

September 1997

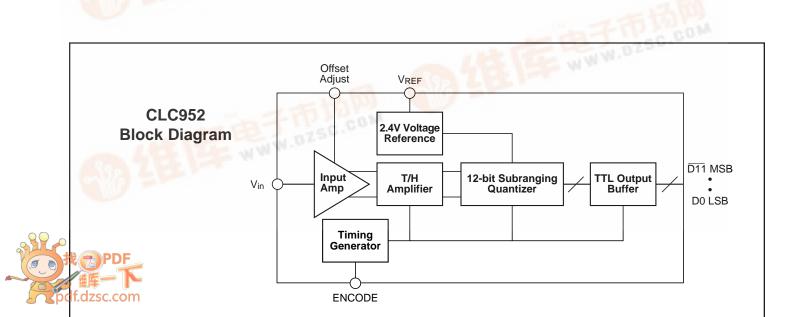
National Semiconductor

CLC952 12-bit, 41MSPS Monolithic A/D Converter

General Description

The CLC952 is a complete monolithic 12-bit 41MSPS analog-todigital converter system. Fabricated from a 0.8µm BiCMOS process, the CLC952's on-chip features include a very linear wideband track-and-hold, bandgap voltage reference and a proprietary 12-bit multi-stage quantizer. The CLC952 has been designed for wideband digital communications receivers and features a 72dBc spurious-free dynamic range (SFDR) and 64dB signal-to-noise ratio (SNR).

The CLC952 operates from a standard ±5V power supply and features excellent noise isolation with its >60dB power-supply rejection ratio (PSRR). All digital control functions and output registers are TTL compatible. The CLC952AC operates over the commercial temperature range (0°C to 70°C), and the CLC952AJ operates over the industrial temperature range (-40°C to 85°C) version. The CLC952 is available in a 28-pin SSOP that provides an extremely small footprint for reduced board space. National Semiconductor thoroughly tests each part to verify full compliance with guaranteed specifications.


Features

- 41MSPS
- Wide dynamic range SFDR: 72dBc SNR: 64dB
- Low power dissipation: 660mW
- Ground centered, DC-coupled analog input
- Excellent PSRR: >60dB
- Very small package: 28-pin SSOP
- Low cost

Applications

- Cellular base-stations
- Digital communications
- Infrared/CCD imaging
- IF sampling
- Electro-optics
- Instrumentation
- Medical imaging
- High definition video

PARAMETERS	CONDITIONS	TEMP		RATINGS		UNITS	NOTE
		Note 4	MIN	TYP	MAX		
DYNAMIC PERFORMANCE small-signal bandwidth large-signal bandwidth slew rate overvoltage recovery time effective aperture delay aperture jitter	V _{in} = 1/4FS V _{in} = FS V _{in} = 1.5FS (0.01%)	+25°C +25°C +25°C +25°C +25°C +25°C +25°C		185 180 357 5 1.6 4		MHz MHz V/µs ns ns ps(rms)	
NOISE AND DISTORTION (40.96MSPS)						
signal-to-noise ratio (w/o harmonics) 2.0MHz 9.67MHz 19.5MHz	, FS FS FS FS FS FS	+25°C Full +25°C Full +25°C Full	60 60 60	64 61 64 61 62 60		dB dB dB dB dB dB	1 1 1
spurious-free dynamic range 2.0MHz 9.67MHz 19.5MHz	FS-1dB FS-1dB FS-1dB FS-1dB FS-1dB FS-1dB	+25°C Full +25°C Full +25°C Full	64 61 60	72 71 69 68 67 66		dBc dBc dBc dBc dBc dBc dBc	1 1 1
intermodulation distortion 19.49MHz (f ₁), 19.9MHz (f ₂)	FS-7dB	+25°C		75		dBFS	
DC ACCURACY AND PERFORMANCE differential non-linearity integral non-linearity bipolar offset error bipolar offset error bipolar gain error bipolar gain error	DC; FS DC; FS DC; FS	+25°C +25°C +25°C Full +25°C Full		1.4 3.0 5.1 -4.5	25.0 15.0	LSB LSB mV mV %FS %FS	3
ANALOG INPUT AND PERFORMANCI analog input resistance analog input capacitance	Ξ	+25°C +25°C		500 2		Ω pF	
DIGITAL INPUTS input voltage input current output voltage	logic LOW logic HIGH logic LOW logic HIGH logic LOW logic HIGH	Full Full Full Full Full Full	2.0 2.4	0 4.0	0.8 5 25 0.8	ν ν μΑ ν ν	1,3 1,3 1,3 1,3 1,3 1,3 1,3
TIMING maximum conversion rate minimum conversion rate pulse width high pulse width low pipeline delay output propagation delay		Full Full Full Full +25°C	10.5	3.0 12.2 12.2 15	40.96 15 1.0	MSPS MSPS ns ns clk cycle ns	1,3 3 3 3 3
POWER REQUIREMENTS +5V supply current +5V supply current -5V supply current -5V supply current nominal power dissipation V _{EE} power supply rejection ratio V _{CC} power supply rejection ratio	41MSPS 41MSPS 41MSPS 41MSPS 41MSPS	+25°C Full +25°C Full +25°C +25°C +25°C +25°C		54 78 660 72 60	70 70 100 100	mA mA mA mW dB dB	1 3 1 3

Min/max ratings are based on product characterization and simulation. Individual parameters are tested as noted. Outgoing quality levels are determined from tested parameters.
Notes

1) These parameters are 100% tested at 25° C.

 Typical specifications are the mean values of the distributions of deliverable converters tested to date. 3) Min/max data over temperature is based on the 5 sigma limit for deliverable converters tested to date.

4) Full temperature range is 0°C to +70°C for AC, -40°C to +85°C for AJ.

Absolute	Maximum	Ratings

positive supply voltage (V _{CC})	-0.5V to +6V
negative supply voltage (V _{EE})	+0.5V to -6V
differential voltage between any two grounds	<200mV
analog input voltage range	V_{EE} to V_{CC}
digital input voltage range	-0.5V to +V _{CC}
output short circuit duration (one-pin to ground)	infinite
junction temperature	175°C
storage temperature range	-65°C to 150°C
lead solder duration (+300°C)	10sec

Note: Absolute maximum ratings are limiting values, to be applied individually, and beyond which the serviceability of the circuit may be impaired. Functional operability under any of these conditions is not necessarily implied. Exposure to maximum ratings for extended periods may affect device reliability.

(D11-D0)

Recommended Operating Conditions

positive supply voltage (V _{CC})	+5V ±5%
negative supply voltage (V _{EE})	-5V ±5%
differential voltage between any two grounds	<10mV
analog input voltage range	±0.5V
operating temperature range (AC)	0°C to +70°C
operating temperature range (AJ)	-40°C to +85°C

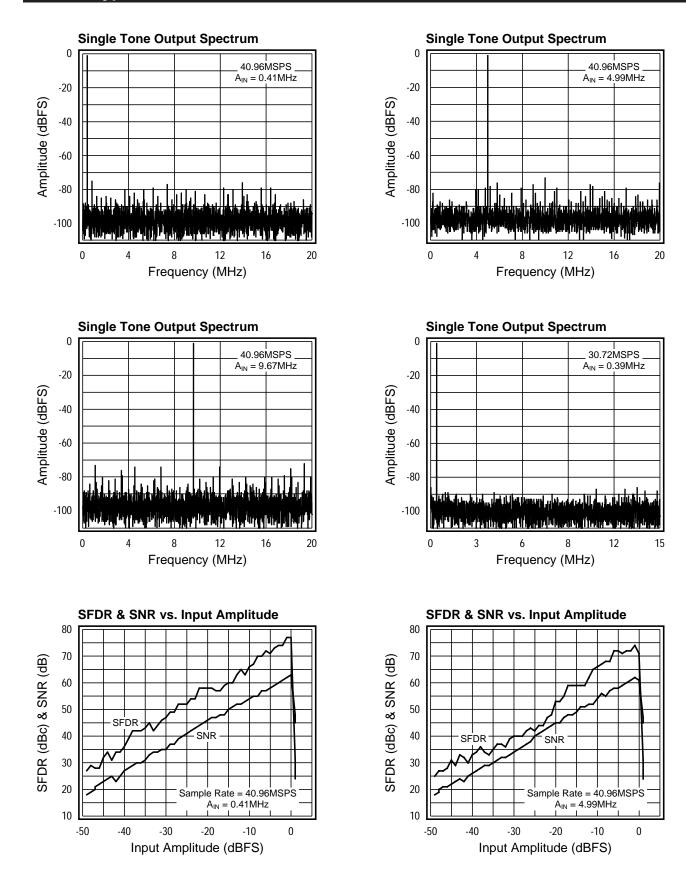
Package Thermal Resistance Package θ_{JA} θ_{JC}

80°C/W 32°C/W

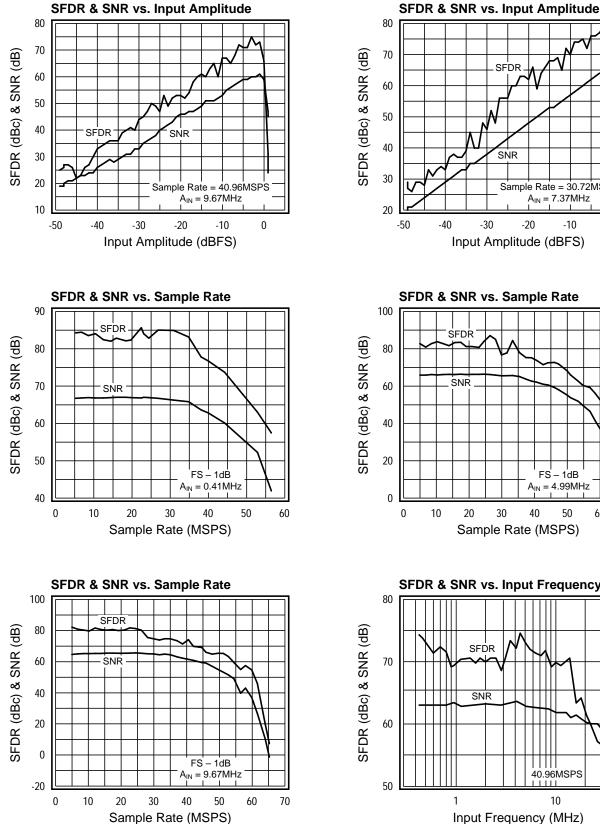
Reliability Information

Transistor count

28-pin SSOP

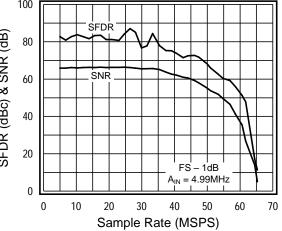

3000

Ordering Information					
Model	Temperature Range	Description			
CLC952ACMSA CLC952AJMSA CLC952PCASM	0°C to +70°C -40°C to +85°C	28-pin SSOP (commercial part) 28-pin SSOP (industrial part) Fully loaded evaluation board with CLC952 ready for test.			
Analog $N = 1.6ns$ $N+1$ $N+2$ $N+2$					
E					
_	Digital N-2	N-1 N N			

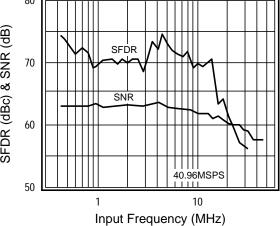

CLC952 Timing Diagram

top = 15ns typ.

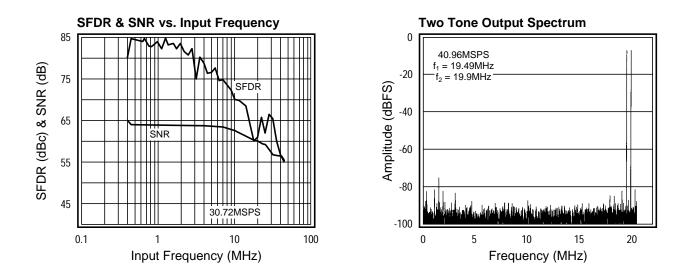
CLC952 Typical Performance Characteristics (VCC = +5V, VEE = -5V)

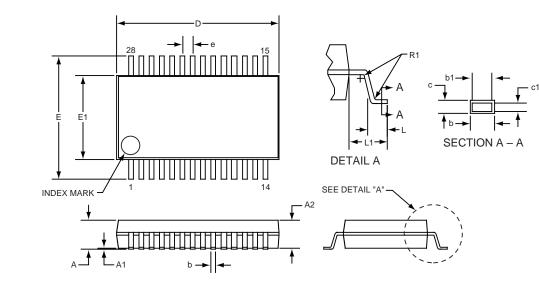


CLC952 Typical Performance Characteristics (V_{cc} = +5V, V_{EE} = -5V)



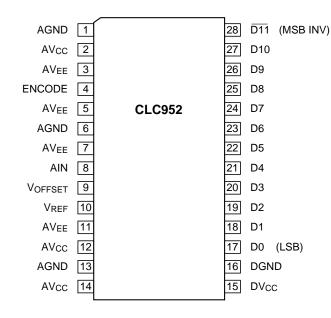
Sample Rate = 30.72MSPS A_{IN} = 7.37MHz -20 -10 0 Input Amplitude (dBFS)


SFDR & SNR vs. Sample Rate


SFDR & SNR vs. Input Frequency

CLC952 Typical Performance Characteristics (v_{cc} = +5v, v_{EE} = -5v)

Physical Dimensions


Symbol	Min	Max	Notes
A	1.73	2.00	
A1	0.00	0.21	
A2	1.65	1.85	
b	0.20	0.40	
b1	0.20	0.33	
с	0.10	0.22	
c1	0.10	0.18	
D	10.07	10.33	2
E	7.50	7.90	
E1	5.20	5.38	2
е	0.65 BSC		
L	0.52	0.95	
L1	1.25 REF		
R1	0.09		

Notes:

1. All dimensions are in millimeters

2. Dimensions D and E1 do not include mold protrusion. Allowable protrusion is 0.20mm per side.

CLC952 Pin Definitions

AGND (Pins 1, 6, 13) Analog circuit ground.

AV_{CC} (Pins 2, 12, 14) +5V power supply for the analog section. Bypass to analog ground with a 0.1µF capacitor.

AV_{EE} (Pins 3, 5, 7,11) -5V power supply for the analog section. Bypass to analog ground with a 0.1μF capacitor.

ENCODE (Pin 4) ENCODE initiates a new data conversion cycle on each rising edge. Logic for this input is standard TTL. 50% duty cycle is recommended for full compliance with the guaranteed specifications.

AIN (Pin 8) Ground-centered, DC-coupled analog input with a $1V_{pp}$ maximum input range from -0.5V to +0.5V. Analog input impedance is approximately 500 Ω .

V_{OFFSET} (Pin 9) Voltage offset control. Sets the midpoint of the analog input range. Normally left floating. Ratio of applied voltage to effective offset is 200:1. (1V applied to V_{OFFSET} produces 5mV midpoint offset.)

V_{REF} (Pin 10) Internal voltage reference. Nominally +2.4V. V_{REF} can be pulled up or down with a voltage source to program gain and input range. Bypass V_{REF} to ground with a 0.1µF capacitor.

 DV_{CC} (Pin 15) +5V power supply for the digital section. Bypass to digital ground with a 0.1µF capacitor.

DGND (Pin 16) Digital ground.

D0-D11 (Pins 17-28) Digital data outputs are CMOS and TTL compatible. D0 is the LSB and D11 is the MSB. MSB is inverted. Output coding is two's complement.

Customer Design Applications Support

National Semiconductor is committed to design excellence. For sales, literature and technical support, call the National Semiconductor Customer Response Group at **1-800-272-9959** or fax **1-800-737-7018**.

Life Support Policy

National's products are not authorized for use as critical components in life support devices or systems without the express written approval of the president of National Semiconductor Corporation. As used herein:

- 1. Life support devices or systems are devices or systems which, a) are intended for surgical implant into the body, or b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018

National Semiconductor Europe

Fax: (+49) 0-180-530 85 86 E-mail: europe.support.nsc.com Deutsch Tel: (+49) 0-180-530 85 85 English Tel: (+49) 0-180-532 78 32 Francais Tel: (+49) 0-180-532 93 58 Italiano Tel: (+49) 0-180-534 16 80 National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block Ocean Centre, 5 Canton Road Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960 National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.