DATA SHEET 74LV126 Quad buffer/line driver (3-State)

INTEGRATED CIRCUITS

Product specification Supersedes data of 1997 Feb 03 IC24 Data Handbook 1998 Apr 28

74LV126

FEATURES

- Wide operating voltage: 1.0 to 5.5 V
- Optimized for low voltage applications: 1.0 to 3.6 V
- Accepts TTL input levels between V_{CC} = 2.7 V and V_{CC} = 3.6 V
- Typical V_{OLP} (output ground bounce) < 0.8 V at V_{CC} = 3.3 V, $T_{amb} = 25^{\circ}C$
- Typical V_{OHV} (output V_{OH} undershoot) > 2 V at V_{CC} = 3.3 V, $T_{amb} = 25^{\circ}C$
- · Output capability: bus driver
- I_{CC} category: MSI

QUICK REFERENCE DATA

GND = 0 V; $T_{amb} = 25^{\circ}C$; $t_r = t_f \le 2.5$ ns

DESCRIPTION

The 74LV126 is a low-voltage Si-gate CMOS device that is pin and function compatible with 74HC/HCT126.

The 74LV126 consists of four non-inverting buffers/line drivers with 3-state outputs. The 3-state outputs (nY) are controlled by the output enable input (nOE). A LOW at nOE causes the outputs to assume a high impedance OFF-state.

SYMBOL	PARAMETER	CONDITIONS	TYPICAL	UNIT
t _{PHL} /t _{PLH}	Propagation delay nA to nY	$C_L = 15 \text{ pF};$ $V_{CC} = 3.3 \text{ V}$	9	ns
Cl	Input capacitance		3.5	pF
C _{PD}	Power dissipation capacitance per buffer	$V_{CC} = 3.3 V;$ V _I = GND to V _{CC} ¹	23	pF

NOTE:

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW) $\begin{array}{l} \mathsf{P}_{D} = \mathsf{C}_{PD} \times \mathsf{V}_{CC}{}^2 \times \mathsf{f}_i + \mathop{\textstyle\sum}\limits_{} (\mathsf{C}_L \times \mathsf{V}_{CC}{}^2 \times \mathsf{f}_o) \text{ where:} \\ \mathsf{f}_i = \mathsf{input} \text{ frequency in MHz; } \mathsf{C}_L = \mathsf{output} \text{ load capacitance in pF;} \\ \mathsf{f}_o = \mathsf{output} \text{ frequency in MHz; } \mathsf{V}_{CC} = \mathsf{supply voltage in V;} \\ \mathop{\textstyle\sum}\limits_{} (\mathsf{C}_L \times \mathsf{V}_{CC}{}^2 \times \mathsf{f}_o) = \mathsf{sum of the outputs.} \end{array}$

ORDERING INFORMATION

PACKAGES	TEMPERATURE RANGE	OUTSIDE NORTH AMERICA	NORTH AMERICA	PKG. DWG. #
14-Pin Plastic DIL	–40°C to +125°C	74LV126 N	74LV126 N	SOT27-1
14-Pin Plastic SO	–40°C to +125°C	74LV126 D	74LV126 D	SOT108-1
14-Pin Plastic SSOP Type II	–40°C to +125°C	74LV126 DB	74LV126 DB	SOT337-1
14-Pin Plastic TSSOP Type I	-40°C to +125°C	74LV126 PW	74LV126PW DH	SOT402-1

PIN DESCRIPTION

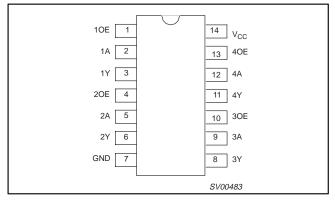
PIN NUMBER	SYMBOL	FUNCTION
1, 4, 10, 13	10E – 40E	Output enable inputs (active HIGH)
2, 5, 9, 12	1A – 4A	Data inputs
3, 6, 8, 11	1Y – 4Y	Data outputs
7	GND	Ground (0 V)
14	V _{CC}	Positive supply voltage

FUNCTION TABLE

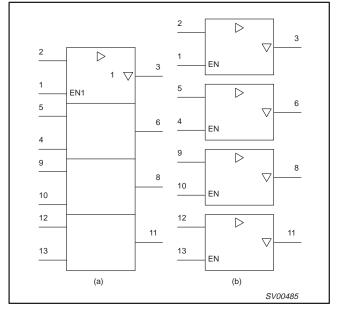
INP	JTS	OUTPUTS
nOE	nA	nY
Н	L	L
н	Н	Н
L	Х	Z

NOTES:

H = HIGH voltage level


L = LOW voltage level

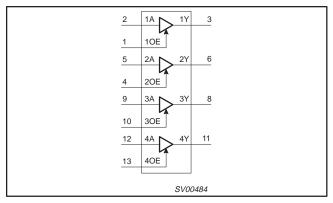
X = don't care


Z = high impedance OFF-state

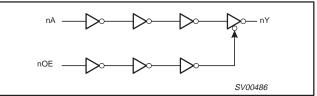
74LV126

PIN CONFIGURATION

LOGIC SYMBOL (IEEE/IEC)


RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNIT
V _{CC}	DC supply voltage	See Note 1	1.0	3.3	5.5	V
VI	Input voltage		0	-	V _{CC}	V
Vo	Output voltage		0	-	V _{CC}	V
T _{amb}	Operating ambient temperature range in free air	See DC and AC characteristics	-40 -40		+85 +125	°C
t _r , t _f	Input rise and fall times	$V_{CC} = 1.0V \text{ to } 2.0V \\ V_{CC} = 2.0V \text{ to } 2.7V \\ V_{CC} = 2.7V \text{ to } 3.6V \\ V_{CC} = 3.6V \text{ to } 5.5V$	- - - -	- - -	500 200 100 50	ns/V


NOTE:

1. The LV is guaranteed to function down to V_{CC} = 1.0V (input levels GND or V_{CC}); DC characteristics are guaranteed from V_{CC} = 1.2V to V_{CC} = 5.5V.

LOGIC SYMBOL

LOGIC DIAGRAM (ONE GATE)

74LV126

ABSOLUTE MAXIMUM RATINGS^{1, 2}

In accordance with the Absolute Maximum Rating System (IEC 134).

Voltages are referenced to GND (ground = 0 V).

SYMBOL	PARAMETER	CONDITIONS	RATING	UNIT
V _{CC}	DC supply voltage		–0.5 to +7.0	V
$\pm I_{\text{IK}}$	DC input diode current	$V_{\rm I} < -0.5 \text{ or } V_{\rm I} > V_{\rm CC} + 0.5 V$	20	mA
± I _{OK}	DC output diode current	$V_{\rm O} < -0.5 \text{ or } V_{\rm O} > V_{\rm CC} + 0.5 V$	50	mA
$\pm I_{O}$	DC output source or sink current – bus driver outputs	$-0.5V < V_O < V_{CC} + 0.5V$	35	mA
$^{\pm I_{GND},}_{\pm I_{CC}}$	DC V_{CC} or GND current for types with – bus driver outputs		70	mA
T _{stg}	Storage temperature range		–65 to +150	°C
P _{TOT}	Power dissipation per package – plastic DIL – plastic mini-pack (SO) – plastic shrink mini-pack (SSOP and TSSOP)	for temperature range: -40 to +125°C above +70°C derate linearly with 12 mW/K above +70°C derate linearly with 8 mW/K above +60°C derate linearly with 5.5 mW/K	750 500 400	mW

NOTES:

 Stresses beyond those listed may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

2. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

DC ELECTRICAL CHARACTERISTICS

Over recommended operating conditions, voltages are referenced to GND (ground = 0 V)

					LIMITS				
SYMBOL PARAMETER		TEST CONDITIONS	-40	°C to +8	5°C	-40°C to	o +125°C	UNIT	
		MIN	TYP ¹	MAX	MIN	MAX			
		V _{CC} = 1.2 V	0.9			0.9			
	HIGH level Input	$V_{CC} = 2.0 V$	1.4			1.4		v	
VIH	voltage	$V_{CC} = 2.7 \text{ to } 3.6 \text{ V}$	2.0			2.0		v	
		V_{CC} = 4.5 to 5.5 V	0.7 * V _{CC}			0.7 * V _{CC}			
		V _{CC} = 1.2 V			0.3		0.3		
	LOW level Input	V _{CC} = 2.0 V			0.6		0.6	v	
VIL	voltage	V _{CC} = 2.7 to 3.6 V			0.8		0.8		
		V _{CC} = 4.5 to 5.5			0.3 * V _{CC}		0.3 * V _{CC}	1	
		$V_{CC} = 1.2 \text{ V}; \text{ V}_{I} = \text{V}_{IH} \text{ or } \text{V}_{IL}; -\text{I}_{O} = 100 \mu\text{A}$		1.2					
		$V_{CC} = 2.0 \text{ V}; \text{ V}_{I} = \text{V}_{IH} \text{ or } \text{V}_{IL;} - \text{I}_{O} = 100 \mu \text{A}$	1.8	2.0		1.8		1	
V _{OH}	HIGH level output voltage; all outputs	$V_{CC} = 2.7 \text{ V}; \text{ V}_{I} = \text{V}_{IH} \text{ or } \text{V}_{IL}; -\text{I}_{O} = 100 \mu\text{A}$	2.5	2.7		2.5		V	
	venage, an earpare	$V_{CC} = 3.0 \text{ V}; \text{ V}_{I} = \text{V}_{IH} \text{ or } \text{V}_{IL}; -\text{I}_{O} = 100 \mu\text{A}$	2.8	3.0		2.8			
		V_{CC} = 4.5 V; V_I = V_{IH} or V_{IL} ; $-I_O$ = 100 μ A	4.3	4.5		4.3			
V	HIGH level output voltage; BUS driver	V_{CC} = 3.0 V; V_{I} = V_{IH} or $V_{IL;}$ – I_{O} = 8mA	2.40	2.82		2.20		v	
V _{OH}	outputs	V_{CC} = 4.5 V; V_I = V_{IH} or $V_{IL;}$ – I_O = 16mA	3.60	4.20		3.50			
		V_{CC} = 1.2 V; V_I = V_{IH} or V_{IL} ; I_O = 100 μ A		0					
		V_{CC} = 2.0 V; V_I = V_{IH} or V_{IL} ; I_O = 100 μ A		0	0.2		0.2	1	
V _{OL}	LOW level output voltage; all outputs	V_{CC} = 2.7 V; V_I = V_{IH} or V_{IL} ; I_O = 100 μ A		0	0.2		0.2	V	
	i i i i i i i i i i i i i i i i i i i	V_{CC} = 3.0 V; V_{I} = V_{IH} or V_{IL} ; I_{O} = 100 μ A		0	0.2		0.2		
		V_{CC} = 4.5 V; V_I = V_{IH} or V_{IL} ; I_O = 100 μ A		0	0.2		0.2		

74LV126

DC ELECTRICAL CHARACTERISTICS (Continued)

Over recommended operating conditions, voltages are referenced to GND (ground = 0 V)

					LIMITS			
SYMBOL	PARAMETER	TEST CONDITIONS	-40°C to +85°C			-40°C to) +125°C	
			MIN	TYP ¹	MAX	MIN	MAX	1
M	LOW level output	V_{CC} = 3.0 V; V_{I} = V_{IH} or $V_{IL;}$ I_{O} = 8mA		0.20	0.40		0.50	v
V _{OL} voltage; BUS driver V _{CC} =		V_{CC} = 4.5 V; V_{I} = V_{IH} or $V_{IL;}$ I_{O} = 16mA		0.35	0.55		0.65	
Ι _Ι	Input leakage current	V_{CC} = 5.5 V; V_{I} = V_{CC} or GND			1.0		1.0	μA
I _{OZ}	3-State output OFF-state current	V_{CC} = 5.5 V; V _I = V _{IH} or V _{IL;} V _O = V _{CC} or GND			5		10	μA
I _{CC}	Quiescent supply current; MSI	$V_{CC} = 5.5 \text{ V}; \text{ V}_{I} = V_{CC} \text{ or GND}; \text{ I}_{O} = 0$			20.0		160	μA
ΔI_{CC}	Additional quiescent supply current per input	V_{CC} = 2.7 V to 3.6 V; $V_{\rm I}$ = V_{CC} – 0.6 V			500		850	μA

NOTE:

1. All typical values are measured at T_{amb} = 25°C.

AC CHARACTERISTICS

 $GND = 0V; \ t_r = t_f \leq 2.5 ns; \ C_L = 50 pF; \ R_L = 500 \Omega$

			CONDITION			LIMITS			
SYMBOL	PARAMETER	WAVEFORM	CONDITION		40 to +85 '	°C	-40 to ·	+125 °C	UNIT
			V _{CC} (V)	MIN	TYP ¹	MAX	MIN	MAX	
			1.2		55				
			2.0		19	24		31	
t _{PHL} /t _{PLH}	Propagation delay nA to nY	Figures 1, 2	2.7		14	18		23	ns
			3.0 to 3.6		10 ²	14		18	
			4.5 to 5.5			12		15	
			1.2		75				
	3-state output		2.0		26	31		39	
t _{PZH} /t _{PZL}	enable time	Figures 1, 2	2.7		19	23		29	ns
	nOE to nY		3.0 to 3.6		14 ²	18		23	
			4.5 to 5.5			15		19	
			1.2		65				
	3-state output		2.0		24	32		39	
t _{PHZ} /t _{PLZ}	disable time	Figures 1, 2	2.7		28	24		29	ns
	nOE to nY		3.0 to 3.6		14 ²	20		24	
			4.5 to 5.5			17		21	

NOTES:

1. Unless otherwise stated, all typical values are measured at $T_{amb} = 25^{\circ}C$

2. Typical values are measured at V_{CC} = 3.3 V.

74LV126

AC WAVEFORMS

 $\begin{array}{l} \mathsf{V}_{\mathsf{M}} = 1.5 \ \mathsf{V} \ at \ \mathsf{V}_{\mathsf{CC}} \geq 2.7 \ \mathsf{V} \ and \leq 3.6 \ \mathsf{V}; \\ \mathsf{V}_{\mathsf{M}} = 0.5 \times \mathsf{V}_{\mathsf{CC}} \ at \ \mathsf{V}_{\mathsf{CC}} < 2.7 \ \mathsf{V} \ and \geq 4.5 \ \mathsf{V}; \\ \mathsf{V}_{\mathsf{OL}} \ and \ \mathsf{V}_{\mathsf{OH}} \ are \ the \ typical \ output \ voltage \ drop \ that \ occur \ with \ the \ output \ load. \\ \mathsf{V}_{\mathsf{X}} = \mathsf{V}_{\mathsf{OL}} + 0.3 \ \mathsf{V} \ at \ \mathsf{V}_{\mathsf{CC}} \geq 2.7 \ \mathsf{V} \ and \leq 3.6 \ \mathsf{V}; \\ \mathsf{V}_{\mathsf{X}} = \mathsf{V}_{\mathsf{OL}} + 0.3 \ \mathsf{V} \ at \ \mathsf{V}_{\mathsf{CC}} \geq 2.7 \ \mathsf{V} \ and \leq 3.6 \ \mathsf{V}; \\ \mathsf{V}_{\mathsf{X}} = \mathsf{V}_{\mathsf{OL}} + 0.1 \times \mathsf{V}_{\mathsf{CC}} \ at \ \mathsf{V}_{\mathsf{CC}} < 2.7 \ \mathsf{V} \ and \geq 4.5 \ \mathsf{V}. \\ \mathsf{V}_{\mathsf{Y}} = \mathsf{V}_{\mathsf{OH}} - 0.3 \ \mathsf{V} \ at \ \mathsf{V}_{\mathsf{CC}} \geq 2.7 \ \mathsf{V} \ and \leq 3.6 \ \mathsf{V}; \\ \mathsf{V}_{\mathsf{Y}} = \mathsf{V}_{\mathsf{OH}} - 0.1 \times \mathsf{V}_{\mathsf{CC}} \ at \ \mathsf{V}_{\mathsf{CC}} < 2.7 \ \mathsf{V} \ and \geq 4.5 \ \mathsf{V}. \end{array}$

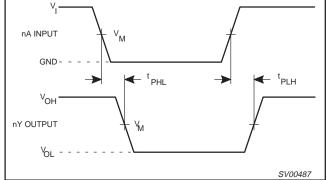


Figure 1. Input (nA, nB) to output (nY) propagation delays

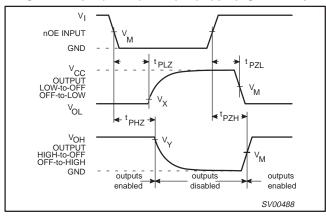
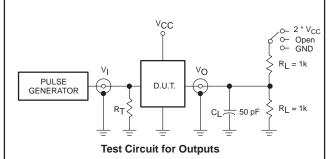
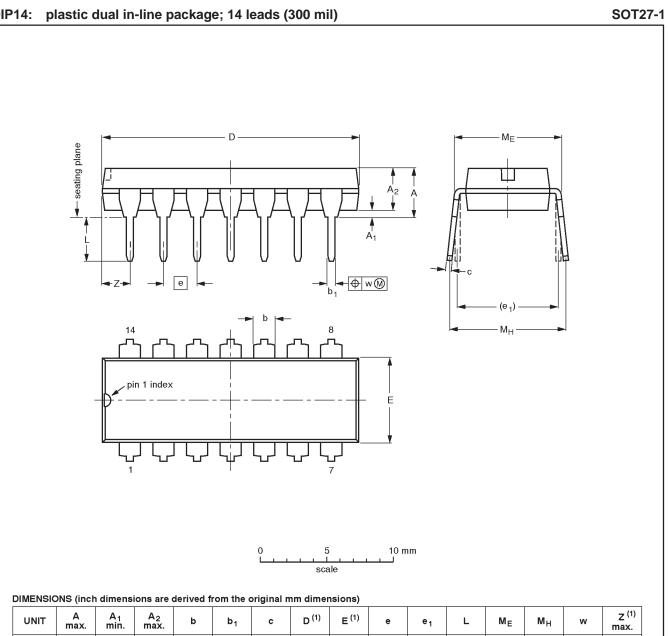



Figure 2. 3-state enable and disable times.

TEST CIRCUIT

DEFINITIONS


 R_L = Load resistor C_L = Load capacitance includes jig and probe capacitiance.

 R_{T}^{-} = Termination resistance should be equal to Z_{OUT} of pulse generators.

SWITCH POSITION

TEST	S ₁	V _{CC}	VI
t _{PLH} /t _{PHL}	Open	< 2.7V	V _{CC}
t _{PLZ} /t _{PZL}	2 * V _{CC}	2.7–3.6V	2.7V
t _{PHZ} /t _{PZH}	GND	≥ 4.5V	V _{CC}

Figure 3. Load circuitry for switching times.

DIP14:

Note

mm

inches

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

1.73

1.13

0.068

0.044

0.51

0.020

3.2

0.13

4.2

0.17

0.53

0.38

0.021

0.015

0.36

0.23

0.014

0.009

19.50

18.55

0.77

0.73

6.48

6.20

0.26

0.24

2.54

0.10

7.62

0.30

3.60

3.05

0.14

0.12

8.25

7.80

0.32

0.31

10.0

8.3

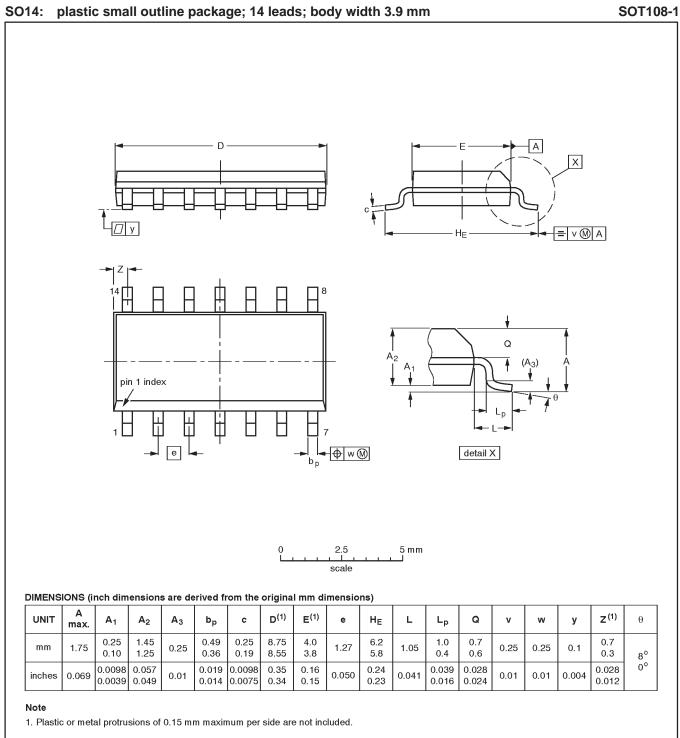
0.39

0.33

0.254

0.01

2.2

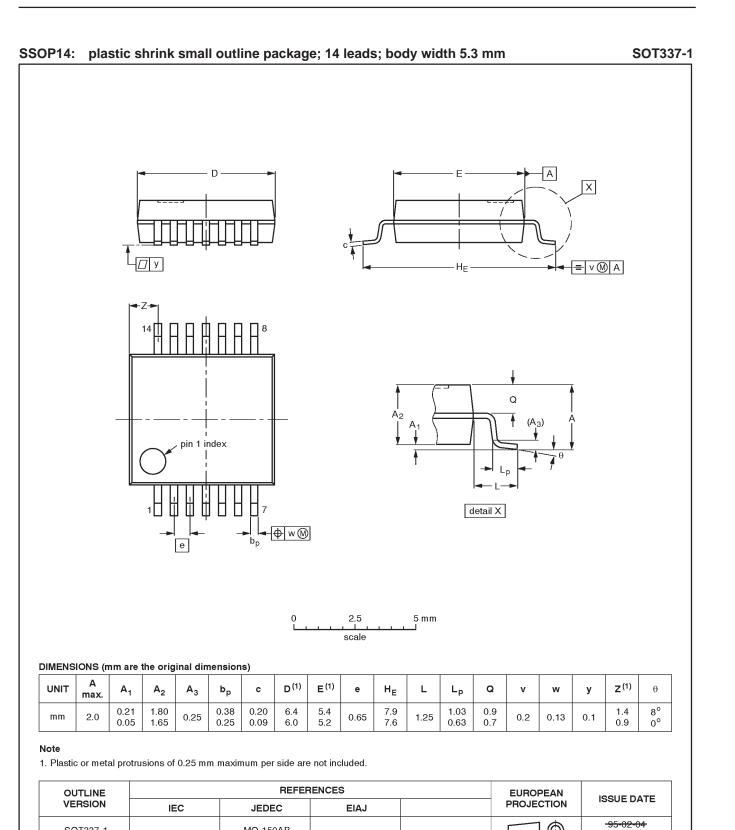

0.087

OUTLINE		REFER	REFERENCES			ISSUE DATE
VERSION	IEC	JEDEC	EIAJ		PROJECTION	ISSUE DATE
SOT27-1	050G04	MO-001AA				-92-11-17 95-03-11

Product specification

74LV126

Product specification

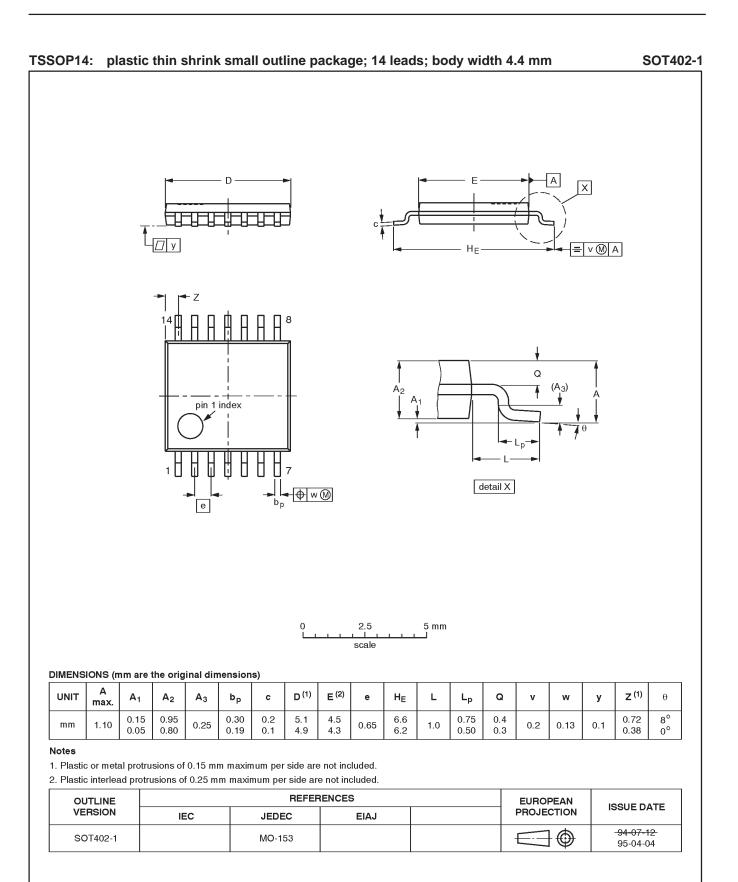


OUTLINE		REFER	ENCES	EUROPEAN	ISSUE DATE
VERSION	IEC	JEDEC	EIAJ	PROJECTION	ISSUE DATE
SOT108-1	076E06S	MS-012AB			91-08-13 95-01-23

SOT337-1

MO-150AB

Quad buffer/line driver (3-State)


 \odot

96-01-18

E

74LV126

74LV126

Product specification

Quad buffer/line driver (3-State)

74LV126

NOTES

74LV126

DEFINITIONS		
Data Sheet Identification	Product Status	Definition
Objective Specification	Formative or in Design	This data sheet contains the design target or goal specifications for product development. Specifications may change in any manner without notice.
Preliminary Specification	Preproduction Product	This data sheet contains preliminary data, and supplementary data will be published at a later date. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.
Product Specification	Full Production	This data sheet contains Final Specifications. Philips Semiconductors reserves the right to make changes at any time without notice, in order to improve design and supply the best possible product.

Philips Semiconductors and Philips Electronics North America Corporation reserve the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified. Applications that are described herein for any of these products are for illustrative purposes on ly. Philips Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

LIFE SUPPORT APPLICATIONS

Philips Semiconductors and Philips Electronics North America Corporation Products are not designed for use in life support appliances, devices, or systems where malfunction of a Philips Semiconductors and Philips Electronics North America Corporation Product can reasonably be expected to result in a personal injury. Philips Semiconductors and Philips Electronics North America Corporation customers using or selling Philips Semiconductors and Philips Electronics North America Corporation Products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors and Philips Electronics North America Corporation for any damages resulting from such improper use or sale.

Philips Semiconductors 811 East Arques Avenue P.O. Box 3409 Sunnyvale, California 94088–3409 Telephone 800-234-7381 © Copyright Philips Electronics North America Corporation 1998 All rights reserved. Printed in U.S.A.

print code Document order number: Date of release: 05-96 9397-750-04421

Let's make things better.

