In Fractional mode, a small RF stepsize is accomplished through the Fractional mode divider. A large f_{PFD} should be used to minimize the effects of fractional controller noise in the output spectrum. In this case, f_{PFD} may vary according to the reference clock and fractional spur requirements (for example, $f_{PFD} = 20$ MHz).

c. RDIV, NINT, NFRAC, PRSC_SEL

$$\begin{aligned} \text{RDIV} &= \frac{f_{\text{REF}}}{f_{\text{PFD}}} \\ \text{NINT} &= \text{floor} \bigg(\frac{f_{\text{VCO}} \text{RDIV}}{f_{\text{REF}} \text{PLL} \text{_DIV} \text{_SEL}} \bigg) \\ \text{NFRAC} &= \text{floor} \bigg(\bigg[\bigg(\frac{f_{\text{VCO}} \text{RDIV}}{f_{\text{REF}} \text{PLL} \text{_DIV} \text{_SEL}} \bigg) - \text{NINT} \bigg] 2^{25} \bigg) \end{aligned}$$

The P/(P+1) programmable prescaler is set to 8/9 or 4/5 through the PRSC_SEL bit. To allow proper fractional control, set PRSC_SEL according to Equation 5.

$$PRSC_SEL = \begin{cases} \frac{8}{9} & \text{NINT} \ge 75 \text{ in Fractional Mode or NINT} \ge 72 \text{ in Integer mode} \\ \frac{4}{5} & 23 \le \text{NINT} < 75 \text{ in Fractional mode or } 20 \le \text{NINT} < 72 \text{ in Integer mode} \end{cases}$$
(5)

The PRSC_SEL limit at NINT < 75 applies to Fractional mode with third-order modulation. In Integer mode, the PRSC_SEL = 8/9 should be used with NINT as low as 72. The divider block accounts for either value of PRSC_SEL without requiring NINT or NFRAC to be adjusted. Then, calculate the maximum frequency to be input to the digital divider at f_N . Use the lower of the possible prescaler divide settings, P = (4,8), as shown by Equation 6.

Copyright © 2010–2016, Texas Instruments Incorporated

Feature Description (continued)

$$f_{N,Max} = \frac{f_{VCO}}{PLL_DIV_SEL \times P}$$

Verify that the frequency into the digital divider, f_N , is less than or equal to 375 MHz. If f_N exceeds 375 MHz, choose a larger value for PLL_DIV_SEL and recalculate f_{PFD} , RDIV, NINT, NFRAC, and PRSC_SEL.

7.3.2.2 Setup Example for Integer Mode

Suppose the following operating characteristics are desired for Integer mode operation:

- f_{REF} = 40 MHz (reference input frequency)
- Step at RF = 2 MHz (RF channel spacing)
- f_{RF} = 1600 MHz (RF frequency)

The VCO range is 2400 MHz to 4800 MHz. Therefore:

- LO_DIV_SEL = 2
- f_{VCO} = LO_DIV_SEL × 1600 MHz = 3200 MHz
- To keep the frequency of the prescaler less than 3000 MHz:

• PLL_DIV_SEL = 2

- The desired stepsize at RF is 2 MHz, so:
- f_{PFD} = 2 MHz
- f_{VCO}, stepsize = PLL_DIV_SEL × f_{PFD} = 4 MHz

Using the reference frequency along with the required f_{PFD} gives:

- RDIV = 20
- NINT = 800

NINT \geq 75; therefore, select the 8/9 prescaler.

 $f_{N,Max} = 3200 \text{ MHz}/(2 \times 8) = 200 \text{ MHz} < 375 \text{ MHz}$

This example shows that Integer mode operation gives sufficient resolution for the required stepsize.

7.3.2.3 Setup Example for Fractional Mode

Suppose the following operating characteristics are desired for Fractional mode operation:

- f_{REF} = 40 MHz (reference input frequency)
- Step at RF = 5 MHz (RF channel spacing)
- f_{RF} = 1,600,000,045 Hz (RF frequency)
- The VCO range is 2400 MHz to 4800 MHz. Therefore:
- LO_DIV_SEL = 2
- f_{VCO} = LO_DIV_SEL × 1,600,000,045 Hz = 3,200,000,090 Hz

To keep the frequency of the prescaler less than 3000 MHz:

PLL_DIV_SEL = 2

Using a typical f_{PFD} of 20 MHz:

- RDIV = 2
- NINT = 80

26

• NFRAC = 75

NINT \geq 75; therefore, select the 8/9 prescaler.

 $f_{N,Max} = 3200 \text{ MHz}/(2 \times 8) = 200 \text{ MHz} < 375 \text{ MHz}$

(6)

Feature Description (continued)

The actual frequency at RF is:

• f_{RF} = 160000044.9419 Hz

Which yields a frequency error of -0.058 Hz.

7.3.3 Fractional Mode Setup

Optimal operation of the PLL in fractional mode requires several additional register settings. Recommended values are listed in Table 1. Optimal performance may require tuning the MOD_ORD, ISOURCE_SINK, and ISOURCE_TRIM values according to the chosen frequency band.

REGISTER BIT	REGISTER ADDRESSING	RECOMMENDED VALUE
EN_ISOURCE	Reg4B18	1
EN_DITH	Reg4B25	1
MOD_ORD	Reg4B[2726]	B[2726] = [10]
DITH_SEL	Reg4B28	0
DEL_SD_CLK	Reg4B[3029]	B[3029] = [10]
EN_LD_ISOURCE	Reg5B31	0
ISOURCE_SINK	Reg7B19	0
ISOURCE_TRIM	Reg7B[2220]	B[2220] = [100]

		Table	1.	Fractional	Mode	Register	Settings
--	--	-------	----	------------	------	----------	----------

7.3.4 Selecting the VCO and VCO Frequency Control

To achieve a broad frequency tuning range, the TRF372017 includes four VCOs. Each VCO is connected to a bank of capacitors that determine its valid operating frequency. For any given frequency setting, the appropriate VCO and capacitor array must be selected.

The device contains logic that automatically selects the appropriate VCO and capacitor bank. Set bit EN_CAL to initiate the calibration algorithm. During the calibration process, the device selects a VCO and a capacitor state so that VTune matches the reference voltage set by VCO_CAL_REF_n. Accuracy of the tune is increased through bits CAL_ACC_n. Because a calibration begins immediately when EN_CAL is set, all registers must contain valid values before initiating calibration.

Calibration logic is driven by a CAL_CLK clock derived from the phase frequency detector frequency scaled according to the setting in CAL_CLK_SEL. Faster CAL_CLK frequency enables faster calibration, but the logic is limited to clock frequencies around 1 MHz. Table 2 provides suggested CAL_CLK_SEL scaling recommendations for several phase frequency detector frequencies. The flag R_SAT_ERR is evaluated during the calibration process to indicate calibration counter overflow errors, which occurs if CAL_CLK runs too fast. If R_SAT_ERR is set during a calibration, the resulting calibration is not valid and CAL_CLK_SEL must be used to slow the CAL_CLK. CAL_CLK frequencies should not be set to less than 0.1 MHz.

PFD FREQUENCY (MHz)	CAL_CLK_SEL SCALING	CAL_CLK FREQUENCY (MHz)
20	1/32	0.625
1	1	1
0.1	8	0.8

Table 2.	Example	CAL	CLK	SEL	Scaling
		-		_	

When VCOSEL_MODE is 0, the device automatically selects both the VCO and capacitor bank within 23 CAL_CLK cycles. When VCOSEL_MODE is 1, the device uses the VCO selected in VCO_SEL_0 and VCO_SEL_1 and automatically selects the capacitor array within 17 CAL_CLK cycles. The VCO and capacitor array settings resulting from calibration cannot be read from the VCO_SEL_n and VCO_TRIM_n bits in registers 2 and 7. They can only be read from register 0.

Automatic calibration can be disabled by setting CAL_BYPASS to 1. In this manual cal mode, the VCO is selected through register bits VCO_SEL_n, while the capacitor array is selected through register bits VCO_TRIM_n. Calibration modes are summarized in Table 3. After calibration is complete, the PLL is released from calibration mode to reach an analog lock.

During the calibration process, the TRF372017 scans through many frequencies. RF and LO outputs should be disabled until calibration is complete. At power up, the RF and LO output are disabled by default.

Once a calibration has been performed at a given frequency setting, the calibration is valid over all operating temperature conditions.

CAL_BYPASS	VCOSEL_MODE	MAX CYCLES CAL_CLK	vco	CAPACITOR ARRAY
0	0	46	A	utomatic
0	1	34	VCO_SEL_n	automatic
1	don't care	na	VCO_SEL_n	VCO_TRIM_n

Table 3. VCO Calibration Modes

7.3.5 External VCO

An external LO or VCO signal may be applied. EN_EXTVCO powers the input buffer and selects the buffered external signal instead of an internal VCO. Dividers, the pfd, and the charge pump remain enabled and may be used to drive an external VCO. NEG_VCO must correspond to the gain of the external VCO.

7.3.6 VCO Test Mode

Setting VCO_TEST_MODE forces the currently selected VCO to the edge of its frequency range by disconnecting the charge pump input from the pfd and loop filter and forcing its output high or low. The upper or lower edge of the VCO range is selected through COUNT_MODE_MUX_SEL.

VCO_TEST_MODE also reports the value of a frequency counter in COUNT, which can be read back in register 0. COUNT reports the number of digital N divider cycles in the PLL, directly related to the period of fN, that occur during each CAL_CLK cycle. Counter operation is initiated through the bit EN_CAL.

VCO_TEST_MODE	COUNT_MODE_MUX_SEL	VCO OPERATION	REGISTER 0 B[3013]
0	don't care	Normal	B[3024] = undefined B[2322] = VCO_SEL selected during autocal B21 = undefined B[2013] = VCO_TRIM selected during autocal
1	0	Max frequency	B[3013] = Max frequency counter
1	1	Min frequency	B[3013] = Min frequency counter

Table 4. VCO Test Mode

7.3.7 Lock Detect

The lock detect signal is generated in the phase frequency detector by comparing the VCO target frequency against the VCO actual frequency. When the phase of the two compared frequencies remains aligned for several clock cycles, an internal signal goes high. The precision of this comparison is controlled through the LD_ANA_PREC bits. This internal signal is then averaged and compared against a reference voltage to generate the LD signal. The number of averages used is controlled through LD_DIG_PREC. Therefore, when the VCO is frequency locked, LD is high. When the VCO frequency is not locked, LD may pulse high or exhibit periodic behavior.

By default, the internal lock detect signal is driven on the LD terminal. Register bits MUX_CTRL_n can be used to control a mux to output other diagnostic signals on the LD output. The LD control signals are shown in Table 5.

ADJUSTMENT	REGISTER BITS	BIT ADDRESSING		
Lock detect precision	LD_ANA_PREC_0	Register 4 Bit 19		
Unlock detect precision	LD_ANA_PREC_1	Register 4 Bit 20		
LD averaging count	LD_DIG_PREC	Register 4 Bit 24		
Diagnostic Output	MUX_CTRL_n	Register 7 Bits 1816		

Table 5. LD Control Signals

Table 6. LD Control Signal Mode Settings

CONDITION	RECOMMENDED SETTINGS
Integer Mode	LD_ANA_PREC_0 = 0 LD_ANA_PREC_1 = 0 LD_DIG_PREC = 1
Fractional Mode	LD_ANA_PREC_0 = 1 LD_ANA_PREC_1 = 1 LD_DIG_PREC = 1

7.3.8 Tx Divider

The Tx divider, illustrated in Figure 80, converts the differential output of the VCO into differential I and Q mixer components. The divide by 1 differential quadrature phases are provided through a polyphase. Divide by 2, 4, and 8 differential quadrature phases are provided through flip-flop dividers. Only one of the dividers operates at a time, and the appropriate output is selected by a mux. DIVn bits are controlled through TX_DIV_SELn.

TX_DIV_I determines the bias level for the divider blocks. The SPEEDUP control is used to bypass a stabilization resistor and reach the final bias level faster after a change in the divider selection. SPEEDUP should be disabled during normal operation.

Figure 80. Tx Divider

7.3.9 LO Divider

The LO divider is shown in Figure 81. It frequency divides the VCO output. Only one of the dividers operates at a time, and the appropriate output is selected by a mux. DIVn bits are controlled through LO_DIV_SELn. The output is buffered and provided on output pins LO_OUT_P and LO_OUT_N. The output level is controlled through BUFOUT_BIASn.

LO_DIV_I determines the bias level for the divider blocks. The SPEEDUP control is used to bypass a stabilization resistor and reach the final bias level faster after a change in the divider selection. SPEEDUP should be disabled during normal operation. Although SPEEDUP controls both the Tx and LO divider biases, the Tx and LO divider biases are generated independently.

Figure 81. LO Divider

7.3.10 Mixer

A diagram of the mixer is shown in Figure 82. The mixer is followed by a differential to single-ended converter and buffer for output.

Figure 82. Mixer

7.3.11 Disabling Outputs

RF frequency outputs are generated at the RFOUT and LO* terminals. Unused RF frequency outputs should be disabled to minimize power consumption and noise generation. Table 7 lists settings used to disable the outputs. Power-save mode can also be used to disable outputs.

_		
DISABLED OUTPUT	REGISTER BIT	SETTING
RFOUT	PWD_TX_DIV	1
	PWD_OUT_BUFF	1
LOP and LON	PWD_LO_DIV	1

	Table 7.	Register	Controls fo	r Disabling	Outputs
--	----------	----------	-------------	-------------	---------

7.3.12 Power Supply Distribution

Power supply distribution for the TRF372017 is shown in Figure 83. Proper isolation and filtering of the supplies is critical for low noise operation of the device. Each supply pin should be supplied with local decoupling capacitance and isolated with a ferrite bead. VCC_VCO2 is tolerant of 5-V supply voltages to permit additional supply filtering.

Figure 83. Power Supply Distribution

7.3.13 Carrier Feedthrough Cancellation

The structure of the baseband current DAC is shown in Figure 84. For each input pair, there is a programmable reference current. The reference current for each pair (I and Q) is identical and is programmed through the same register bits, but the reference current source itself is duplicated in the device for both I and Q inputs. This current can be set to change the total current flowing into the P and N nodes, which in turn changes the offset programmability range.

The reference current is then mirrored and multiplied before getting injected into the input node. The total mirrored current is routed into the two sides of the differential pair and routed according to eight programmable bits. As the 8-bit setting is changed, current is shifted from one side of the pair into the other side for each of the l and Q input pairs. In practical usage, the offset current routing distributes the adjustment for each side of the pair, while the reference current sets the range of adjustment. This effect can be seen in Figure 78, which shows that the gain of the current routing is greater when the reference current setting is higher. However the step size also increases with increase in range. Figure 78 shows the effect on common mode voltage of varying the DAC reference current. Adjustment register bits are shown in Table 8.

Offset adjustment may be provided by an external source, such as a DAC QMC block, for DC-coupled systems.

Figure 84. Block Diagram of the Programmable Current DAC

ADJUSTMENT	REGISTER BITS	BIT ADDRESS
I input differential offset programmability	I Offset Ref Curr	IOFF_n Register 6 Bits 125
Q input differential offset programmability	Q Offset Ref Curr	QOFF Register 6 Bits 2013
Offset Programmability Range	DCoffset_I_n	Register 7 Bits 3029

Table 8. Baseband Differential Offset Adjustment Factors

7.3.14 Internal Baseband Bias Voltage Generation

The TRF372017 has the ability to generate DC voltage levels for its baseband inputs internally. Register settings in the device allow the user to adjust common mode voltage of the I and Q signals separately. There are three adjustment factors for the baseband inputs. These are described in Table 9.

Table 9. Baseband Adjustment Factors

ADJUSTMENT	REGISTER BITS	BIT ADDRESSING
VCM setting	VREF_SEL_n	Register 6 Bits 2321
VCM Enable	PWD_BB_VCM	Register 4 Bit 15
Bias select	IB_VCM_SEL	Register 7 Bit 25

TRF372017 SLWS224E – AUGUST 2010–REVISED JANUARY 2016

www.ti.com

Each baseband input pair includes the circuitry depicted in Figure 85. The Vref set voltage impacts all four terminals: IP, IN, QP, and QN. The effect of changing the reference voltage is shown in Figure 77. Each node also includes a programmable current DAC that injects current into the positive and negative terminals of each input.

Figure 85. Block Diagram of the Baseband I Input Nodes

Table 10.	Frequency	Range	Operation
-----------	-----------	-------	-----------

VCO FRE	QUENCY	UENCY DIV BY 2 DIV BY 4				DIV BY 8		
Fmin	Fmax	Fmin	Fmax	Fmin	Fmax	Fmin	Fmax	
2400	4800	1200	2400	600	1200	300	600	

7.4 Device Functional Modes

7.4.1 Powersave Mode

Powersave mode can be used to put the device into a low power consumption mode. The PLL block remains active in Powersave mode, reducing the time required for start-up. However, the modulator, dividers, output buffers, and baseband common mode generation blocks are powered down. The SPI block remains active, and registers are addressable. Use the PS pin to activate powersave mode.

TEXAS INSTRUMENTS

www.ti.com

7.5 Register Maps

7.5.1 Serial Interface Programming Registers Definition

The TRF372017 features a 3-wire serial programming interface (SPI) that controls an internal 32-bit shift register. There are a total of 3 signals that must be applied: the clock (CLK, pin 47), the serial data (DATA, pin 46) and the latch enable (LE, pin 45). The TRF372017 has an additional pin (RDBK, pin 2) for read-back functionality. This pin is a digital pin and can be used to read-back values of different internal registers.

The DATA (DB0-DB31) is loaded LSB first and is read on the rising edge of the CLOCK. The LE is asynchronous to the CLOCK and at its rising edge the data in the shift register gets loaded onto the selected internal register. The 5 LSB of the Data field are the address bits to select the available internal registers.

7.5.1.1 PLL SPI Registers

7.5.1.1.1 Register 1

Table 11. Register 1															
Bit0	Bit1	Bit2	Bit3	Bit4	Bit5	Bit6	Bit7	Bit8	Bits	Bit10	Bit11	Bit12	Bit13	Bit14	Bit15
	F	legister a	address			Reference Clock D				k Divide	r				
Bit16	Bit17	Bit18	Bit19	Bit20	Bit21	Bit22	Bit23	Bit24	Bit25	Bit26	Bit27	Bit28	Bit29	Bit30	Bit31
		RSV	REF	VCO		Charge Pump Current			CP	V	CO Cal C	LK div/N	lult	RSV	
			INV	NEG						DOUBLE					

Table 12. Register 1 Field Descriptions

REGISTER 1	NAME	RESET VALUE	DESCRIPTION		
Bit0	ADDR_0	1	Register address bits		
Bit1	ADDR_1	0			
Bit2	ADDR_2	0			
Bit3	ADDR_3	1			
Bit4	ADDR_4	0			
Bit5	RDIV_0	1			
Bit6	RDIV_1	0			
Bit7	RDIV_2	0			
Bit8	RDIV_3	0			
Bit9	RDIV_4	0			
Bit10	RDIV_5	0			
Bit11	RDIV_6	0	13-bit Reference Divider value		
Bit12	RDIV_7	0	maximum value $Rmax=8191$, $B[175] = [11 1111 1111 111];$		
Bit13	RDIV_8	0			
Bit14	RDIV_9	0			
Bit15	RDIV_10	0			
Bit16	RDIV_11	0			
Bit17	RDIV_12	0			
Bit18	RSV	0			
Bit19	REF_INV	0	Invert Reference Clock polarity; 1 = use falling edge		
Bit20	NEG_VCO	1	VCO polarity control; 1= negative slope (negative K _v)		
Bit21	ICP_0	0			
Bit22	ICP_1	1	Program Charge Pump DC current, ICP		
Bit23	ICP_2	0	1.94mA, B[2521] = [00 000] 0.47mA. B[2521] = [11 111]		
Bit24	ICP_3	1	0.97mA, default value, , B[2521] = [01 010]		
Bit25	ICP_4	0			
Bit26	ICPDOUBLE	0	1 = set ICP to double the current		

 Table 12. Register 1 Field Descriptions (continued)

REGISTER 1	NAME	RESET VALUE	DESCRIPTION
Bit27	CAL_CLK_SEL_0	0	
Bit28	CAL_CLK _SEL_1	0	Multiplication or division factor to create VCO colibration clock from DED fraguency
Bit29	CAL_CLK _SEL_2	0	
Bit30	CAL_CLK _SEL_3	1	
Bit31	RSV	0	

CAL_CLK_SEL[3..0]: Set the frequency divider value used to derive the VCO calibration clock from the phase detector frequency.

CAL_CLK_SEL	SCALING FACTOR
1111	1/128
1110	1/64
1101	1/32
1100	1/16
1011	1/8
1010	1/4
1001	1/2
1000	1
0110	2
0101	4
0100	8
0011	16
0010	32
0001	64
0000	128

Table 13. Scaling Factors

ICP[4..0]: Set the charge pump current.

Table 14. ICP and Current

ICP[40]	CURRENT (mA)
00 000	1.94
00 001	1.76
00 010	1.62
00 011	1.49
00 100	1.38
00 101	1.29
00 110	1.21
00 111	1.14
01 000	1.08
01 001	1.02
01 010	0.97
01 011	0.92
01 100	0.88
01 101	0.84
01 110	0.81
01 111	0.78
10 000	0.75
10 001	0.72

ICP[40]	CURRENT (mA)
10 010	0.69
10 011	0.67
10 100	0.65
10 101	0.63
10 110	0.61
10 111	0.59
11 000	0.57
11 001	0.55
11 010	0.54
11 011	0.52
11 100	0.51
11 101	0.5
11 110	0.48
11 111	0.47

Table 14. ICP and Current (continued)

7.5.1.1.2 Register 2

Table 15. Register 2

								-							
Bit0	Bit1	Bit2	Bit3	Bit4	Bit5	Bit6	Bit7	Bit8	Bit9	Bit10	Bit11	Bit12	Bit13	Bit14	Bit15
Register address						N-Divider Value									
Bit16	Bit17	Bit18	Bit19	Bit20	Bit21	Bit22	Bit23	Bit24	Bit25	Bit26	Bit27	Bit28	Bit29	Bit30	Bit31
			PLL c set	livider ting	Prescaler Select	RSV	RSV	VCO	select	FCO sel mode	Cal ac	curacy	CAL		

Table 16.	Register	2 Field	Descriptions
-----------	----------	---------	--------------

REGISTER 2	NAME	RESET VALUE	DESCRIPTION				
Bit0	ADDR_0	0					
Bit1	ADDR_1	1					
Bit2	ADDR_2	0	Register address bits				
Bit3	ADDR_3	1					
Bit4	ADDR_4	0					
Bit5	NINT_0	0					
Bit6	NINT_1	0					
Bit7	NINT_2	0					
Bit8	NINT_3	0					
Bit9	NINT_4	0					
Bit10	NINT_5	0					
Bit11	NINT_6	0					
Bit12	NINT_7	1	DLL N divider division estima				
Bit13	NINT_8	0					
Bit14	NINT_9	0					
Bit15	NINT_10	0					
Bit16	NINT_11	0					
Bit17	NINT_12	0					
Bit18	NINT_13	0					
Bit19	NINT_14	0					
Bit20	NINT_15	0					

www.ti.com

Table 16. Register 2 Field Descriptions (continued)

REGISTER 2	NAME	RESET VALUE	DESCRIPTION					
Bit21	PLL_DIV_SEL0	1	Colort division notio of dividen in front of messager					
Bit22	PLL_DIV_SEL1	0	Select division ratio of divider in front of prescaler					
Bit23	PRSC_SEL	1	Set prescaler modulus (0 \rightarrow 4/5; 1 \rightarrow 8/9)					
Bit24	RSV	0						
Bit25	RSV	0						
Bit26	Bit26 VCO_SEL_0		Selects between the four integrated VCOs 00 = lowest frequency VCO; 11 = highest frequency VCO					
Bit27	VCO_SEL_1	1						
Bit28	VCOSEL_MODE	0	Single VCO auto-calibration mode (1 = active)					
Bit29	CAL_ACC_0	0	Error count during the cap array calibration					
Bit30	CAL_ACC_1	0	Recommended programming [00]					
Bit31 EN_CAL		0	Execute a VCO frequency auto-calibration. Set to 1 to initiate a calibration. Resets automatically.					

PLL_DIV<1,0>: Select division ratio of divider in front of prescaler.

Table 17. Frequency Divider

PLL DIV	FREQUENCY DIVIDER					
00	1					
01	2					
10	4					

VCOSEL_MODE<0>: When it is 1, the cap array calibration is run on the VCO selected through bits VCO_SEL<2,1>.

7.5.1.1.3 Register 3

Table 18. Register 3

Bit0	Bit1	Bit2	Bit3	Bit4	Bit5	Bit6	Bit7	Bit8	Bit9	Bit10	Bit11	Bit12	Bit13	Bit14	Bit15
Register address								Fractiona	al N-Divid	ler Value	1				
Bit16	Bit17	Bit18	Bit19	Bit20	Bit21	Bit22	Bit23	Bit24	Bit25	Bit26	Bit27	Bit28	Bit29	Bit30	Bit31
						•								RSV	RSV

Table 19. Register 3 Field Descriptions

REGISTER 3	NAME	RESET VALUE	DESCRIPTION
Bit0	ADDR_0	1	
Bit1	ADDR_1	1	
Bit2	ADDR_2	0	Register address bits
Bit3	ADDR_3	1	
Bit4	ADDR_4	0	

TRF372017 SLWS224E – AUGUST 2010–REVISED JANUARY 2016

REGISTER 3	NAME	RESET VALUE	DESCRIPTION								
Bit5	NFRAC<0>	0									
Bit6	NFRAC<1>	0									
Bit7	NFRAC<2>	0									
Bit8	NFRAC<3>	0									
Bit9	NFRAC<4>	0									
Bit10	NFRAC<5>	0									
Bit11	NFRAC<6>	0									
Bit12	NFRAC<7>	0									
Bit13	NFRAC<8>	0									
Bit14	NFRAC<9>	0									
Bit15	NFRAC<10>	0									
Bit16	NFRAC<11>	0									
Bit17	NFRAC<12>	0	Fractional PLL N divider value 0 to 0.99999.								
Bit18	NFRAC<13>	0									
Bit19	NFRAC<14>	0									
Bit20	NFRAC<15>	0									
Bit21	NFRAC<16>	0									
Bit22	NFRAC<17>	0									
Bit23	NFRAC<18>	0									
Bit24	NFRAC<19>	0									
Bit25	NFRAC<20>	0									
Bit26	NFRAC<21>	0									
Bit27	NFRAC<22>	0									
Bit28	NFRAC<23>	0									
Bit29	NFRAC<24>	0									
Bit30	RSV	0									
Bit31	RSV	0									

Table 19. Register 3 Field Descriptions (continued)

7.5.1.1.4 Register 4

Table 20. Register 4 Bit7 Bit8 Bit0 Bit1 Bit2 Bit3 Bit4 Bit5 Bit6 Bit9 Bit10 Bit11 Bit12 Bit13 Bit14 Bit15 PD Register address Power-Down PLL blocks PD VCM PLL Bit17 Bit18 Bit19 Bit20 Bit21 Bit22 Bit23 Bit24 Bit26 Bit28 Bit29 Bit30 Bit31 Bit16 Bit25 Bit27 PD DC $\Sigma\Delta$ Mode controls EXT PLL Test Control $\Sigma\Delta \ Mode \ order$ ΕN off VCO Fract mode

Table 21. Register 4 Field Descriptions

REGISTER 4	NAME	RESET VALUE	DESCRIPTION
Bit0	ADDR_0	0	Register address bits
Bit1	ADDR_1	0	
Bit2	ADDR_2	1	
Bit3	ADDR_3	1	
Bit4	ADDR_4	0	
Bit5	PWD_PLL	0	Power-down all PLL blocks (1 = off)
Bit6	PWD_CP	0	When 1, charge pump is off

www.ti.com

TRF372017 SLWS224E - AUGUST 2010 - REVISED JANUARY 2016

www.ti.com

Table 21.	Register 4	Field	Description	ns (continued)

REGISTER 4	NAME	RESET VALUE	DESCRIPTION
Bit7	PWD_VCO	0	When 1, VCO is off
Bit8	PWD_VCOMUX	0	Power-down the 4 VCO mux block (1 = Off)
Bit9	PWD_DIV124	0	Power-down programmable RF divider in PLL feedback path (1 = off)
Bit10	PWD_PRESC	0	Power-down programmable prescaler (1 = off)
Bit11	RSV	0	
Bit12	PWD_OUT_BUFF	1	Power-down LO output buffer $(1 = off)$.
Bit13	PWD_LO_DIV	1	Power-down frequency divider in LO output chain 1 (1 = off)
Bit14	PWD_TX_DIV	1	Power-down frequency divider in modulator chain (1 = off)
Bit15	PWD_BB_VCM	1	Power-down baseband input DC common block (1 = off)
Bit16	PWD_DC_OFF	1	Power-down baseband input DC offset control block (1 = off)
Bit17	EN_EXTVCO	0	Enable external LO/VCO input buffer (1 = enabled)
Bit18	EN_ISOURCE	0	Enable offset current at Charge Pump output (to be used in fractional mode only, 1 = on).
Bit19	LD_ANA_PREC_0	0	Control precision of analog lock detector (1 1 = low; 0 0 = high). See Lock Detect
Bit20	LD_ANA_PREC_1	0	section of Application Information for usage details.
Bit21	CP_TRISTATE_0	0	Set the charge pump output in Tristate mode.
Bit22	CP_TRISTATE_1	0	Normal, B[2221] = [00] Down, B[2221] = [01] Up, B[2221] = [10] Tristate, B[2221] = [11]
Bit23	SPEEDUP	0	Speed up PLL and Tx blocks by bypassing bias stabilizer capacitors.
Bit24	LD_DIG_PREC	0	Lock detector precision (increases sampling time if set to 1)
Bit25	EN_DITH	1	Enable $\Delta\Sigma$ modulator dither (1=on)
Bit26	MOD_ORD_0	0	$\Delta\Sigma$ modulator order (1 through 4). Not used in integer mode.
Bit27	MOD_ORD_1	1	1 st order, B[2726] = [00] 2 nd order, B[2726] = [01] 3 rd order, B[2726] = [10] 4 th order, B[2726] = [11]
Bit28	DITH_SEL	0	Select dither mode for $\Delta\Sigma$ modulator (0 = const; 1 = pseudo-random)
Bit29	DEL_SD_CLK_0	0	$\Delta\Sigma$ modulator clock delay. Not used in integer mode.
Bit30	DEL_SD_CLK_1	1	Min delay = 00 Max delay = 11
Bit31	EN_FRAC	0	Enable fractional mode (1 = fractional enabled)

7.5.1.1.5 Register 5

	Table 22. Register 5														
Bit0	Bit1	Bit2	Bit3	Bit4	Bit5	Bit6	Bit7	Bit8	Bit9	Bit10	Bit11	Bit12	Bit13	Bit14	Bit15
Register address				VCO_R Trim		PLL_R_Trim			VCO C	Jurrent		VCOBUF BIAS			
Bit16	Bit17	Bit18	Bit19	Bit20	Bit21	Bit22	Bit23	Bit24	Bit25	Bit26	Bit27	Bit28	Bit29	Bit30	Bit31
VCOMUX BIAS OUTBUF BIAS R		SV	BIAS VCO CAL REF			REF	VCO AN	MUX 1PL	VCO Bias Voltage		RSV	EN_LD ISRC			

Table 23. Register 5 Field Descriptions

REGISTER 5	NAME	RESET VALUE	DESCRIPTION
Bit0	ADDR_0	1	
Bit1	ADDR_1	0	
Bit2	ADDR_2	1	Register address bits
Bit3	ADDR_3	1	
Bit4	ADDR_4	0	

TRF372017 SLWS224E - AUGUST 2010 - REVISED JANUARY 2016

Table 23. Register &	5 Field	Descriptions	(continued)
----------------------	---------	--------------	-------------

REGISTER 5	NAME	RESET VALUE	DESCRIPTION						
Bit5	VCOBIAS_RTRIM_0	0							
Bit6	VCOBIAS_RTRIM_1	0	VCO bias resistor trimming. Recommended programming [100].						
Bit7	VCOBIAS_RTRIM_2	1							
Bit8	PLLBIAS_RTRIM_0	0	PLL bias resistor trimming. Recommended programming [40]						
Bit9	PLLBIAS_RTRIM_1	1	PLL bias resistor trimming. Recommended programming [10].						
Bit10	VCO_BIAS_0	0	VCO bias reference current.						
Bit11	VCO_BIAS_1	0	$300 \ \mu\text{A}, \text{B}[1310] = [00 \ 00]$						
Bit12	VCO_BIAS_2	0	Bias current varies directly with reference current						
Bit13	VCO_BIAS_3	1	Recommended programming 400 μA, B[1310] = [0101] with VCC_VCO2 = 3.3 V 600 μA, B[1310] = [1111] with VCC_VCO2 = 5 V						
Bit14	VCOBUF_BIAS_0	0	VCO buffer bias reference current.						
Bit15	VCOBUF_BIAS_1	1	300 μA, B[1514] = [00] 600 μA, B[1514] = [11] Bias current varies directly with reference current Recommended programming [10]						
Bit16	VCOMUX_BIAS_0	0	VCO's muxing buffer bias reference current.						
Bit17	VCOMUX_BIAS_1	1	300 μA, B[1716] = [00] 600 μA, B[1716] = [11] Bias current varies directly with reference current Recommended programming [11]						
Bit18	BUFOUT_BIAS_0	0	PLL output buffer bias reference current.						
Bit19	BUFOUT_BIAS_1	1	300 μA, B[1918] = [00] 600 μA, B[1918] = [11] Bias current varies directly with reference current						
Bit20	RSV	0							
Bit21	RSV	1							
Bit22	VCO_CAL_IB	0	Select bias current type for VCO calibration circuitry 0 = PTAT; 1 = constant over temperature Recommended programming [0]						
Bit23	VCO_CAL_REF_0	0	VCO calibration reference voltage trimming.						
Bit24	VCO_CAL_REF_1	0	0.9 V, B[2523] = [000] 1.4 V, B[2523] = [111]						
Bit25	VCO_CAL_REF_2	1	Recommended programming [010]						
Bit26	VCO_AMPL_CTRL_0	0	Adjust the signal amplitude at the VCO mux input						
Bit27	VCO_AMPL_CTRL_1	1	Recommended programming [11]						
Bit28	VCO_VB_CTRL_0	0	VCO core bias voltage control						
Bit29	VCO_VB_CTRL _1	1	1.2 V, B[2928] = [00] 1.35 V, B[2928] = [01] 1.5 V, B[2928] = [10] 1.65 V, B[2928] = [11] Recommended programming [00]						
Bit30	RSV	0							
Bit31	EN_LD_ISOURCE	1	Enable monitoring of LD to turn on Isource when in frac-n mode (EN_FRAC=1). 0 = ISource set by EN_ISOURCE. 1 = ISource set by LD. Recommended programming [0]						

7.5.1.1.6 Register 6

40

	Table 24. Register 6														
Bit0	Bit1	Bit2	Bit3	Bit4	Bit5	Bit6	Bit7	Bit8	Bit9	Bit10	Bit11	Bit12	Bit13	Bit14	Bit15
Register address							BB	DC OFF	SET						
Di+16	Di+17	Di+10	Di+10	Di+20	Di+21	Ditoo	Dit00	Di+24	DitOF	Ditae	Di+27	Dit00	Di+20	Di+20	Di+21
BILTO	BILL	BILTO	DILLA	BILZO	DILZ I	DILZZ	BILZS	DILZ4	BILZO	Bitzo	DILZI	DILZO	DILZ9	BILSU	BIGT
BB DC OFFSET			N	/REF SE	L	TXDI	/ SEL	LODI	/ SEL	TXDIV	' BIAS	LODIV	/ BIAS		

EXAS STRUMENTS

www.ti.com

Table 25. Register 6 Field Descriptions

REGISTER 6	NAME	RESET VALUE	DESCRIPTION					
Bit0	ADDR_0	0						
Bit1	ADDR_1	1						
Bit2	ADDR_2	1	Register address bits					
Bit3	ADDR_3	1						
Bit4	ADDR_4	0						
Bit5	IOFF_0	0						
Bit6	IOFF_1	0						
Bit7	IOFF_2	0						
Bit8	IOFF_3	0	Adjust Iref current used for defining I DC offset.					
Bit9	IOFF_4	0	$\begin{bmatrix} Pointange, 2 \times net, B[125] = [1 1111 111] \\ Mid scale, Iref B[125] = [1 0000 000] \\ \end{bmatrix}$					
Bit10	IOFF_5	0						
Bit11	IOFF_6	0						
Bit12	IOFF_7	1						
Bit13	QOFF_0	0						
Bit14	QOFF_1	0						
Bit15	QOFF_2	0						
Bit16	QOFF_3	0	Adjust Iref current used for defining Q DC offset.					
Bit17	QOFF_4	0	Mid scale, Iref B[2013] = [1 0000 000]					
Bit18	QOFF_5	0						
Bit19	QOFF_6	0						
Bit20	QOFF_7	1						
Bit21	VREF_SEL_0	0	Adjust Vref in baseband common mode generation circuit.					
Bit22	VREF_SEL_1	0	0.65 V, B[2321] = [000] - 1 V, B[2321] = [111]					
Bit23	VREF_SEL_2	1	Modulator common mode is Vref + Vbe. Recommended programming [100]					
Bit24	TX_DIV_SEL_0	0	Adjust Tx path divider.					
Bit25	TX_DIV_SEL_1	0	Div1, [B2524] = [00] Div2, [B2524] = [01] Div4, [B2524] = [10] Div8, [B2524] = [11]					
Bit26	LO_DIV_SEL_0	0	Adjust LO path divider					
Bit27	LO_DIV_SEL_1	0	Div1, [B28.27] = [00] Div2, [B28.27] = [01] Div4, [B28.27] = [10] Div8, [B28.27] = [11]					
Bit28	TX_DIV_BIAS_0	0	TX divider bias reference current					
Bit29	TX_DIV_BIAS_1	1	25 μ A, [B2928] = [00] 37.5 μ A, [B2928] = [01] 50 μ A, [B2928] = [10] 62.5 μ A, [B2928] = [11] Bias current varies directly with reference current					
Bit30	LO_DIV_BIAS_0	0	LO divider bias reference current					
Bit31	LO_DIV_BIAS_1	1	25 μ A, [B2928] = [00] 37.5 μ A, [B2928] = [01] 50 μ A, [B2928] = [10] 62.5 μ A, [B2928] = [11] Bias current varies directly with reference current					

TRF372017 SLWS224E – AUGUST 2010– REVISED JANUARY 2016

www.ti.com

7.5.1.1.7 Register 7

Table 26. Register 7															
Bit0	Bit1	Bit2	Bit3	Bit4	Bit5	Bit6	Bit7	Bit8	Bit9	Bit10	Bit11	Bit12	Bit13	Bit14	Bit15
	Register address VCO CAP ARRAY CONTROL						RSV	VCO test mode	CAL bypass						
Bit16	Bit17	Bit18	Bit19	Bit20	Bit21	Bit22	Bit23	Bit24	Bit25	Bit26	Bit27	Bit28	Bit29	Bit30	Bit31
MU	X CONTI	ROL	ISRC SINK	OFFS	ET CUR ADJUST	RENT	LP Time	PD Const	VCM Bias	М	IX LO VO	CM	DC OF	FREF	VCO BIAS SEL

Table 27. Register 7 Field Descriptions

REGISTER 7	NAME	RESET VALUE	DESCRIPTION
Bit0	ADDR_0	1	Register address bits
Bit1	ADDR_1	1	
Bit2	ADDR_2	1	
Bit3	ADDR_3	1	
Bit4	ADDR_4	0	
Bit5	RSV	0	
Bit6	RSV	0	
Bit7	VCO_TRIM_0	0	VCO capacitor array control bits, used in manual cal mode
Bit8	VCO_TRIM_1	0	
Bit9	VCO_TRIM_2	0	
Bit10	VCO_TRIM_3	0	
Bit11	VCO_TRIM_4	0	
Bit12	VCO_TRIM_5	1	
Bit13	RSV	0	
Bit14	VCO_TEST_MODE	0	Counter mode: measure max/min frequency of each VCO
Bit15	CAL_BYPASS	0	Bypass of VCO auto-calibration. When 1, VCO_TRIM and VCO_SEL bits are used to select the VCO and the cap array setting
Bit16	MUX_CTRL_0	1	Select signal for test output (pin 5, LD).
Bit17	MUX_CTRL_1	0	[000] = Ground [001] = Lock detector
Bit18	MUX_CTRL_2	0	[010] = NDIV counter output [011] = Ground [100] = RDIV counter output [101] = Ground [110] = A_counter output [111] = Logic high;
Bit19	ISOURCE_SINK	0	Charge pump offset current polarity.
Bit20	ISOURCE_TRIM_0	0	
Bit21	ISOURCE_TRIM_1	0	Adjust isource bias current in frac-n mode.
Bit22	ISOURCE_TRIM_2	1	
Bit23	PD_TC_0	0	Time constant control for PWD_OUT_BUFF
Bit24	PD_TC_1	0	[00] = Minimum time constant [11] = Maximum time constant
Bit25	IB_VCM_SEL	0	Select constant/ptat current for Common mode bias generation block 0 = PTAT 1 = const
Bit26	RSV	0	
Bit27	RSV	0	
Bit28	RSV	1	

Tahlo 27	Register 7	7 Field	Descriptions	(continued)
i able Z1.	Register I	гіеій	Descriptions	(continueu)

REGISTER 7	NAME	RESET VALUE	DESCRIPTION
Bit29	DCOFFSET_I_0	0	Adjust BB input DC offset Iref
Bit30	DCOFFSET_I_1	1	50 μA, B[2726] = [00] 100 μA, B[2726] = [01] 150 μA, B[2726] = [10] 200 μA, B[2726] = [11]
Bit31	VCO_BIAS_SEL	0	Select VCO_BIAS trim settings stored in EEPROM 0 = Use EEPROM settings if parity check is 1; otherwise, use SPI settings 1 = Use SPI settings Recommended programming [1]

7.5.1.2 Readback Mode

Register 0 functions as a Readback register. TRF372017 implements the capability to read-back the content of any serial programming interface register by initializing register 0.

Each read-back is composed by two phases: writing followed by the actual reading of the internal data. This is shown in the timing diagram in Figure 2. During the writing phase, a command is sent to TRF372017 register 0 to set it in read-back mode and to specify which register is to be read. In the proper reading phase, at each rising clock edge, the internal data is transferred into the RDBK pin and can be read at the following falling edge (LSB first). The first clock after the LE goes high (end of writing cycle) is idle and the following 32 clocks pulses transfer the internal register content to the RDBK pin.

7.5.1.2.1 Readback From the Internal Registers Banks

TRF372017 integrates 8 registers: Register 0 (000) to Register 7 (111). Registers 1 through 7 are used to set-up and control the TRF372017 functionalities, while register 0 is used for the readback function.

The latter register must be programmed with a specific command that sets TRF372017 in read-back mode and specifies the register to be read:

- Set B[31] to 1 to put TRF372017 in read-back mode.
- Set B[30,28] equal to the address of the register to be read (000 to 111).
- Set B27 to control the VCO frequency counter in VCO test mode.

7.5.1.2.1.1 Register 0 Write

		NAME	RESET VALUE	DESCRIPTION
	B0	ADDR<0>	0	
	B1	ADDR<1>	0	
	B2	ADDR<2>	0	Register 0 to be programmed to set TRF372017 in readback mode.
	B3	ADDR<3>	1	-
	B4	ADDR<4>	0	

Table 28. Register 0 Write

Ų	Texas Instruments
-	INSTRUMENTS

Table 28	Register	0 Write	(continued)	
	Negister	O WILLE	(continueu)	,

		NAME	RESET VALUE	DESCRIPTION
	B5	N/C	0	
	B6	N/C	0	
	B7	N/C	0	
	B8	N/C	0	
	B9	N/C	0	
	B10	N/C	0	
	B11	N/C	0	
	B12	N/C	0	
	B13	N/C	0	
	B14	N/C	0	
	B15	N/C	0	
	B16	N/C	0	
	B17	N/C	0	
DATA FIELD	B18	N/C	0	
	B19	N/C	0	
	B20	N/C	0	
	B21	N/C	0	
	B22	N/C	0	
	B23	N/C	0	
	B24	N/C	0	
	B25	N/C	0	
	B26	N/C	0	
	B27	COUNT_MODE_MUX_SEL	0	Select Readback for VCO maximum frequency or minimum frequency. 0 = Max 1 = Min
	B28	RB_REG<0>	Х	3 LSB's of the address for the register that is being read
	B29	RB_REG<1>	Х	Reg 0, B[3028] = [000]
	B30	RB_REG<2>	Х	Reg /, B[3028] = [111]
	B31	RB_ENABLE	1	1 ≥ Put the device in Readback Mode

The contents of any register specified in RB_REG can be read back during the read cycle, including register 0.

Bit0	В	it1	Bit2	Bit	3 E	3it4	Bit5	Bit6	Bit7	Bit8	Bit9	Bi	t10	Bit11		Bit12	
Register address CHIP_				CHIP_ID	NU							R_	R_SAT_ERR				
Bit13	Bit14	Bit15	Bit16	Bit17	Bit18	Bit19	Bit20	Bit21 Bit22 Bit23 Bit24 Bit25 Bit26 Bit27 Bit28 Bit29					Bit29	Bit30			
COUNT0-7/VCO_TRM							COUNT	8-10/VCO	_SEL		ł	CC	UNT11	-17			
	E	Bit31	<u> </u>														

COUNT_MODE-MUX-SEL

REGISTER 0	NAME	RESET VALUE	DESCRIPTION
Bit0	ADDR_0	0	Register address bits
Bit1	ADDR_1	0	
Bit2	ADDR_2	0	
Bit3	ADDR_3	1	
Bit4	ADDR_4	0	
Bit5	CHIP_ID_0	1	
Bit6	CHIP_ID_1	1	
Bit7	NU	х	

REGISTER 0	NAME	RESET VALUE	DESCRIPTION			
Bit8	NU	x				
Bit9	NU	х				
Bit10	NU	х				
Bit11	NU	х				
Bit12	R_SAT_ERR	х	Error flag for calibration speed			
Bit13	count_0/NU	х				
Bit14	count_1/NU	х				
Bit15	count_2/VCO_TRIM_0	х				
Bit16	count_3/VCO_TRIM_1	х	B[3013] = VCO frequency counter high when			
Bit17	count_4/VCO_TRIM_2	х	COUNT_MODE_MUX_SEL = 0 and VCO_TEST_MODE = 1			
Bit18	count_5/VCO_TRIM_3	х				
Bit19	count_6/VCO_TRIM_4	х				
Bit20	count_7/VCO_TRIM_5	х				
Bit21	count_8/NU	х				
Bit22	count_9/VCO_sel_0	х	B[3013] = VCO frequency counter low when			
Bit23	count_10/VCO_sel_1	х				
Bit24	count<11>	х				
Bit25	count<12>	х				
Bit26	count<13>	х	BI20_151 = Autocal results for VCO_TRIM			
Bit27	count<14>	х	B[2322] = Autocal results for VCO_SEL when			
Bit28	count<15>	х	VCO_TEST_MODE = 0			
Bit29	count<16>	х				
Bit30	count<17>	х				
Bit31	COUNT_MODE_MUX_SEL	x	0 = Minimum frequency 1 = Maximum frequency			

8 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

8.1 Application Information

The TRF372017 is suited for quadrature up-conversion applications such as wireless radio transmitters.

8.2 Typical Application

Typical Application (continued)

8.2.1 Design Requirements

Table 29 shows the design requirements for this application.

Table 29. Quadrature Up-Converter Design Requirements for Wireless Transmitter Application

PARAMETER	REQUIREMENT ⁽¹⁾	TRF372017 PERFORMANCE
Gain	-5 to 0 dB	–3.1 dB
Noise figure, NF	<21 dB	19 dB
3rd order intercept (IIP3)	>+20 dBm	+25 dBm
1dB compression (P1dB)	>+10 dBm	+11.5 dBm
ACPR	>70 dBc	75 dBc
RF output frequency range	1500 to 2500 MHz	300 to 4300 MHz
LO input frequency range	1000 to 3000 MHz	300 to 4800 MHz
IF input frequency range	DC - 150 MHz	DC - 1 GHz
LO phase noise	<-130 dBc/Hz, 1 GHz, 1 MHz offset	-137 dBc/Hz, 1 GHz, 1 MHz offset

(1) These requirements represent a hypothetical application and do not reflect the performance of the TRF372017.

8.2.2 Detailed Design Procedure

8.2.2.1 DAC Interfacing With External Baseband Bias Voltage

Common-mode voltage on the baseband inputs can be generated either internally or externally. An external interface must provide 1.7-V DC and any necessary filtering. A typical interface to a DAC device is shown in Figure 86.

Figure 86. DAC to TRF372017 Interface With External VCM Generation

8.2.2.2 DAC Interface Using Internal VCM Generation

A typical DAC to TRF372017 interface using internal VCM generation is shown in Figure 87.

Figure 87. DAC to TRF372017 Interface With Internal VCM Generation

8.2.2.3 LO Outputs

The LO outputs are open collector outputs. They require a pullup to V_{CC} . 75- Ω pullup resistors to V_{CC} with local decoupling provides a good broadband match and is shown in an example circuit in Figure 88. An inductor pullup in parallel with a cap can provide a tuned load for excellent narrowband load matching.

Figure 88. Example LO_OUT Circuit for Broadband Operation

8.2.2.4 Loop Filter

Loop filter design is critical for achieving low closed loop phase noise. Some typical loop filter component values are given in Table 30, referenced to designators in Figure 89. These loop filters are designed using charge pump current of 1.94 mA to minimize noise.

			,,	•	•		
f _{PFD} (MHz)	C1 (pF)	C2 (pF)	R2 (kΩ)	C3 (pF)	R3 (kΩ)	C4 (pF)	R4 (kΩ)
40	1000	10000	0.47	39	1.4	1.8	3.3
1.6	47	560	10	4.7	5	open	0
6.4	100	1000	5	20	5	open	0
10	270	4700	1.5	4700	1.5	open	0
30.72	2200	20000	0.47	220	0.475	220	0.475

Figure 89. Loop Filter Component Reference Designators

8.2.2.5 ESD Sensitivity

RF devices may be extremely sensitive to electrostatic discharge (ESD) (see). To prevent damage from electrostatic discharge (ESD), devices must be stored and handled in a way that prevents the build up of electrostatic voltages that exceed the rated level. Rated electrostatic discharge (ESD) levels shall also not be exceeded while the device is installed on a printed-circuit board.

8.2.3 Application Curves

SLWS224E - AUGUST 2010 - REVISED JANUARY 2016

TRF372017

www.ti.com

9 Power Supply Recommendations

The TRF372017 must be supplied with a low noise 5-V or 3.3-V supply as required. Each supply pin must generally be isolated from the main power bus with a ferrite or other noise filtering component.

10 Layout

10.1 Layout Guidelines

Layout of the application board significantly impacts the analog performance of the TRF372017 device. Noise and high-speed signals must be prevented from leaking onto power-supply pins or analog signals. Follow these recommendations:

- 1. Place supply decoupling capacitors physically close to the device, on the same side of the board. Each supply pin must be isolated with a ferrite bead.
- 2. Maintain a continuous ground plane in the vicinity of the device and as return paths for all high-speed signal lines. Place reference plane vias or decoupling capacitors near any signal line reference transition.
- 3. The pad on the bottom of the device must be electrically grounded. Connect GND pins directly to the pad on the surface layer. Connect the GND pins and pad directly to surface ground where possible.
- 4. Power planes must not overlap each other or high-speed signal lines.
- 5. Isolate REF_IN routing from loop filter lines, control lines, and other high-speed lines.

See Figure 95 for an example of critical component layout (for the top PCB layer).

10.2 Layout Example

Figure 95. Critical Layout of the TRF372017 EVM Board

11 Device and Documentation Support

11.1 Device Support

11.1.1 Third-Party Products Disclaimer

TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER ALONE OR IN COMBINATION WITH ANY TI PRODUCT OR SERVICE.

11.2 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E[™] Online Community *TI's Engineer-to-Engineer (E2E) Community.* Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and contact information for technical support.

11.3 Trademarks

E2E is a trademark of Texas Instruments. All other trademarks are the property of their respective owners.

11.4 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

11.5 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

12 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

12-Nov-2014

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package	Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
TRF372017IRGZR	ACTIVE	VQFN	RGZ	48	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	TRF372017 IRGZ	Samples
TRF372017IRGZT	ACTIVE	VQFN	RGZ	48	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	TRF372017 IRGZ	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between

the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

PACKAGE OPTION ADDENDUM

12-Nov-2014

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com

Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal												
Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TRF372017IRGZR	VQFN	RGZ	48	2500	330.0	16.4	7.3	7.3	1.5	12.0	16.0	Q2
TRF372017IRGZT	VQFN	RGZ	48	250	180.0	16.4	7.3	7.3	1.5	12.0	16.0	Q2

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

12-Nov-2014

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TRF372017IRGZR	VQFN	RGZ	48	2500	336.6	336.6	28.6
TRF372017IRGZT	VQFN	RGZ	48	250	213.0	191.0	55.0

MECHANICAL DATA

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.

- B. This drawing is subject to change without notice.
- C. Quad Flatpack, No-leads (QFN) package configuration.

D. The package thermal pad must be soldered to the board for thermal and mechanical performance.

E. See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions.

F. Falls within JEDEC MO-220.

RGZ (S-PVQFN-N48) PLASTIC QUAD FLATPACK NO-LEAD

THERMAL INFORMATION

This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For information on the Quad Flatpack No-Lead (QFN) package and its advantages, refer to Application Report, QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271. This document is available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.

RGZ (S-PVQFN-N48)

PLASTIC QUAD FLATPACK NO-LEAD

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. This package is designed to be soldered to a thermal pad on the board. Refer to Application Note, Quad Flat-Pack Packages, Texas Instruments Literature No. SLUA271, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com http://www.ti.com.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
- F. Customers should contact their board fabrication site for recommended solder mask tolerances and via tenting recommendations for vias placed in the thermal pad.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconn	ectivity	

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2016, Texas Instruments Incorporated