

Data Sheet

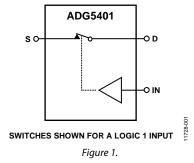
FEATURES

Latch-up immune under all circumstances Human body model (HBM) ESD rating: 8 kV Low on resistance: 6.5 Ω ±9 V to ±22 V dual-supply operation 9 V to 40 V single-supply operation 48 V supply maximum ratings Fully specified at ±15 V, ±20 V, +12 V, and +36 V V_{DD} to V_{SS} analog signal range

APPLICATIONS

High voltage signal routing Automatic test equipment Analog front-end circuits Precision data acquisition Amplifier gain select Industrial instrumentation Relay replacement

GENERAL DESCRIPTION


The ADG5401 is a monolithic industrial, complementary metal oxide semiconductor (CMOS) analog switch containing a latchup immune single-pole/single-throw (SPST) switch. The switch conducts equally well in both directions when on, and has an input signal range that extends to the power supplies. In the off condition, signal levels up to the supplies are blocked.

The ultralow on resistance and on-resistance flatness of these switches make them ideal solutions for data acquisition and gain switching applications, where low distortion is critical. The latch-up immune construction and high ESD rating make these switches more robust in harsh environments.

High Voltage Latch-Up Proof, Single SPST Switch

ADG5401

FUNCTIONAL BLOCK DIAGRAM

PRODUCT HIGHLIGHTS

- 1. Trench isolation guards against latch-up. A dielectric trench separates the P channel and N channel transistors, thereby preventing latch-up even under severe overvoltage conditions.
- 2. Low R_{ON} of 6.5 Ω .
- 3. Dual-supply operation. For applications where the analog signal is bipolar, the ADG5401 can operate from dual supplies of up to ±22 V.
- 4. Single-supply operation. For applications where the analog signal is unipolar, the ADG5401 can operate from a single-rail power supply of up to 40 V.
- 5. 3 V logic compatible digital inputs: $V_{INH} = 2.0$ V, $V_{INL} = 0.8$ V.
- 6. No V_L logic power supply required.
- Available in 8-lead MSOP package and 8-lead, 2 mm × 3 mm LFCSP packages.

Rev. A

Document Feedback

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

ADG5401* Product Page Quick Links

Last Content Update: 11/01/2016

Comparable Parts

View a parametric search of comparable parts

Evaluation Kits

 Evaluation Board for 8 lead MSOP Devices in the Switch/ Mux Portfolio

Documentation 🖵

Application Notes

• AN-1313: Configuring the AD5422 to Combine Output Current and Output Voltage to a Single Output Pin

Data Sheet

• ADG5401: High Voltage Latch-Up Proof, Single SPST Switch

User Guides

• UG-893: Evaluating the 8-Lead MSOP Devices in the Switch/Mux Portfolio

Reference Materials

Press

• Latch-up Immune, High ESD Switches, Expands ADI Offerings in High-Voltage Industrial Applications

Design Resources 🖵

- ADG5401 Material Declaration
- PCN-PDN Information
- Quality And Reliability
- Symbols and Footprints

Discussions 🖵

View all ADG5401 EngineerZone Discussions

Sample and Buy

Visit the product page to see pricing options

Technical Support

Submit a technical question or find your regional support number

^{*} This page was dynamically generated by Analog Devices, Inc. and inserted into this data sheet. Note: Dynamic changes to the content on this page does not constitute a change to the revision number of the product data sheet. This content may be frequently modified.

TABLE OF CONTENTS

Features	1
Applications	1
Functional Block Diagram	1
General Description	1
Product Highlights	1
Revision History	2
Specifications	3
±15 V Dual Supply	3
±20 V Dual Supply	4
12 V Single Supply	5
36 V Single Supply	6

REVISION HISTORY

1/15—Rev. 0 to Rev. A	
Added 8-Lead LFCSPUnivers	al
Changed Continuous Current, S or D Parameter to 8-Lead	
MSOP, Table 5	. 7
Added Figure 2; Renumbered Sequentially	. 9
Changes to Table 7	. 9
Changes to Figure 4	10
Added Figure 19	12

Continuous Current per Channel, S or D	7
Absolute Maximum Ratings	8
ESD Caution	8
Pin Configurations and Function Descriptions	9
Typical Performance Characteristics	10
Test Circuits	13
Terminology	15
Applications Information	16
Trench Isolation	16
Outline Dimensions	17
Ordering Guide	17

Changes to Figure 21 and Figure 26 1	3
Added AC Power Supply Rejection Ratio (ACPSRR),	
Terminology Section1	5
Added Figure 30, Outline Dimensions 1	
Changes to Ordering Guide 1	
5 5	

9/13—Revision 0: Initial Version

SPECIFICATIONS

±15 V DUAL SUPPLY

 V_{DD} = +15 V \pm 10%, V_{SS} = –15 V \pm 10%, GND = 0 V, unless otherwise noted.

Table 1.

Parameter	25°C	-40°C to +85°C	-40°C to +125°C	Unit	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range			V _{DD} to V _{SS}	V	
On Resistance, Ron	6.5			Ωtyp	$V_s = \pm 10 V$, $I_s = -10 mA$; see Figure 21
	8	10	12	Ωmax	$V_{DD} = +13.5 V, V_{SS} = -13.5 V$
On-Resistance Flatness, R _{FLAT (ON)}	1			Ωtyp	$V_{s} = \pm 10 V$, $I_{s} = -10 mA$
	1.4	1.7	2	Ωmax	
LEAKAGE CURRENTS					$V_{DD} = +16.5 V, V_{SS} = -16.5 V$
Source Off Leakage, Is (Off)	±0.1			nA typ	$V_s = \pm 10 V$, $V_D = \mp 10 V$; see Figure 20
-	±0.5	±2	±20	nA max	_
Drain Off Leakage, I _D (Off)	±0.1			nA typ	$V_s = \pm 10 V$, $V_D = \mp 10 V$; see Figure 20
-	±0.5	±2	±20	nA max	
Channel On Leakage, I _D (On), I _s (On)	±0.2			nA typ	$V_s = V_D = \pm 10 V$; see Figure 23
5,	±1	±8	±40	nA max	
DIGITAL INPUTS		-	-	-	
Input High Voltage, V _{INH}			2.0	V min	
Input Low Voltage, VINL			0.8	V max	
	0.002			µA typ	$V_{IN} = V_{GND} \text{ or } V_{DD}$
	0.002		±0.1	μA max	
Digital Input Capacitance, C _{IN}	6			pF typ	
DYNAMIC CHARACTERISTICS ¹	-			prop	
ton	160			ns typ	$R_L = 300 \Omega, C_L = 35 pF$
	193	230	253	ns max	$V_s = 10 V$; see Figure 26
t _{off}	175	250	233	ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$
COFF	207	230	242	ns max	$V_{s} = 10 V$; see Figure 26
Charge Injection, Q _{INJ}	220			pC typ	$V_s = 0 V$, $R_s = 0 \Omega$, $C_L = 1 nF$; see Figure 27
Off Isolation	-50			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 22
Total Harmonic Distortion + Noise (THD + N)	0.01			% typ	$R_L = 1 k\Omega$, 15 V p-p, f = 20 Hz to 20 kHz; see Figure 24
–3 dB Bandwidth	170			MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$; see Figure 25
Insertion Loss	-0.4			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 25
Cs (Off)	22			pF typ	$V_{s} = 0 V, f = 1 MHz$
C _D (Off)	24			pF typ	$V_{s} = 0 V, f = 1 MHz$
C _D (On), C _s (On)	75			pF typ	$V_{s} = 0 V, f = 1 MHz$
POWER REQUIREMENTS	1			. ,	$V_{DD} = +16.5 \text{ V}, V_{SS} = -16.5 \text{ V}$
	45			μA typ	Digital inputs = $0 \text{ V or } V_{DD}$
	55		70	μA max	
lss	0.001			μA typ	Digital inputs = 0 V or V_{DD}
	0.001		1	µA max	

±20 V DUAL SUPPLY

 V_{DD} = +20 V \pm 10%, V_{SS} = -20 V \pm 10%, GND = 0 V, unless otherwise noted.

Table 2.

Parameter	25°C	-40°C to +85°C	-40°C to +125°C	Unit	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range			V _{DD} to V _{SS}	V	
On Resistance, R _{on}	6			Ωtyp	$V_s = \pm 15 V$, $I_s = -10 mA$; see Figure 21
	7	9	11	Ωmax	$V_{DD} = +18 V, V_{SS} = -18 V$
On-Resistance Flatness, R _{FLAT (ON)}	1.2			Ωtyp	$V_s = \pm 15 V$, $I_s = -10 mA$
	1.7	2.1	2.5	Ωmax	
LEAKAGE CURRENTS					$V_{DD} = +22 V, V_{SS} = -22 V$
Source Off Leakage, Is (Off)	±0.1			nA typ	$V_s = \pm 15 V$, $V_D = \mp 15 V$; see Figure 20
	±0.5	±2	±20	nA max	
Drain Off Leakage, I _D (Off)	±0.1			nA typ	$V_s = \pm 15 V$, $V_D = \mp 15 V$; see Figure 20
	±0.5	±2	±20	nA max	
Channel On Leakage, I₂ (On), I₅ (On)	±0.2			nA typ	$V_s = V_D = \pm 15 V$; see Figure 23
	±1	±8	±40	nA max	
DIGITAL INPUTS	1				
Input High Voltage, V _{INH}			2.0	V min	
Input Low Voltage, V _{INL}			0.8	V max	
Input Current, IINL or IINH	0.002			μA typ	$V_{IN} = V_{GND} \text{ or } V_{DD}$
			±0.1	µA max	
Digital Input Capacitance, C _{IN}	6			pF typ	
DYNAMIC CHARACTERISTICS ¹					
ton	150			ns typ	$R_L = 300 \Omega, C_L = 35 pF$
	175	207	219	ns max	V _s = 10 V; see Figure 26
toff	170			ns typ	$R_L = 300 \Omega, C_L = 35 pF$
	196	214	223	ns max	V _s = 10 V; see Figure 26
Charge Injection, Q _{INJ}	275			pC typ	$V_s = 0 V$, $R_s = 0 \Omega$, $C_L = 1 nF$; see Figure 27
Off Isolation	-50			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 22
Total Harmonic Distortion + Noise (THD + N)	0.01			% typ	$R_L = 1 \text{ k}\Omega$, 20 V p-p, f = 20 Hz to 20 kHz; see Figure 24
–3 dB Bandwidth	170			MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$; see Figure 25
Insertion Loss	-0.5			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 25
C _s (Off)	21			pF typ	$V_{s} = 0 V, f = 1 MHz$
C _D (Off)	23			pF typ	$V_{s} = 0 V, f = 1 MHz$
C _D (On), C _S (On)	75			pF typ	$V_{s} = 0 V, f = 1 MHz$
POWER REQUIREMENTS					$V_{DD} = +22 V, V_{SS} = -22 V$
lod	50			μA typ	Digital inputs = $0 V \text{ or } V_{DD}$
	70		110	µA max	
lss	0.001			μA typ	Digital inputs = $0 V \text{ or } V_{DD}$
			1	μA max	
V _{DD} /V _{SS}			±9/±22	V min/V max	GND = 0 V

12 V SINGLE SUPPLY

 V_{DD} = 12 V \pm 10%, V_{SS} = 0 V, GND = 0 V, unless otherwise noted.

Table 3.

Parameter	25°C	-40°C to +85°C	-40°C to +125°C	Unit	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range			0 V to V _{DD}	V	
On Resistance, R _{ON}	14			Ωtyp	Vs = 0 V to 10 V, Is = -10 mA; see Figure 21
	16	19	22	Ωmax	$V_{DD} = 10.8 V, V_{SS} = 0 V$
On-Resistance Flatness, R _{FLAT (ON)}	2.8			Ωtyp	$V_s = 0 V$ to 10 V, $I_s = -10 mA$
	4	5.5	7	Ωmax	
LEAKAGE CURRENTS					$V_{DD} = +13.2 \text{ V}, V_{SS} = 0 \text{ V}$
Source Off Leakage, Is (Off)	±0.1			nA typ	$V_s = 1 V$ to 10 V, $V_D = 10 V$ to 1 V; see Figure 20
	±0.5	±2	±20	nA max	
Drain Off Leakage, I _D (Off)	±0.1			nA typ	$V_s = 1 V$ to 10 V, $V_D = 10 V$ to 1 V; see Figure 20
	±0.5	±2	±20	nA max	
Channel On Leakage, I _D (On), I _s (On)	±0.2			nA typ	$V_{s} = V_{D} = 1 V$ to 10 V; see Figure 23
	±1	±8	±40	nA max	
DIGITAL INPUTS					
Input High Voltage, V _{INH}			2.0	V min	
Input Low Voltage, VINL			0.8	V max	
Input Current, I _{INL} or I _{INH}	0.002			μA typ	$V_{IN} = V_{GND} \text{ or } V_{DD}$
			±0.1	μA max	
Digital Input Capacitance, C _№	6			pF typ	
DYNAMIC CHARACTERISTICS ¹					
ton	260			ns typ	$R_L = 300 \Omega, C_L = 35 pF$
	327	406	454	ns max	Vs = 8 V; see Figure 26
t _{off}	200			ns typ	$R_L = 300 \Omega, C_L = 35 pF$
	244	280	300	ns max	Vs = 8 V; see Figure 26
Charge Injection, Q _{INJ}	95			pC typ	$V_s = 6 V$, $R_s = 0 \Omega$, $C_L = 1 nF$; see Figure 27
Off Isolation	-50			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 22
Total Harmonic Distortion + Noise (THD + N)	0.02			% typ	$R_L = 1 \text{ k}\Omega$, 6 V p-p, f = 20 Hz to 20 kHz; see Figure 24
–3 dB Bandwidth	190			MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$; see Figure 25
Insertion Loss	-0.9			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 25
C _s (Off)	28			pF typ	$V_{s} = 6 V, f = 1 MHz$
C _D (Off)	30			pF typ	$V_{s} = 6 V, f = 1 MHz$
C _D (On), C _s (On)	60			pF typ	$V_{s} = 6 V, f = 1 MHz$
POWER REQUIREMENTS					V _{DD} = 13.2 V
ldd	40			μA typ	Digital inputs = $0 V \text{ or } V_{DD}$
	50		65	μA max	
V _{DD}			9/40	V min/V max	$GND = 0 V, V_{SS} = 0 V$

36 V SINGLE SUPPLY

 V_{DD} = 36 V \pm 10%, V_{SS} = 0 V, GND = 0 V, unless otherwise noted.

Table 4.

Parameter	25°C	-40°C to +85°C	-40°C to +125°C	Unit	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range			0 V to V _{DD}	V	
On Resistance, Ron	7			Ωtyp	$V_s = 0 V$ to 30 V, $I_s = -10 mA$; see Figure 21
	9	11	13	Ωmax	$V_{DD} = 32.4 V, V_{SS} = 0 V$
On-Resistance Flatness, R _{FLAT (ON)}	1.8			Ωtyp	$V_s = 0 V$ to 30 V, $I_s = -10 mA$
	2.6	3	3.5	Ωmax	
LEAKAGE CURRENTS					$V_{DD} = +39.6 V, V_{SS} = 0 V$
Source Off Leakage, I_s (Off)	±0.1			nA typ	V_{S} = 1 V to 30 V, V_{D} = 30 V to 1 V; see Figure 20
	±0.5	±2	±20	nA max	
Drain Off Leakage, I _D (Off)	±0.1			nA typ	V_{S} = 1 V to 30 V, V_{D} = 30 V to 1 V; see Figure 20
	±0.5	±2	±20	nA max	
Channel On Leakage, I _D (On), I _S (On)	±0.2			nA typ	$V_{S} = V_{D} = 1 V$ to 30 V; see Figure 23
	±1	±8	±40	nA max	
DIGITAL INPUTS					
Input High Voltage, V _{INH}			2.0	V min	
Input Low Voltage, V _{INL}			0.8	V max	
Input Current, I _{INL} or I _{INH}	0.002			μA typ	$V_{IN} = V_{GND} \text{ or } V_{DD}$
			±0.1	μA max	
Digital Input Capacitance, C _№	6			pF typ	
DYNAMIC CHARACTERISTICS ¹					
ton	160			ns typ	$R_L = 300 \Omega, C_L = 35 pF$
	187	212	230	ns max	Vs = 18 V; see Figure 26
t _{OFF}	180			ns typ	$R_L = 300 \Omega, C_L = 35 pF$
	213	221	225	ns max	Vs = 18 V; see Figure 26
Charge Injection, Q_{INJ}	255			pC typ	$V_s = 18 V$, $R_s = 0 \Omega$, $C_L = 1 nF$; see Figure 27
Off Isolation	-50			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 22
Total Harmonic Distortion + Noise (THD + N)	0.01			% typ	$R_L = 1 \text{ k}\Omega$, 18 V p-p, f = 20 Hz to 20 kHz; see Figure 24
–3 dB Bandwidth	170			MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$; see Figure 25
Insertion Loss	-0.55			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 25
C _s (Off)	26			pF typ	$V_{s} = 18 V$, f = 1 MHz
C _D (Off)	28			pF typ	$V_{s} = 18 V$, f = 1 MHz
C _D (On), C _s (On)	65			pF typ	$V_{s} = 18 V$, f = 1 MHz
POWER REQUIREMENTS					$V_{DD} = 39.6 V$
l _{DD}	80			μA typ	Digital inputs = $0 V \text{ or } V_{DD}$
	100		130	µA max	
V _{DD}			9/40	V min/V max	$GND = 0 V, V_{SS} = 0 V$

CONTINUOUS CURRENT PER CHANNEL, S OR D

Table 5.

Parameter	25°C	85°C	125°C	Unit	Test Condition/Comments
8-LEAD MSOP					$\theta_{JA} = 133.1^{\circ}C/W$
$V_{DD} = 15 V, V_{SS} = -15 V$	171	116	79	mA maximum	
$V_{DD} = 20 V, V_{SS} = -20 V$	177	120.5	81	mA maximum	
$V_{DD} = 12 V, V_{SS} = 0 V$	139	99	70	mA maximum	
$V_{DD} = 36 V, V_{SS} = 0 V$	174	118	81	mA maximum	
8-LEAD LFCSP					$\theta_{JA} = 60.88^{\circ}C/W$
$V_{DD} = 15 V, V_{SS} = -15 V$	234	150	93	mA maximum	
$V_{DD} = 20 V, V_{SS} = -20 V$	246	155	95	mA maximum	
$V_{DD} = 12 V, V_{SS} = 0 V$	193	130	85	mA maximum	
$V_{DD} = 36 V, V_{SS} = 0 V$	241	153	95	mA maximum	

ABSOLUTE MAXIMUM RATINGS

 $T_A = 25^{\circ}C$, unless otherwise noted.

Table 6.

Parameter	Rating
V _{DD} to V _{SS}	48 V
V _{DD} to GND	–0.3 V to +48 V
Vss to GND	+0.3 V to -48 V
Analog Inputs ¹	V _{SS} – 0.3 V to V _{DD} + 0.3 V or 30 mA, whichever occurs first
Digital Inputs ¹	V _{ss} – 0.3 V to V _{DD} + 0.3 V or 30 mA, whichever occurs first
Peak Current, S or D Pin	630 mA (pulsed at 1 ms, 10% duty cycle maximum)
Continuous Current, S or D ²	Data + 15%
Temperature Range	
Operating	–40°C to +125°C
Storage	–65°C to +150°C
Junction Temperature	150°C
Thermal Impedance, θ _{JA}	
8-Lead MSOP (4-Layer Board)	133.1°C/W
8-Lead LFCSP	60.88°C/W
Reflow Soldering Peak Temperature, Pb Free	As per JEDEC J-STD-020
Human Body Model (HBM) ESD	8 kV

¹ Overvoltages at the IN, S, and D pins are clamped by internal diodes. Limit current to the maximum ratings given.

² See Table 5.

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

Only one absolute maximum rating can be applied at any one time.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

S 1 \bigcirc \bigcirc \bigcirc 8 D NC 2 \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc 7 V_{SS} GND 3 \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc 6 IN V_{DD} 4 \bigcirc \bigcirc \bigcirc 5 NC

NOTES 1. NC = NO CONNECT. NOT INTERNALLY CONNECTED. 2. THE EXPOSED PAD IS TIED TO SUBSTRATE, V_{SS}.

Figure 2. 8-Lead LFCSP Pin Configuration

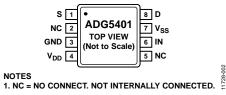


Figure 3. 8-Lead MSOP Pin Configuration

Table 7. Pin Function Descriptions

	Pin No.		
8-Lead LFCSP	8-Lead MSOP	Mnemonic	Description
1	1	S	Source Terminal. This pin can be an input or output.
2	2	NC	No Connect. Not internally connected.
3	3	GND	Ground (0 V) Reference.
4	4	V _{DD}	Most Positive Power Supply Potential.
5	5	NC	No Connect. Not internally connected.
6	6	IN	Logic Control Input.
7	7	Vss	Most Negative Power Supply Potential.
8	8	D	Drain Terminal. This pin can be an input or output.
	Not applicable	EPAD	The exposed pad is tied to substrate, V _{ss} .

Table 8. Truth Table

IN	Switch Condition
1	On
0	Off

TYPICAL PERFORMANCE CHARACTERISTICS

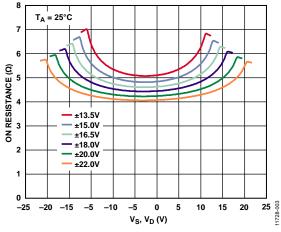


Figure 4. On Resistance as a Function of V_s, V_D (Dual Supply)

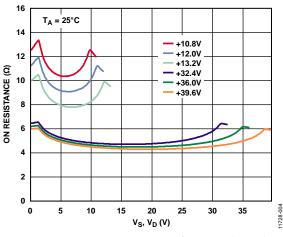


Figure 5. On Resistance as a Function of Vs, VD (Single Supply)

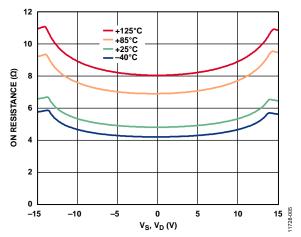


Figure 6. On Resistance as a Function of $V_S(V_D)$ for Different Temperatures, ±15 V Dual Supply

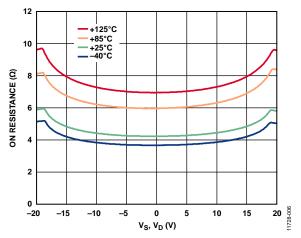


Figure 7. On Resistance as a Function of Vs (Vb) for Different Temperatures, ± 20 V Dual Supply

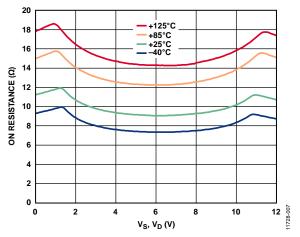


Figure 8. On Resistance as a Function of V_{S} (V_{D}) for Different Temperatures, 12 V Single Supply

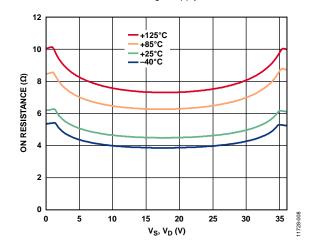


Figure 9. On Resistance as a Function of $V_{\rm S}(V_{\rm D})$ for Different Temperatures, 36 V Single Supply

Data Sheet

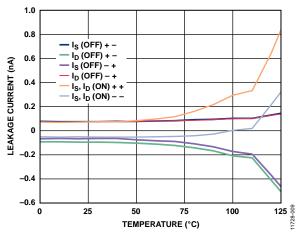


Figure 10. Leakage Currents as a Function of Temperature, ±15 V Dual Supply

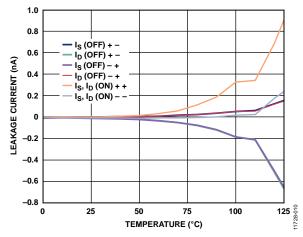


Figure 11. Leakage Currents as a Function of Temperature, ±20 V Dual Supply

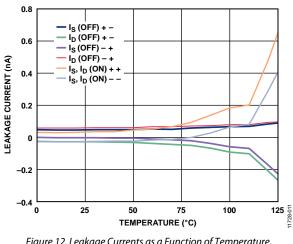


Figure 12. Leakage Currents as a Function of Temperature, 12 V Single Supply

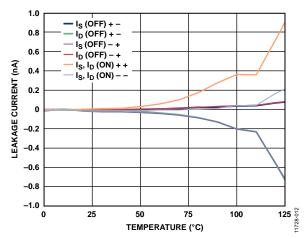
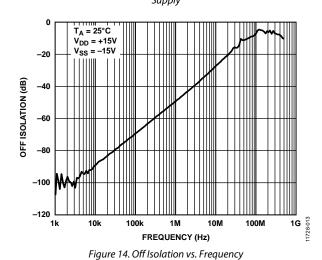



Figure 13. Leakage Currents as a Function of Temperature, 36 V Single Supply

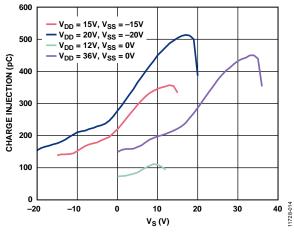


Figure 15. Charge Injection vs. Source Voltage (V_s)

ADG5401

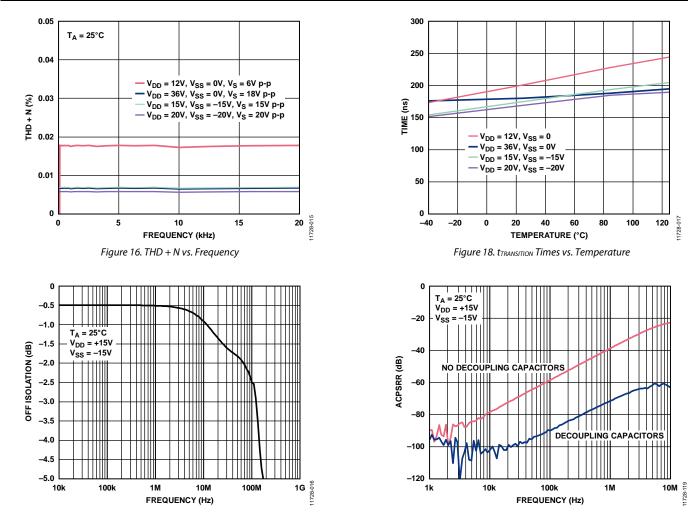


Figure 17. Bandwidth

Figure 19. ACPSRR vs. Frequency

TEST CIRCUITS

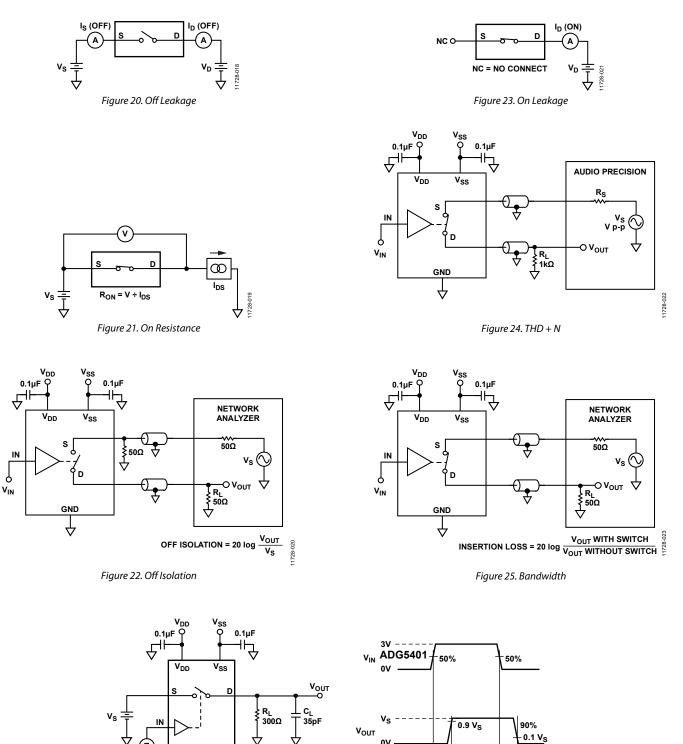
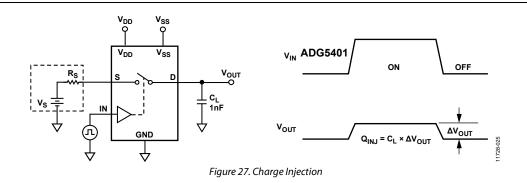


Figure 26. Switching Times, ton and toFF

0V


t_{OFF} ¹⁷²⁸⁻⁰²⁴

7

0

GND

 \uparrow

TERMINOLOGY

IDD

IDD represents the positive supply current.

Iss

Iss represents the negative supply current.

VD, Vs

V_D and V_S represent the analog voltage on Terminal D and Terminal S, respectively.

RON

RON is the ohmic resistance between Terminal D and Terminal S.

RFLAT (ON)

R_{FLAT (ON)} represents the difference between the maximum and minimum value of on resistance as measured over the specified analog signal range.

Is (Off)

 I_{s} (Off) is the source leakage current with the switch off.

In (Off) I_D (Off) is the drain leakage current with the switch off.

I_D (On), I_s (On)

I_D (On) and I_S (On) represent the channel leakage currents with the switch on.

VINL

 V_{INL} is the maximum input voltage for Logic 0.

VINH

 V_{INH} is the minimum input voltage for Logic 1.

IINL, IINH

I_{INL} and I_{INH} represent the low and high input currents of the digital inputs.

C_D (Off)

C_D (Off) represents the off switch drain capacitance, which is measured with reference to ground.

Cs (Off)

C_s (Off) represents the off switch source capacitance, which is measured with reference to ground.

 C_D (On), C_s (On) C_D (On) and C_s (On) represent the on switch capacitances, which are measured with reference to ground.

CIN

CIN represents digital input capacitance.

ton

 $t_{\rm ON}$ represents the delay time between the 50% and 90% points of the digital input and switch on condition.

toff

toFF represents the delay time between the 50% and 90% points of the digital input and switch off condition.

Off Isolation

Off isolation is a measure of unwanted signal coupling through an off channel.

Charge Injection

Charge injection is a measure of the glitch impulse transferred from the digital input to the analog output during switching.

Bandwidth

Bandwidth is the frequency at which the output is attenuated by 3 dB from its dc value.

Total Harmonic Distortion + Noise (THD + N)

The ratio of the harmonic amplitude plus noise of the signal to the fundamental is represented by THD + N.

AC Power Supply Rejection Ratio (ACPSRR)

ACPSRR measures the ability of the device to avoid coupling noise and spurious signals that appear on the supply voltage pin to the output of the switch. The dc voltage on the device is modulated by a sine wave of 0.62 V p-p. The ratio of the amplitude of the signal on the output to the amplitude of the modulation is the ACPSRR (see Figure 19).

APPLICATIONS INFORMATION

The ADG54xx family of switches and multiplexers provide a robust solution for instrumentation, industrial, aerospace, and other harsh environments that are prone to latch-up, which is an undesirable high current state that can lead to device failure and persists until the power supply is turned off. The ADG5401 high voltage switch allows single-supply operation from 9 V to 40 V and dual-supply operation from ± 9 V to ± 22 V. The ADG5401 (as well as other select devices within this family) achieves an 8 kV human body model ESD rating, which provides a robust solution, eliminating the need for separate protection circuitry designs in some applications.

TRENCH ISOLATION

In the ADG5401, an insulating oxide layer (trench) is placed between the NMOS and the PMOS transistors of each CMOS switch. Parasitic junctions, which occur between the transistors in junction-isolated switches, are eliminated, and the result is a latch-up immune switch.

In junction isolation, the N and P wells of the PMOS and NMOS transistors form a diode that is reverse-biased under normal operation. However, during overvoltage conditions, this diode can become forward-biased. The two transistors form a silicon-controlled rectifier (SCR) type circuit, causing a significant amplification of the current that, in turn, leads to latch-up. With trench isolation, this diode is removed, and the result is a latch-up immune switch.

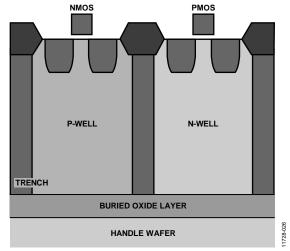
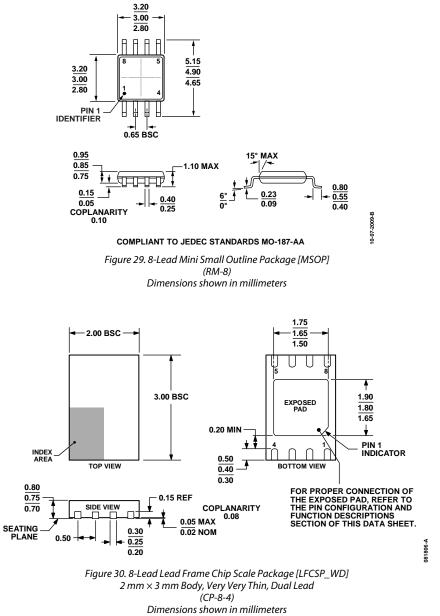



Figure 28. Trench Isolation

OUTLINE DIMENSIONS

ORDERING GUIDE

Model ¹	Temperature Range	Package Description	Package Option	Branding
ADG5401BRMZ	-40°C to +125°C	8-Lead Mini Small Outline Package [MSOP]	RM-8	S2M
ADG5401BRMZ-RL7	-40°C to +125°C	8-Lead Mini Small Outline Package [MSOP]	RM-8	S2M
ADG5401BCPZ-RL7	-40°C to +125°C	8-Lead Lead Frame Chip Scale Package [LFCSP_WD]	CP-8-4	BR

¹ Z = RoHS Compliant Part.

©2013–2015 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D11728-0-1/15(A)

www.analog.com

Rev. A | Page 17 of 17