

MIC2544/2548

Programmable Current Limit High-Side Switch

Preliminary Information

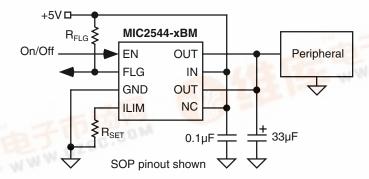
General Description

The MIC2544 and MIC2548 are integrated high-side power switches optimized for low loss dc power switching and other power management applications, including Advanced Configuration and Power Interface (ACPI). The MIC2544/48 is a cost-effective, highly integrated solution that requires few external components to satisfy USB and ACPI requirements.

Load current management features include a precision resistor-programmable output current-limit and a soft-start circuit which minimizes inrush current when the switch is enabled. Thermal shutdown, along with current-limit, protects the switch and the attached device.

The MIC2544/48's open-drain flag output is used to indicate current-limiting or thermal shutdown to a local controller. The MIC2548 has an additional internal latch which turns the output off upon thermal shutdown providing robust fault control. The enable signal is compatible with both 3V and 5V logic, and is also used as the thermal shutdown latch reset for the MIC2548.

The MIC2544 and MIC2548 are available in active-high and active-low enable versions in the 8-pin SOP (small-outline package) and 8-pin MSOP (micro-small-outline package).


Features

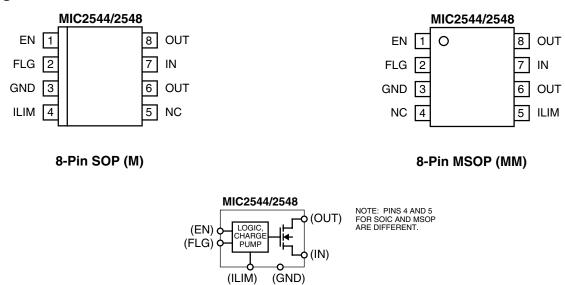
- 2.7V to 5.5V input
- Adjustable current-limit up to 1.5A
- Reverse current flow blocking (no "body diode")
- 75μA typical on-state supply current
- 1μA typical off-state supply current
- 120mΩ maximum on-resistance
- · Open-drain fault flag
- Thermal shutdown
- Thermal shutdown output latch (MIC2548)
- · 2ms (slow) turn-on and fast turnoff
- Available with active-high or active-low enable

Applications

- USB power distribution
- PCI Bus Power Switching
- Notebook PC
- · ACPI power distribution
- · PC card hot swap applications
- · Inrush current-limiting

Typical Application

Typical Advanced Configuration and Power Interface (ACPI) Application



Ordering Information

Part Number	Enable	Latch*	Temperature Range	Package	
MIC2544-1BM	Active High		–40°C to +85°C	8-pin SOP	
MIC2544-1BMM	Active High		–40°C to +85°C	8-pin MSOP	
MIC2544-2BM	Active Low		–40°C to +85°C	8-pin SOP	
MIC2544-2BMM	Active Low		–40°C to +85°C	8-pin MSOP	
MIC2548-1BM	Active High	•	–40°C to +85°C	8-pin SOP	
MIC2548-1BMM	Active High	•	–40°C to +85°C	8-pin MSOP	
MIC2548-2BM	Active Low	•	–40°C to +85°C	8-pin SOP	
MIC2548-2BMM	Active Low	•	-40°C to +85°C	8-pin MSOP	

^{*} Thermal Shutdown Latch

Pin Configuration

Pin Description

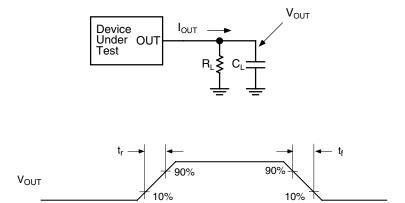
Pin Number MSOP-8	Pin Number SOP-8	Pin Name	Pin Function	
1	1	EN	Enable (Input): Logic-compatible enable input. Active-high (-1) or active-low (-2). High input >1.7V typical; low input <1.5V typical. Do not float. MIC2548 only: Also resets thermal shutdown latch.	
2	2	FLG	Fault Flag (Output): Active-low, open-drain output. Indicates overcurrent or thermal shutdown conditions. MIC2548 only: latched low on thermal shutdown.	
3	3	GND	Ground	
5	4	ILIM	Current Limit: Sets current-limit threshold using an external resistor, R_{SET} , connected to ground. $154\Omega < R_{SET} < 2.29 k\Omega$.	
7	7	IN	Input: Output MOSFET drain. Also powers internal circuitry.	
6,8	6,8	OUT	Switch (Output): Output MOSFET source. Pins 6 and 8 must be externally connected.	
4	5	NC	Not internally connected	

Absolute Maximum Ratings (Note 1)

Supply Voltage (V _{IN})	±6.0V
Supply voltage (VIN)	+0.0 v
Output Voltage (V _{OUT})	+6.0V
Output Current (I _{OUT})	Internally Limited
Enable Input (V _{EN})	–0.3V to V _{IN} +0.3V
Fault Flag Voltage (V _{FLG})	+6.0V
Fault Flag Current (I _{FLG})	50mA
Storage Temperature (T _S)	–65°C to +150°C
Junction Temperature (T _J)	Internally Limited
Lead Temperature (soldering 5 sec.)	260°C
ESD Rating, Note 3	2kV

Operating Ratings (Note 2)

Supply Voltage (V _{IN})	+2.7V to +5.5V
Current Limit Set Range	0.1A to 1.5A
Ambient Temperature Range (TA)	40°C to +85°C
Package Thermal Resistance	
SOP (θ, IA)	160°C/W
MSOP (θ_{JA})	206°C/W


Electrical Characteristics

 V_{IN} = +5V; T_A = 25°C, **bold** indicates -40°C to +85°C; unless noted

Parameter	Condition	Min	Тур	Max	Units
Supply Current	switch off, OUT = open, Note 4		0.75	5	μА
	switch on, OUT = open, Note 4		75	160	μА
Enable Input Voltage	enable high, Note 4	2.4	1.7		٧
	enable low, Note 1		1.5	0.8	V
Enable Input Current	$V_{EN} = V_{OH(min)} = 2.4V$		0.01	1	μА
	$V_{EN} = V_{OL(max)} = 0.8V$		0.01	1	μА
Enable Input Capacitance	Note 6		1		pF
Switch Resistance	I _{OUT} = 500mA		80	120	mΩ
Current Limit Factor	I _{OUT} = 100mA to 1A, V _{OUT} = 1V to 4V, Note 5	184	230	276	V
	I_{OUT} = 500mA to 1.5A, V_{OUT} = 1V to 4V, Note 5	161	230	299	V
Output Leakage Current	switch off		1	10	μА
Output Turn-On Delay	$R_L = 10\Omega$, $C_L = 1\mu F$, Figures 1a, 1b	1	2	5	ms
Output Turn-On Rise Time	$R_L = 10\Omega$, $C_L = 1\mu F$, Figures 1a, 1b	1	2	5	ms
Output Turnoff Delay	$R_L = 10\Omega$, $C_L = 1\mu F$, Figures 1a, 1b		22		μs
Output Turnoff Fall Time	$R_L = 10\Omega$, $C_L = 1\mu F$, Figures 1a, 1b		21		μs
Overtemperature Threshold	T _J increasing		140		°C
Shutdown	T _J decreasing		130		°C
Error Flag Output Resistance	V _{IN} = 5V, I _L = 10μA		4	15	Ω
	$V_{IN} = 3.3V, I_{L} = 10\mu A$		5	20	Ω
Error Flag Off Current	V _{FLG} = 5V		0.01	1	μА
EN Pulse Reset Width	MIC2548 thermal shutdown latch	5			μs
V _{IN} to EN Set-Up	MIC2548, Note 6	0			μs
Current-Limit Response Time	V _{OUT} = 0V, Note 6		25		μs
Overcurrent Flag Response Time	V _{OUT} = V _{IN} /2 to FLG low		5		μs
	Enable Input Voltage Enable Input Current Enable Input Capacitance Switch Resistance Current Limit Factor Output Leakage Current Output Turn-On Delay Output Turn-On Rise Time Output Turnoff Delay Output Turnoff Fall Time Overtemperature Threshold Shutdown Error Flag Output Resistance Error Flag Off Current EN Pulse Reset Width V _{IN} to EN Set-Up Current-Limit Response Time	$Supply Current \\ Switch off, OUT = open, \textbf{Note 4} \\ Switch on, OUT = open, \textbf{Note 4} \\ Switch on, OUT = open, \textbf{Note 4} \\ Enable Input Voltage \\ Enable Input Current \\ \hline Enable Input Current \\ \hline Enable Input Current \\ \hline V_{EN} = V_{OL(min)} = 2.4V \\ V_{EN} = V_{OL(max)} = 0.8V \\ \hline Enable Input Capacitance \\ Switch Resistance \\ \hline I_{OUT} = 500mA \\ \hline Current Limit Factor \\ \hline I_{OUT} = 500mA to 1.5A, V_{OUT} = 1V to 4V, \textbf{Note 5} \\ \hline I_{OUT} = 500mA to 1.5A, V_{OUT} = 1V to 4V, \textbf{Note 5} \\ \hline I_{OUT} = 500mA to 1.5A, V_{OUT} = 1V to 4V, \textbf{Note 5} \\ \hline I_{OUT} = 500mA to 1.5A, V_{OUT} = 1V to 4V, \textbf{Note 5} \\ \hline I_{OUT} = 500mA to 1.5A, V_{OUT} = 1V to 4V, \textbf{Note 5} \\ \hline I_{OUT} = 500mA to 1.5A, V_{OUT} = 1V to 4V, \textbf{Note 5} \\ \hline I_{OUT} = 500mA to 1.5A, V_{OUT} = 1V to 4V, \textbf{Note 5} \\ \hline I_{OUT} = 500mA to 1.5A, V_{OUT} = 1V to 4V, \textbf{Note 5} \\ \hline I_{OUT} = 500mA to 1.5A, V_{OUT} = 1V to 4V, \textbf{Note 5} \\ \hline I_{OUT} = 500mA to 1.5A, V_{OUT} = 1V to 4V, \textbf{Note 5} \\ \hline I_{OUT} = 500mA to 1.5A, V_{OUT} = 1V to 4V, \textbf{Note 5} \\ \hline I_{OUT} = 500mA to 1.5A, V_{OUT} = 1V to 4V, \textbf{Note 5} \\ \hline I_{OUT} = 100mA to 1.5A, V_{OUT} = 1V to 4V, \textbf{Note 5} \\ \hline I_{OUT} = 100mA to 1.5A, V_{OUT} = 1V to 4V, \textbf{Note 5} \\ \hline I_{OUT} = 100mA to 1.5A, V_{OUT} = 1V to 4V, \textbf{Note 5} \\ \hline I_{OUT} = 100mA to 1.5A, V_{OUT} = 1V to 4V, \textbf{Note 5} \\ \hline I_{OUT} = 100mA to 1.5A, V_{OUT} = 1V to 4V, \textbf{Note 6} \\ \hline I_{OUT} = 100mA to 1.5A, V_{OUT} = 1V to 4V, \textbf{Note 6} \\ \hline I_{OUT} = 100mA to 1.5A, V_{OUT} = 1V to 4V, \textbf{Note 6} \\ \hline I_{OUT} = 100mA to 1.5A, V_{OUT} = 1V to 4V, \textbf{Note 6} \\ \hline I_{OUT} = 100mA to 1.5A, V_{OUT} = 1V to 4V, \textbf{Note 6} \\ \hline I_{OUT} = 100mA to 1.5A, V_{OUT} = 1V to 4V, \textbf{Note 6} \\ \hline I_{OUT} = 100mA to 1.5A, V_{OUT} = 1V to 4V, \textbf{Note 6} \\ \hline I_{OUT} = 100mA to 1.5A, V_{OUT} = 1V to 4V, \textbf{Note 6} \\ \hline I_{OUT} = 100mA to 1.5A, V_{OUT} = 1V to 4V, \textbf{Note 6} \\ \hline I_{OUT} = 100mA to 1.5A, V_{OUT} = 1V to 4V, \textbf{Note 6} \\ \hline I_{OUT} = 100mA to 1.5A, V_{OUT} = 1V to 4V, \textbf{Note 6} \\ \hline I_{OUT} = 100mA to 1.5A, V_{OUT} = 1V to 4V, \textbf{Note 6} \\ \hline I_{OUT} = 100mA$	$Supply Current \\ Switch off, OUT = open, Note 4 \\ Switch on, OUT = open, Note 4 \\ Enable Input Voltage \\ Enable Input Current \\ \hline \\ Enable Input Current \\ \hline \\ Enable Input Current \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	Supply Current	

- Note 1. Exceeding the absolute maximum rating may damage the device.
- Note 2. The device is not guaranteed to function outside its operating rating.
- Note 3. Devices are ESD sensitive. Handling precautions recommended. Human body model, 1.5k in series with 100pF.
- Note 4. Off is \leq 0.8V and on is \geq 2.4V for the MIC2544-1 and MIC2548-1. Off is \geq 2.4V and on is \leq 0.8V for the MIC2544-2 and MIC2548-2. The enable input has about 200mV of hysteresis.
- Note 5. Current limit threshold is determined by $I_{LIMIT} = \frac{230V}{R_{SET}}$, where R_{SET} is in ohms.
- Note 6. Guaranteed by design but not production tested.

Test Circuit

Functional Characteristics Test Circuit

Timing Diagrams

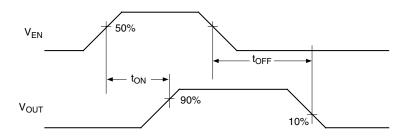


Figure 1a. MIC2544/48-1

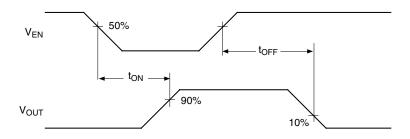


Figure 1b. MIC2544/48-2

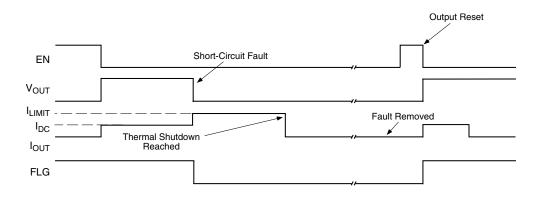
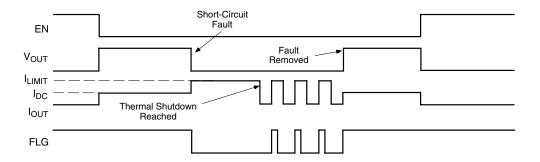
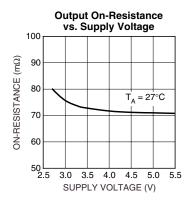
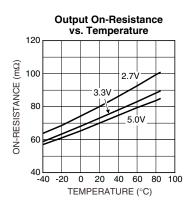
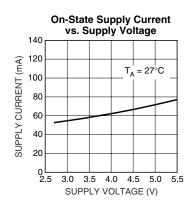
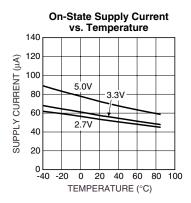
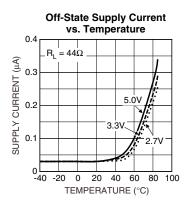
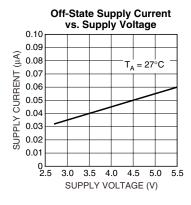


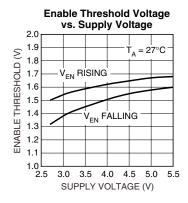
Figure 2a. MIC2548-2 Timing: Output is reset by toggling EN

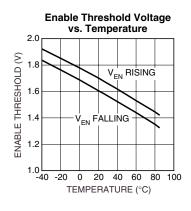





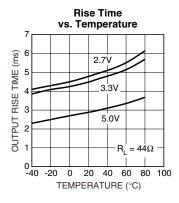

Figure 2b. MIC2544-2 Timing

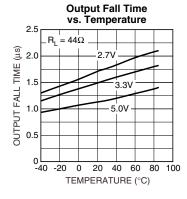

Typical Characteristics

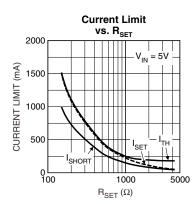


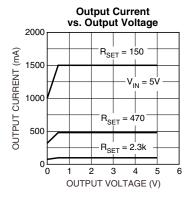


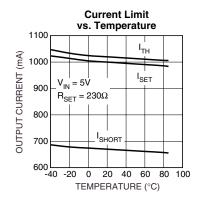


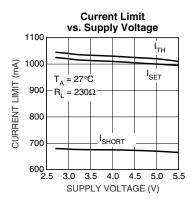


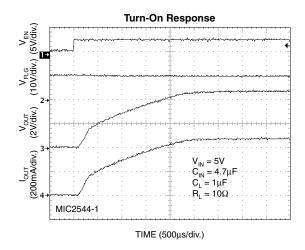


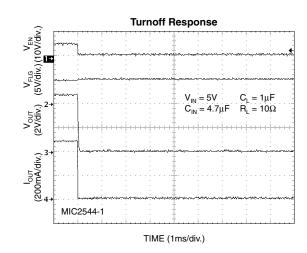


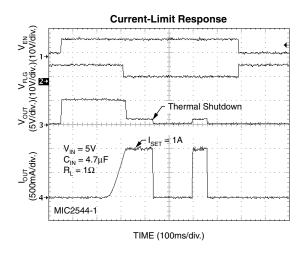


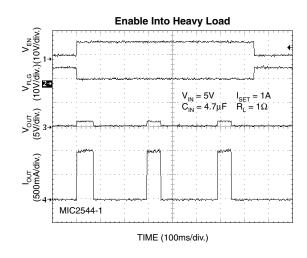


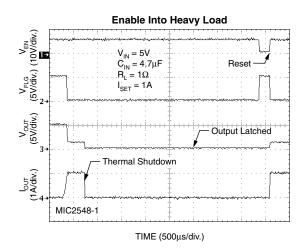


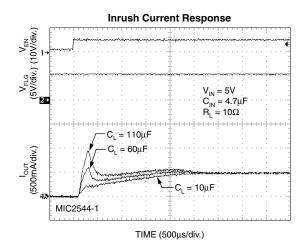


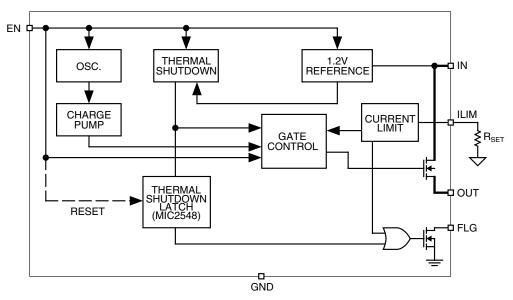







Functional Characteristics





Block Diagram

Functional Description

The MIC2544 and MIC2548 are high-side N-channel switches available with active-high or active-low enable inputs. Fault conditions turn off or inhibit turn-on of the output transistor and activate the open-drain error flag transistor making it sink current to ground.

Input and Output

IN is the power supply connection to the logic circuitry and the drain of the output MOSFET. OUT is the source of the output MOSFET. In a typical circuit, current flows from IN to OUT toward the load. If V_{OUT} is greater than V_{IN} , current will flow from OUT to IN since the switch is bidirectional when enabled. The output MOSFET and driver circuitry are also designed to allow the MOSFET source to be externally forced to a higher voltage than the drain $(V_{OUT} > V_{IN})$ when the switch is disabled. In this situation, the MIC2544/48 avoids undesirable current flow from OUT to IN. Both OUT pins must be connected together.

Thermal Shutdown

Thermal shutdown shuts off the output MOSFET and signals the fault flag if the die temperature exceeds 140°C. 10°C of hysteresis prevents the switch from turning on until the die temperature drops to 130°C. Overtemperature detection functions only when the switch is enabled.

The MIC2548 features an internal latch which causes the part to remain off after thermal shutdown until a reset pulse is provided via the enable pin (pin 1). While in current-limit, the thermal shutdown latch prevents on/off cycling of the output. Refer to Figure 2 for timing diagram. The flag remains low until reset.

Enable Input

EN must be driven logic high or logic low, or be pulled high or low for a clearly defined input. Floating the input may cause unpredictable operation. EN should not be allowed to go negative with respect to GND, and V_{EN} should be less than or equal to V_{IN} .

Adjustable Current-Limit

The short-circuit current-limit is user-adjustable with an external set resistor. Current-limit in the range of 100mA to 1.5A is available with a set point accuracy of better than $\pm 20\%$. The current-limit circuit prevents damage to the output MOSFET and external load.

The nominal current-limit value is set with an external resistor between ILIM and GND. For a desired current-limit, the value of the external set resistor is given by:

$$R_{SET} = \left(\frac{230V}{I_{LIMIT}}\right)$$

where:

$$154\Omega < R_{SFT} < 2.29k\Omega$$

For example, to set a 1A nominal current-limit, $R_{\mbox{\scriptsize SET}}$ is calculated as:

$$\left(\frac{230V}{1A}\right) = 230\Omega$$

Current through R_{SET} increases with OUT current. The voltage across R_{SET} could be monitored with a high impedance comparator to provide an indication of output current. R_{SET} should be between 154 Ω ±0.5% and 2.29k Ω ±0.5%.

Short-Circuit Protection

In the event of a short-circuit, the output current will fold back to approximately 80% of the short-circuit current-limit.

Fault Flag

FLG is an N-channel, open-drain MOSFET output. The fault-flag is active (low) for current-limit or thermal shutdown conditions. The flag output MOSFET is capable of sinking a 10mA load to typically 100mV above ground.

Applications Information

Supply Filtering

A 0.1 μ F to 1 μ F bypass capacitor from IN to GND, located near the MIC2544 and MIC2548, is strongly recommended to control supply transients. Without a bypass capacitor, an output short may cause sufficient ringing on the input (from supply lead inductance) to damage internal control circuitry. Input transients must not exceed the absolute maximum supply voltage ($V_{IN\ max} = 6V$) even for a short duration.

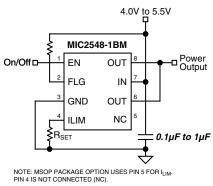


Figure 3. Supply Bypassing

Power Dissipation

The device's junction temperature depends on several factors such as the load, PCB layout, ambient temperature and package type. Equations that can be used to calculate power dissipation and junction temperature are found below.

Calculation of power dissipation can be accomplished by the following equation:

$$P_D = R_{DS(on)} \times (I_{OUT})2$$

To relate this to junction temperature, the following equation can be used:

$$T_j = P_D \times \theta_{JA} + T_A$$

where:

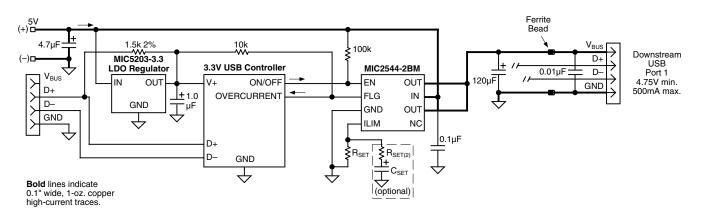
 T_i = junction temperature

 T_A = ambient temperature

 $\theta_{1\Delta}$ = is the thermal resistance of the package

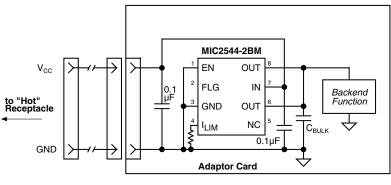
Transient Overcurrent Filter

The inrush current from the connection of a heavy capacitive load may cause the fault flag to fall for $10\mu s$ to $200\mu s$ while the switch is in a constant-current mode, charging the capacitance.


Adding an optional series resistor-capacitor (R_{SET2}) in parallel with R_{SET} , as shown in Figure 4, allows the transient current-limit to be set to a different value than steady state. A typical USB hot-plug inrush is 2A to 3A for 10 μ s to 20 μ s. If R_{SET} is 435 Ω (510mA), an R_{SET2} of 88 Ω (2.5A) and C_{SET} of 1 μ F (RC = 100 μ s) allows transient surge of 3A to pass for 100 μ s without tripping the overcurrent flag (FLG).

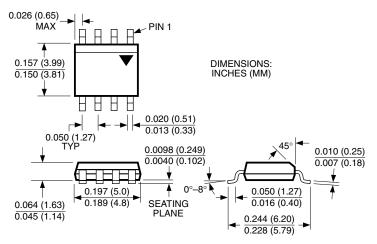
USB Power Distribution

The MIC2544 is ideal for meeting USB power distribution requirements. Figure 4 depicts a USB Host application. R_{SET} should be set to a value providing a current-limit >500mA. The accurate current-limit of the MIC2544 will reduce power supply current requirements. Also, fast reaction to short circuit faults prevent voltage droop in mobile PC applications.


Printed Circuit Board Hot-Plug

The MIC2544/48 are ideal inrush current-limiters suitable for hot-plug applications. Due to the integrated charge pump, the MIC2544/48 presents a high impedance when off and slowly becomes a low impedance as it turns on. This "soft-start" feature effectively isolates power supplies from highly capacitive loads by reducing inrush current during hot-plug events. Figure 5 shows how the MIC2544 may be used in a hot-plug application.

NOTE: MSOP PACKAGE OPTION USES PIN 5 FOR ILIM


Figure 4. USB Host Application

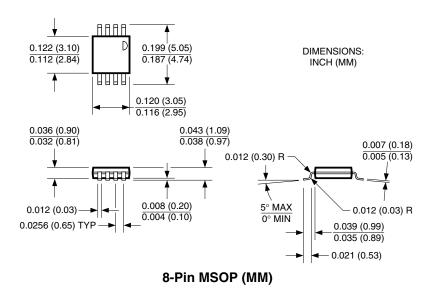

NOTE: MSOP PACKAGE OPTION USES PIN 5 FOR $\rm I_{LIM}$ AND PIN 4 IS NO CONNECT (NC).

Figure 5. Hot Plug Application

Package Information

8-Pin SOP (M)

