

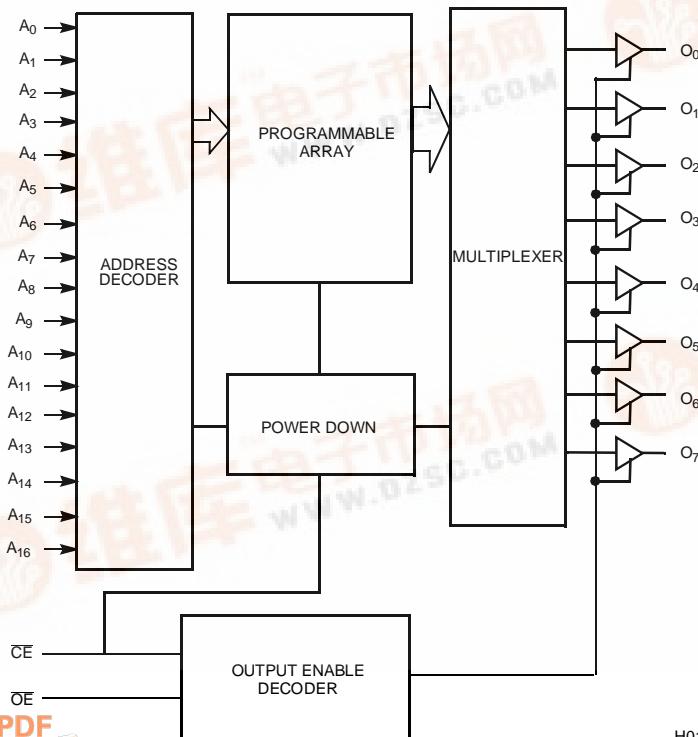
CY27H010

128K x 8 High-Speed CMOS EPROM

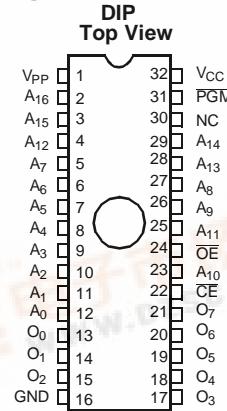
Features

- CMOS for optimum speed/power
- High speed
 - $t_{AA} = 25$ ns max. (commercial)
 - $t_{AA} = 35$ ns max. (military)
- Low power
 - 275 mW max.
 - Less than 85 mW when deselected
- Byte-wide memory organization
- 100% reprogrammable in the windowed package
- EPROM technology
- Capable of withstanding >2001V static discharge
- Available in
 - 32-pin PLCC
 - 32-pin TSOP-I
 - 32-pin, 600-mil plastic or hermetic DIP
 - 32-pin hermetic LCC

Functional Description

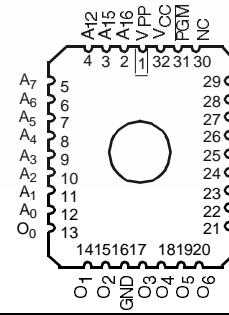

The CY27H010 is a high-performance, 1-megabit CMOS EPROM organized in 128 Kbytes. It is available in industry-standard 32-pin, 600-mil DIP, LCC, PLCC, and TSOP-I packages. These devices offer high-density storage combined with 40-MHz performance. The CY27H010 is available in windowed and opaque packages. Windowed packages allow the device to be erased with UV light for 100% reprogrammability.

The CY27H010 is equipped with a power-down chip enable (\overline{CE}) input and output enable (\overline{OE}). When \overline{CE} is deasserted, the device powers down to a low-power stand-by mode. The \overline{OE} pin three-states the outputs without putting the device into stand-by mode. While \overline{CE} offers lower power, \overline{OE} provides a more rapid transition to and from three-stated outputs.

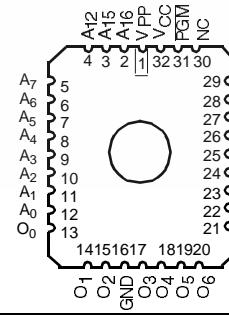

The memory cells utilize proven EPROM floating-gate technology and byte-wide intelligent programming algorithms. The EPROM cell requires only 12.75 V for the supervoltage and low programming current allows for gang programming. The device allows for each memory location to be tested 100%, because each location is written to, erased, and repeatedly exercised prior to encapsulation. Each device is also tested for AC performance to guarantee that the product will meet DC and AC specification limits after customer programming.

The CY27H010 is read by asserting both the \overline{CE} and the \overline{OE} inputs. The contents of the memory location selected by the address on inputs A_{16} – A_0 will appear at the outputs O_7 – O_0 .

Logic Block Diagram



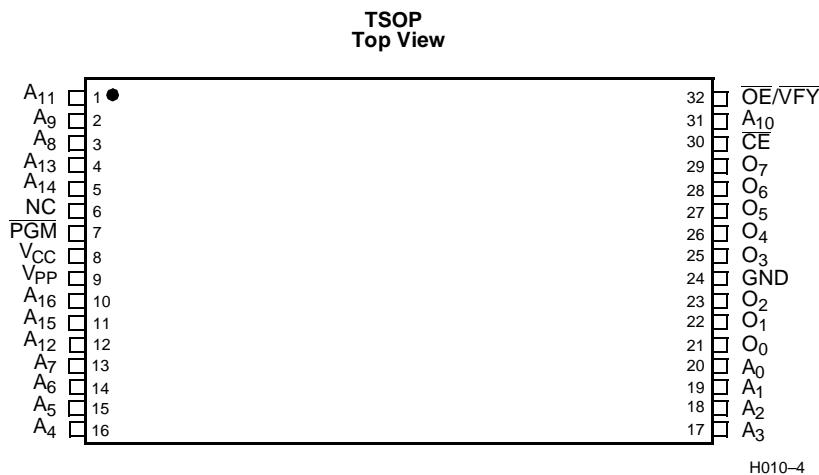
Pin Configurations


H010-1

LCC/PLCC Top View

H010-2

LCC/PLCC Top View



H010-3

CY27H010

Pin Configurations (continued)

Selection Guide

		27H010-25	27H010-30	27H010-35
Maximum Access Time (ns)		25	30	35
CE Access Time (ns)	Com'l	30	30	40
CE Access Time (ns)	Mil			40
OE Access Time (ns)	Com'l	12	20	20
OE Access Time (ns)	Mil			20
I _{CC} ^[1] (mA) Power Supply Current	Com'l	75	75	50
	Mil			85
I _{SB} ^[2] (mA) Stand-by Current	Com'l	15	15	15
	Mil			25

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature -65°C to +150°C

Ambient Temperature with

Power Applied -55°C to +125°C

Supply Voltage to Ground Potential -0.5V to +7.0V

DC Voltage Applied to Outputs
in High Z State -0.5V to +5.5V

DC Input Voltage -3.0V to +7.0V

Transient Input Voltage -3.0V for <20 ns

DC Program Voltage 13.0V

UV Erasure 7258 Wsec/cm²

Static Discharge Voltage >2001V
(per MIL-STD-883, Method 3015)

Latch-Up Current >200 mA

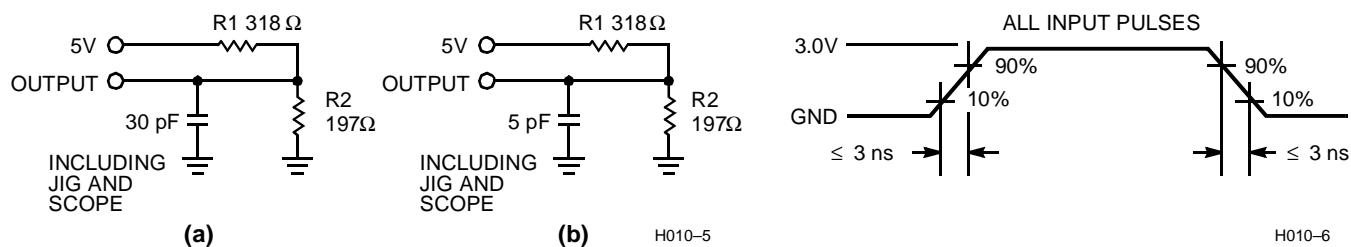
Operating Range

Range	Ambient Temperature	V _{CC}
Commercial	0°C to +70°C	5V ± 10%
Industrial ^[3]	-40°C to +85°C	5V ± 10%
Military ^[4]	-55°C to +125°C	5V ± 10%

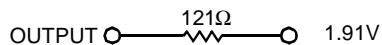
Note:

1. V_{CC} = Max., I_{OUT} = 0 mA, f=10 MHz.
2. V_{CC} = Max., CE = V_{IH}.
3. Contact a Cypress representative for industrial temperature range specification.
4. T_A is the "instant on" case temperature.

Electrical Characteristics Over the Operating Range^[5, 6]


Parameter	Description	Test Conditions	27H010-25 27H010-30		27H010-35		Unit
			Min.	Max.	Min.	Max.	
V_{OH}	Output HIGH Voltage	$V_{CC} = \text{Min.}$, $I_{OH} = -4.0 \text{ mA}$	2.4		2.4		V
V_{OL}	Output LOW Voltage	$V_{CC} = \text{Min.}$, $I_{OL} = 12.0 \text{ mA}$		0.45		0.45	V
V_{IH}	Input HIGH Level	Guaranteed Input Logical HIGH Voltage for All Inputs	2.0	$V_{CC}+0.5$	2.0	$V_{CC}+0.5$	V
V_{IL}	Input LOW Level	Guaranteed Input Logical LOW Voltage for All Inputs		0.8		0.8	V
I_{IX}	Input Leakage Current	$GND \leq V_{IN} \leq V_{CC}$	-10	+10	-10	+10	μA
I_{OZ}	Output Leakage Current	$GND \leq V_{OUT} \leq V_{CC}$, Output Disable	-10	+10	-10	+10	μA
I_{CC}	Power Supply Current	$V_{CC}=\text{Max.}$, $I_{OUT}=0 \text{ mA}$, $f=10 \text{ MHz}$	Com'l		75		mA
			Mil			85	mA
I_{SB}	Stand-By Current	$V_{CC}=\text{Max.}$, $CE = V_{IH}$	Com'l		15		mA
			Mil			25	mA

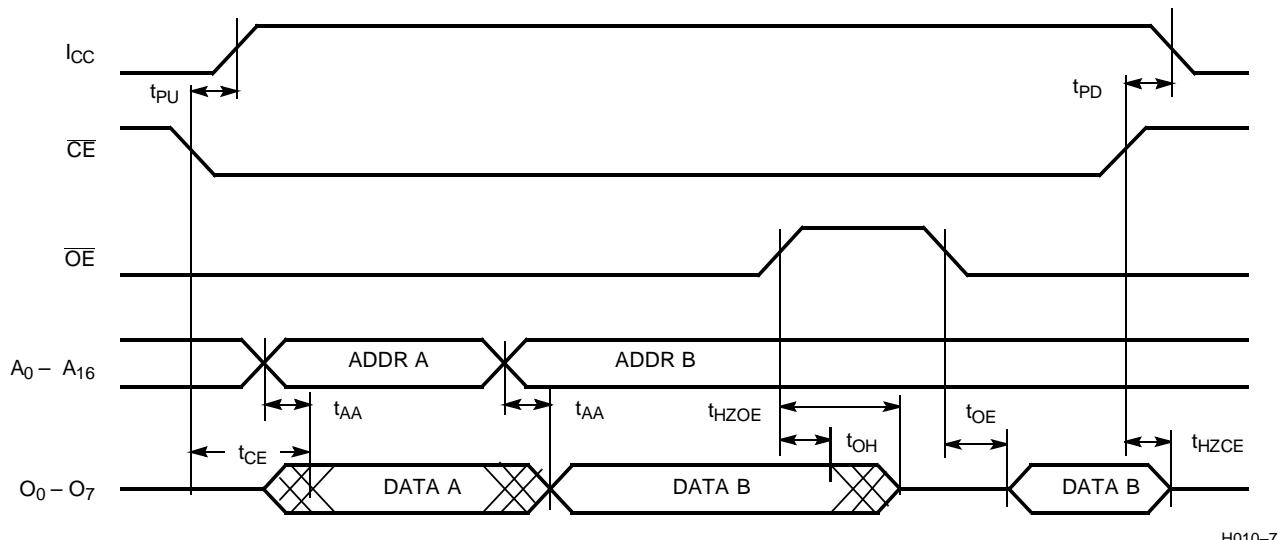
Capacitance^[6]


Parameter	Description	Test Conditions	Max.	Unit
C_{IN}	Input Capacitance	$T_A = 25^\circ\text{C}$, $f = 1 \text{ MHz}$, $V_{CC} = 5.0 \text{ V}$	10	pF
C_{OUT}	Output Capacitance		12	pF

Notes:

5. See the last page of this specification for Group A subgroup testing information.
 6. See Introduction to CMOS PROMs in this Data Book for general information on testing.

AC Test Loads and Waveforms


Equivalent to: THÉVENIN EQUIVALENT

Switching Characteristics Over the Operating Range

Parameter	Description	27H010-25		27H010-30		27H010-35		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	
t_{AA}	Address to Output Valid		25		30		35	ns
t_{OE}	OE Active to Output Valid		12		20		20	ns
t_{HZOE}	OE Inactive to High Z		12		20		20	ns

Switching Characteristics Over the Operating Range (continued)

Parameter	Description	27H010-25		27H010-30		27H010-35		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	
t_{CE}	CE Active to Output Valid		30		30		40	ns
t_{HZCE}	CE Inactive to High Z		12		20		20	ns
t_{PU}	CE Active to Power-Up	0		0		0		ns
t_{PD}	CE Inactive to Power-Down		30		35		40	ns
t_{OH}	Output Data Hold	0		0		0		ns

Switching Waveform

H010-7

Erasure Characteristics

Wavelengths of light less than 4000 Angstroms begin to erase the CY27H010 in the windowed package. For this reason, an opaque label should be placed over the window if the EPROM is exposed to sunlight or fluorescent lighting for extended periods of time.

The recommended dose of ultraviolet light for erasure is a wavelength of 2537 Angstroms for a minimum dose (UV intensity multiplied by exposure time) of 25 Wsec/cm². For an ultraviolet lamp with a 12 mW/cm² power rating, the exposure time would be approximately 35 minutes. The CY27H010 needs to be within 1 inch of the lamp during erasure. Perma-

nt damage may result if the EPROM is exposed to high-intensity UV light for an extended period of time. 7258 Wsec/cm² is the recommended maximum dosage.

Programming Modes

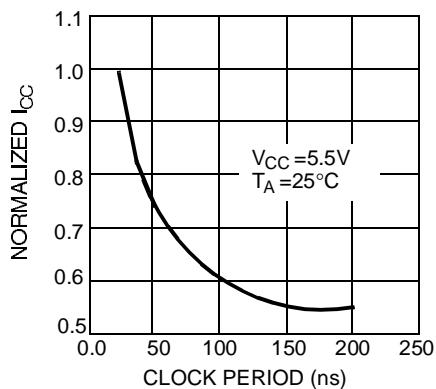
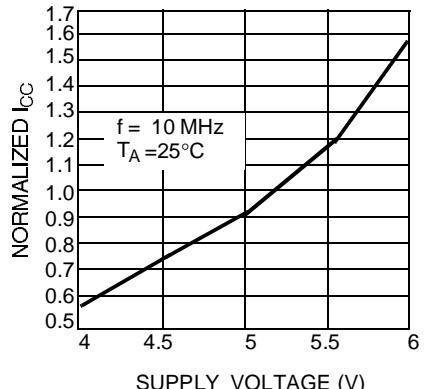
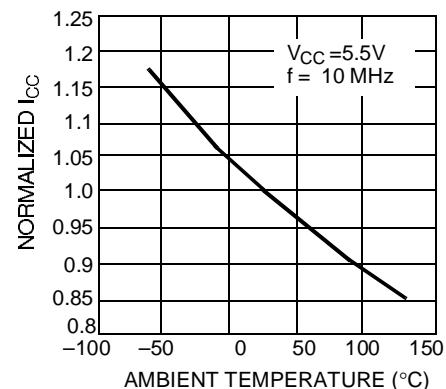
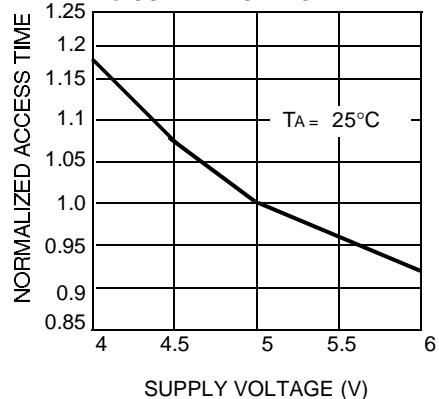
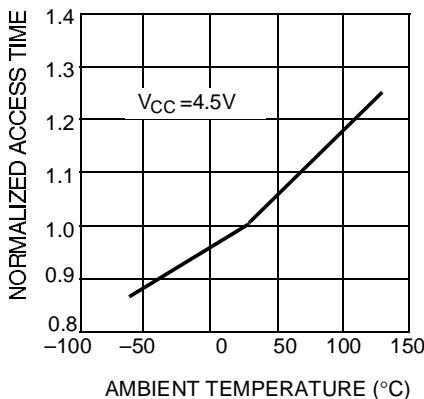
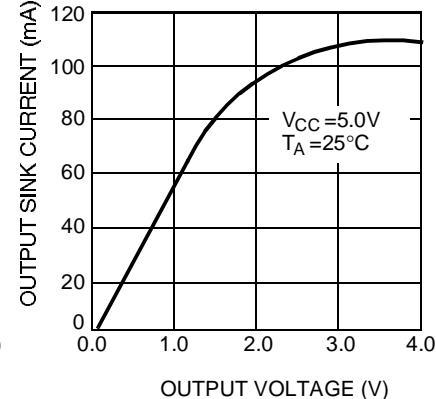
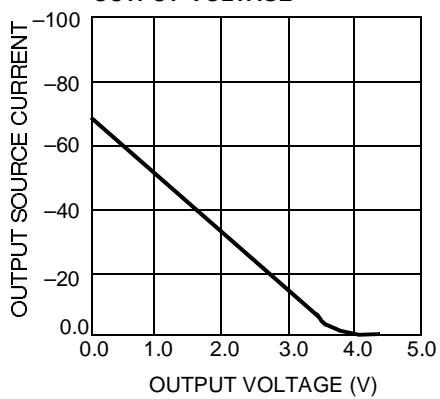
Programming support is available from Cypress as well as from a number of third-party software vendors. For detailed programming information, including a listing of software packages, please see the PROM Programming Information located at the end of this section. Programming algorithms can be obtained from any Cypress representative.

CY27H010

Table 1. Programming Electrical Characteristics

Parameter	Description	Min.	Max.	Unit
V_{PP}	Programming Power Supply	12.5	13	V
I_{PP}	Programming Supply Current		50	mA
V_{IHP}	Programming Input Voltage HIGH	3.0	V_{CC}	V
V_{ILP}	Programming Input Voltage LOW	-0.5	0.4	V
V_{CCP}	Programming V_{CC}	6.0	6.5	V

Table 2. Mode Selection








Mode	Pin Function ^[7]						
	\overline{CE}	\overline{OE}	\overline{PGM}	V_{PP}	A_0	A_9	Data
Read	V_{IL}	V_{IL}	X	X	A_0	A_9	Dout
Output Disable	X	V_{IH}	X	X	X	X	High Z
Stand-by	V_{IH}	X	X	X	X	X	High Z
Program	V_{ILP}	V_{IHP}	V_{ILP}	V_{PP}	A_0	A_9	Din
Program Verify	V_{ILP}	V_{ILP}	V_{IHP}	V_{PP}	A_0	A_9	Dout
Program Inhibit	V_{IHP}	X	X	V_{PP}	X	X	High Z
Signature Read (MFG) ^[9]	V_{IL}	V_{IL}	X	V_{IH}	V_{IL}	$V_{HV}^{[8]}$	34H
Signature Read (DEV) ^[9]	V_{IL}	V_{IL}	X	V_{IH}	V_{IH}	$V_{HV}^{[8]}$	1DH

Notes:

7. X can be V_{IL} or V_{IH} .

8. $V_{HV}=12V\pm0.5V$

9. $A_1 - A_8$ and $A_{10} - A_{16} = V_{IL}$

Typical DC and AC Characteristics
**NORMALIZED SUPPLY CURRENT
vs. CYCLE PERIOD**

**NORMALIZED SUPPLY CURRENT
vs. SUPPLY VOLTAGE**

**OUTPUT SOURCE CURRENT
vs. OUTPUT VOLTAGE**

**NORMALIZED ACCESS TIME
vs. SUPPLY VOLTAGE**

**NORMALIZED ACCESS TIME
vs. AMBIENT TEMPERATURE**

**OUTPUT SINK CURRENT
vs. OUTPUT VOLTAGE**

**OUTPUT SOURCE CURRENT vs.
OUTPUT VOLTAGE**

CY27H010**Ordering Information^[10]**

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
25	CY27H010-25JC	J65	32-Lead Plastic Leaded Chip Carrier	Commercial
	CY27H010-25ZC	Z32	32-Lead Thin Small Outline Package	
30	CY27H010-30JC	J65	32-Lead Plastic Leaded Chip Carrier	Commercial
	CY27H010-30PC	P19	32-Lead (600-Mil) Molded DIP	
	CY27H010-30WC	W20	32-Lead (600-Mil) Windowed CerDIP	
	CY27H010-30ZC	Z32	32-Lead Thin Small Outline Package	
35	CY27H010-35JC	J65	32-Lead Plastic Leaded Chip Carrier	Commercial
	CY27H010-35PC	P19	32-Lead (600-Mil) Molded DIP	
	CY27H010-35WC	W20	32-Lead (600-Mil) Windowed CerDIP	
	CY27H010-35ZC	Z32	32-Lead Thin Small Outline Package	
	CY27H010-35WMB	W20	32-Lead (600-Mil) Windowed CerDIP	Military
	CY27H010-35QMB	Q55	32-Pin Windowed Rectangular Leadless Chip Carrier	

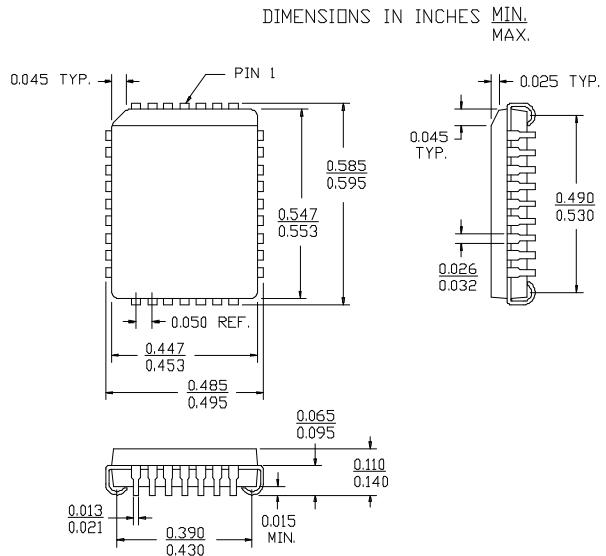
Note:

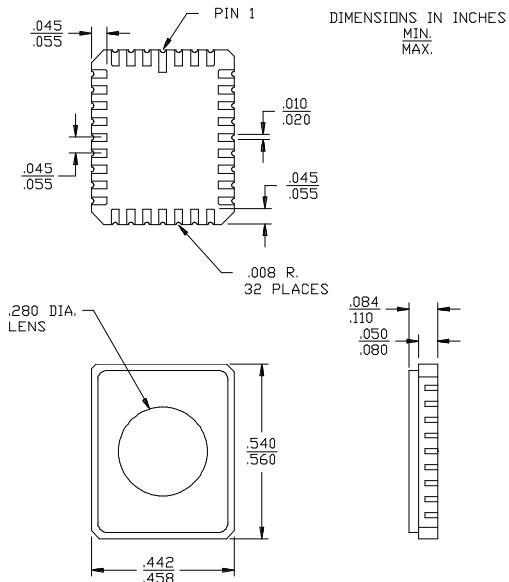
10. Most of the above products are available in industrial temperature range. Contact a Cypress representative for specifications and product availability.

MILITARY SPECIFICATIONS
Group A Subgroup Testing**DC Characteristics**

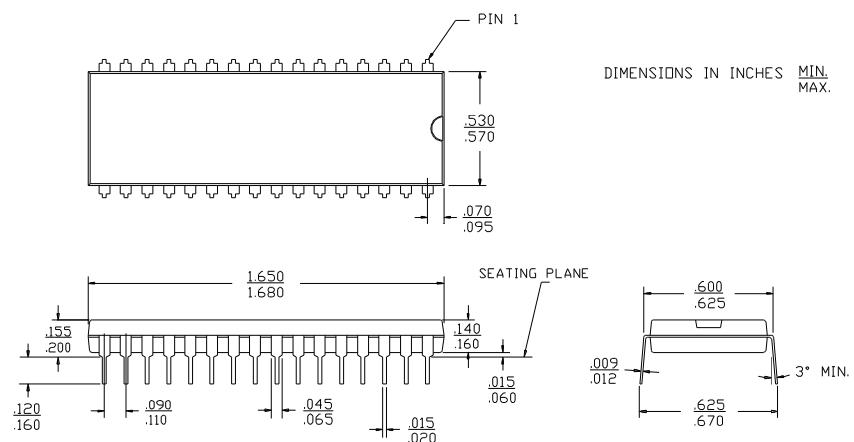
Parameter	Subgroups
V_{OH}	1, 2, 3
V_{OL}	1, 2, 3
V_{IH}	1, 2, 3
V_{IL}	1, 2, 3
I_{IX}	1, 2, 3
I_{OZ}	1, 2, 3
I_{CC}	1, 2, 3
I_{SB}	1, 2, 3

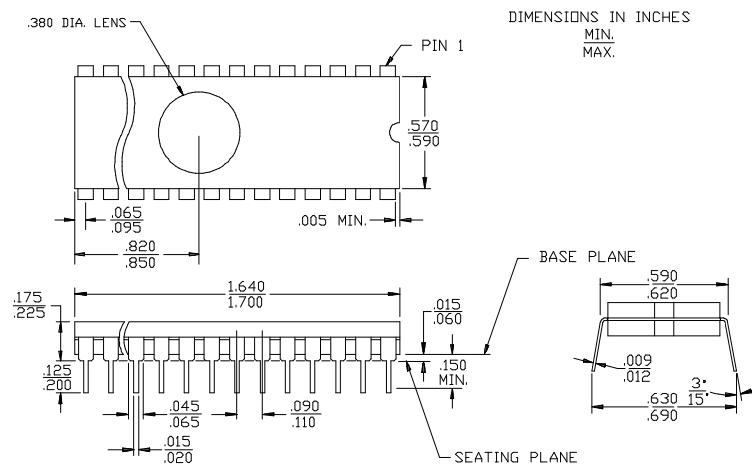
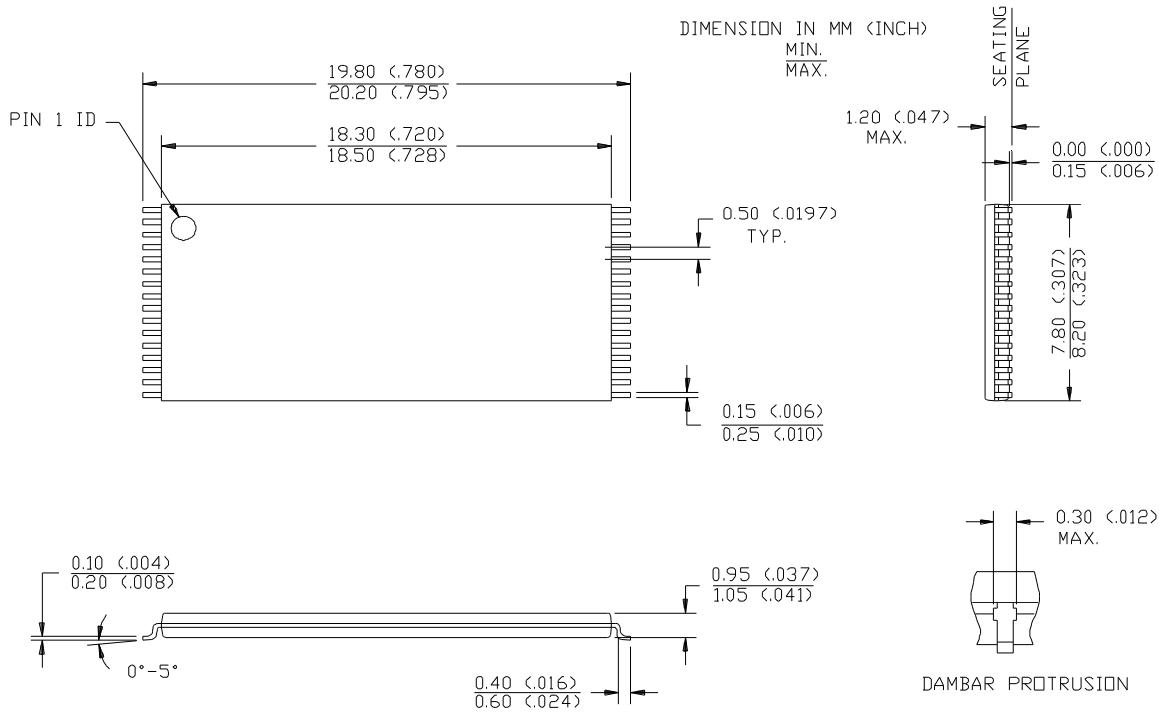
Switching Characteristics


Parameter	Subgroups
t_{AA}	7, 8, 9, 10, 11
t_{OE}	7, 8, 9, 10, 11
t_{CE}	7, 8, 9, 10, 11


CY27H010

Package Diagrams


32-Lead Plastic Leaded Chip Carrier J65

32-Pin Windowed Rectangular Leadless Chip Carrier
MIL-STD-1835 C-12

32-Lead (600-Mil) Molded DIP P19

Package Diagrams (continued)
32-Lead (600-Mil) Windowed CerDIP W20

32-Lead Thin Small Outline Package Z32
