

FAIRCHILD

MM74HC32 Quad 2-Input OR Gate

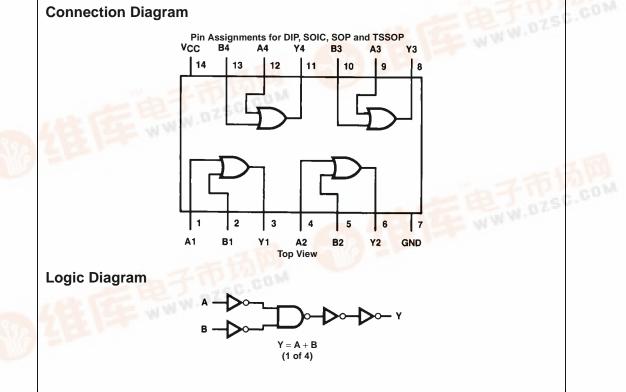
General Description

The MM74HC32 OR gates utilize advanced silicon-gate CMOS technology to achieve operating speeds similar to LS-TTL gates with the low power consumption of standard CMOS integrated circuits. All gates have buffered outputs providing high noise immunity and the ability to drive 10 LS-TTL loads. The 74HC logic family is functionally as well as pin-out compatible with the standard 74LS logic family.

September 1983 Revised February 1999

MM74HC32 Quad 2-Input OR Gate

All inputs are protected from damage due to static discharge by internal diode clamps to V_{CC} and ground.


Features

- Typical propagation delay: 10 ns
- Wide power supply range: 2–6V
- Low quiescent current: 20 μA maximum (74HC Series)
- Low input current: 1 μA maximum
 Fanout of 10 LS-TTL loads

Ordering Code:

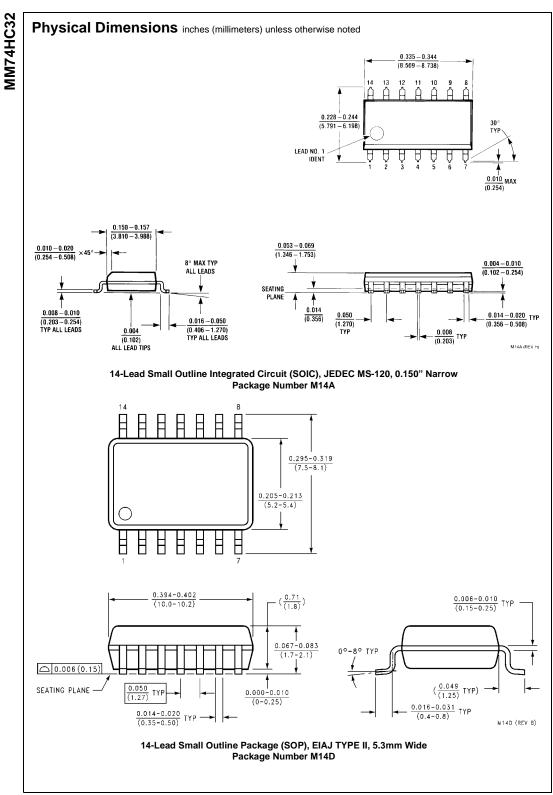
Order Number	Package Number	Package Description
MM74HC32M	M14A	14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-120, 0.150" Narrow
MM74HC32SJ	M14D	14-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
MM74HC32MTC	MTC14	14-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
MM74HC32N	N14A	14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide

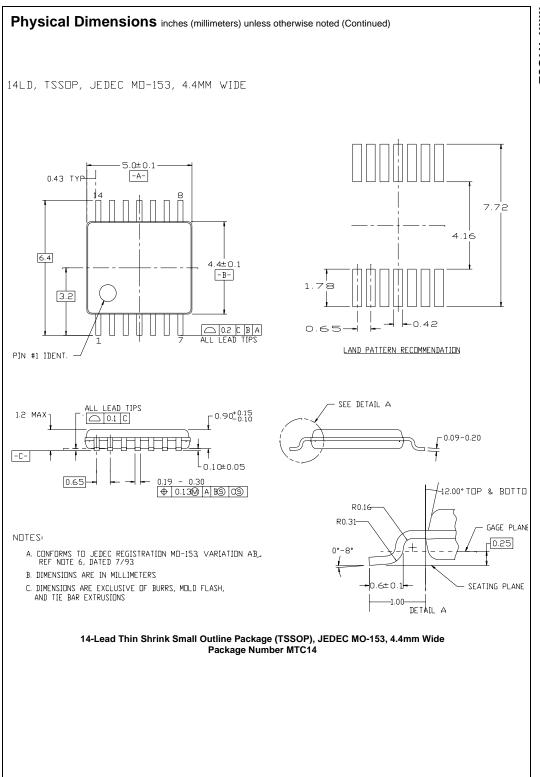
Devices also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering code.

Absolute Maximum Ratings(Note 1) (Note 2)

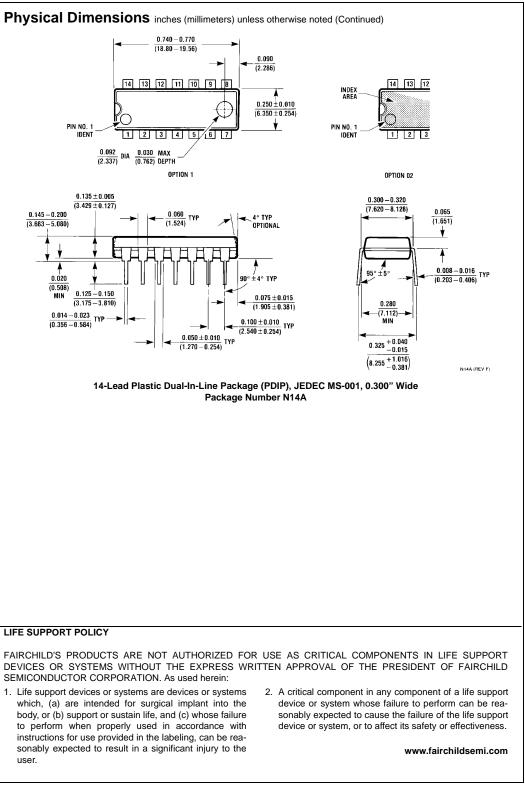
Recommended Operating Conditions

Supply Voltage (V _{CC})	-0.5 to + 7.0V		Min	Max	Units
DC Input Voltage (V _{IN})	-1.5 to $V_{CC} + 1.5 \text{V}$	Supply Voltage (V _{CC})	2	6	V
DC Output Voltage (V _{OUT})	–0.5 to $V_{CC}{+}0.5V$	DC Input or Output Voltage	0	V _{CC}	V
Clamp Diode Current (I _{IK} , I _{OK})	±20 mA	(V _{IN} , V _{OUT})			
DC Output Current, per pin (I _{OUT})	±25 mA	Operating Temperature Range (T _A)	-40	+85	°C
DC V_{CC} or GND Current, per pin (I _{CC})	±50 mA	Input Rise or Fall Times			
Storage Temperature Range (T _{STG})	$-65^{\circ}C$ to $+150^{\circ}C$	$(t_r, t_f) V_{CC} = 2.0 V$		1000	ns
Power Dissipation (P _D)		$V_{CC} = 4.5V$		500	ns
(Note 3)	600 mW	$V_{CC} = 6.0V$		400	ns
S.O. Package only	500 mW	Note 1: Absolute Maximum Ratings are those	e values I	beyond whi	ch dam-
Lead Temperature (T _L)		age to the device may occur.			
(Soldering 10 seconds)	260°C	Note 2: Unless otherwise specified all voltage			
		Note 3: Power Dissipation temperature derat 12 mW/°C from 65°C to 85°C.	ing — pla	istic "N" pa	скаде: –


DC Electrical Characteristics (Note 4)


Symbol	Parameter	Conditions	v _{cc}	T _A =	= 25°C	$T_A = -40$ to $85^{\circ}C$	Units
Symbol	Falameter	Conditions	• CC	Тур	Gu	aranteed Limits	Units
VIH	Minimum HIGH Level		2.0V		1.5	1.5	V
	Input Voltage		4.5V		3.15	3.15	V
			6.0V		4.2	4.2	V
VIL	Maximum LOW Level		2.0V		0.5	0.5	V
	Input Voltage		4.5V		1.35	1.35	V
			6.0V		1.8	1.8	V
V _{ОН}	Minimum HIGH Level	$V_{IN} = V_{IH}$ or V_{IL}					
	Output Voltage	$ I_{OUT} \le 20 \ \mu A$	2.0V	2.0	1.9	1.9	V
			4.5V	4.5	4.4	4.4	V
			6.0V	6.0	5.9	5.9	V
		$V_{IN} = V_{IH}$ or V_{IL}					
		I _{OUT} ≤ 4.0 mA	4.5V	4.7	3.98	3.84	V
		I _{OUT} ≤ 5.2 mA	6.0V	5.2	5.48	5.34	V
V _{OL}	Maximum LOW Level	$V_{IN} = V_{IL}$					
	Output Voltage	$ I_{OUT} \le 20 \ \mu A$	2.0V	0	0.1	0.1	V
			4.5V	0	0.1	0.1	V
			6.0V	0	0.1	0.1	V
		$V_{IN} = V_{IL}$					
		I _{OUT} ≤ 4.0 mA	4.5V	0.2	0.26	0.33	V
		I _{OUT} ≤ 5.2 mA	6.0V	0.2	0.26	0.33	V
I _{IN}	Maximum Input	$V_{IN} = V_{CC}$ or GND	6.0V		±0.1	±1.0	μΑ
	Current						
I _{CC}	Maximum Quiescent	$V_{IN} = V_{CC}$ or GND	6.0V		2.0	20	μΑ
	Supply Current	$I_{OUT} = 0 \ \mu A$					

Note 4: For a power supply of 5V \pm 10% the worst case output voltages (V_{OH}, and V_{OL}) occur for HC at 4.5V. Thus the 4.5V values should be used when designing with this supply. Worst case V_{IH} and V_{IL} occur at V_{CC} = 5.5V and 4.5V respectively. (The V_{IH} value at 5.5V is 3.85V.) The worst case leakage current (I_{IN}, I_{CC}, and I_{O2}) occur for CMOS at the higher voltage and so the 6.0V values should be used.


Symbol	$F_{A} = 25^{\circ}C, C_{L} = 15 \text{ pF}, t_{r} = t_{f} =$ Parameter		Conditio	ıs	Ту	р	Guaranteed Limit	Units
_{PHL} , t _{PLH}	Maximum Propagation Delay				10)	18	ns
AC EI	ectrical Charact	teristic	5					
	' to 6.0V, $C_L = 50 \text{ pF}$, $t_r = t_f = 6$	ns (unless otl						
Symbol	Parameter		Conditions	v _{cc}	T _A =	25°C	$T_{A} = -40 \text{ to } 85^{\circ}$	C Units
					Тур		aranteed Limits	
PHL, t _{PLH}	Maximum Propagation			2.0V	30	100	125	ns
	Delay			4.5V	12	20	25	ns
				6.0V	9	17	21	ns
LH, t _{THL}	Maximum Output Rise			2.0V	30	75	95	ns
	and Fall Time			4.5V	8	15	19	ns
				6.0V	7	13	16	ns
PD	Power Dissipation	(per gat	ie)		50			pF
	Capacitance (Note 5)					10		
N	Maximum Input Capacitance				5	10	10	pF
Note 5: C _{PC}	determines the no load dynamic $_{2}$ f + $I_{CC}.$	power consum	ption, $P_D = C_{PD} V_{CC}^2 f + I_f$	_C V _{CC} , and the	no load dyna	amic curre	nt consumption,	
		power consum	ption, $P_D = C_{PD} V_{CC}^{2f} + I_{f}$	$_{\rm C}$ V _{CC} , and the	no load dyna	mic curre	nt consumption,	
		power consum	ption, $P_D = C_{PD} V_{CC}^{2f} + I_{f}$	$\frac{1}{10}$ V _{CC} , and the	no load dyna	mic curre	nt consumption,	
		power consum	ption, $P_D = C_{PD} V_{CC}^2 f + I_r$	C V _{CC} , and the	no load dyna	mic curre	nt consumption,	
		power consum	ption, $P_D = C_{PD} V_{CC}^2 f + I_f$	C V _{CC} , and the	no load dyna	mic curre	nt consumption,	
		power consum	ption, P _D = C _{PD} V _{CC} ² f + I _f	_C V _{CC} , and the	no load dyna	mic curre	nt consumption,	
		power consum	ption, $P_D = C_{PD} V_{CC}^2 f + I_f$	C V _{CC} , and the	no load dyna	mic curre	nt consumption,	
		power consum	ption, P _D = C _{PD} V _{CC} ² f + I _f	C V _{CC} , and the	no load dyna	imic curre	nt consumption,	
		power consum	ption, P _D = C _{PD} V _{CC} ² f + I _f	_C V _{CC} , and the	no load dyna	imic curre	int consumption,	
		power consum	ption, P _D = C _{PD} V _{CC} ² f + I _t	C V _{CC} , and the	no load dyna	inic curre	nt consumption,	
		power consum	ption, P _D = C _{PD} V _{CC} ² f + I _f	C V _{CC} , and the	no load dyna	imic curre	int consumption,	
		power consum	ption, P _D = C _{PD} V _{CC} ² f + I _f	C V _{CC} , and the	no load dyna	imic curre	int consumption,	
		power consum	ption, P _D = C _{PD} V _{CC} ² f + I _t	_C V _{CC} , and the	no load dyna	inic curre	int consumption,	
		power consum	ption, P _D = C _{PD} V _{CC} ² f + I _f	C V _{CC} , and the	no load dyna	mic curre	int consumption,	

MM74HC32

MM74HC32

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.