

Linear Integrated Systems

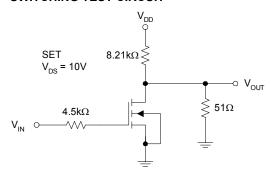
FEATURES					
DIRECT REPLACEMENT FOR INTERSIL 2N4351					
HIGH DRAIN CURRENT	$I_D = 100 \text{mA}$				
HIGH GAIN	g _{fs} = 1000µS				
ABSOLUTE MAXIMUM RATINGS ¹					
@ 25 °C (unless otherwise stated)					
Maximum Temperatures					
Storage Temperature	-65 to +200 °C				
Operating Junction Temperature	-55 to +150 °C				
Maximum Power Dissipation					
Continuous Power Dissipation	375mW				
Maximum Current					
Drain to Source	100mA				
Maximum Voltages					
Drain to Body	25V				
Drain to Source	25V				
Peak Gate to Source ²	±125V				

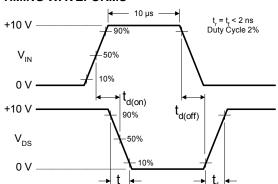
2N4351

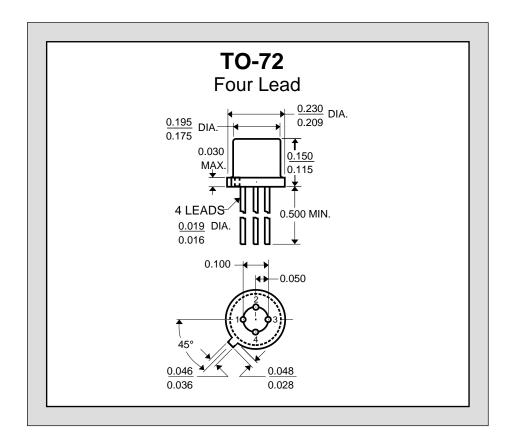
N-CHANNEL MOSFET ENHANCEMENT MODE

^{*} Body tied to Case.

ELECTRICAL CHARACTERISTICS @ 25 °C (unless otherwise stated) (V_{SB} = 0V unless otherwise stated)


SYMBOL	CHARACTERISTIC	MIN	TYP	MAX	UNITS	CONDITIONS
BV _{DSS}	Drain to Source Breakdown Voltage	25				$I_D = 10 \mu A, V_{GS} = 0 V$
V _{DS(on)}	Drain to Source "On" Voltage			1	V	I _D = 2mA, V _{GS} = 10V
$V_{GS(th)}$	Gate to Source Threshold Voltage	1		5		$V_{DS} = 10V, I_{D} = 10\mu A$
I _{GSS}	Gate Leakage Current			10	рА	$V_{GS} = \pm 30V, V_{DS} = 0V$
I _{DSS}	Drain Leakage Current "Off"			10	nA	V _{DS} = 10V, V _{GS} = 0V
I _{D(on)}	Drain Current "On"	3			mA	V _{GS} = 10V, V _{DS} = 10V
g fs	Forward Transconductance	1000			μS	$V_{DS} = 10V, I_{D} = 2mA, f = 1MHz$
r _{DS(on)}	Drain to Source "On" Resistance			300	Ω	$V_{GS} = 10V, I_D = 0A, f = 1kHz$
C _{rss}	Reverse Transfer Capacitance		110	1.3		$V_{DS} = 0V, V_{GS} = 0V, f = 140kHz$
C _{iss}	Input Capacitance			5.0	pF	V _{DS} = 10V, V _{GS} = 0V, <i>f</i> = 140kHz
$C_{\sf db}$	Drain to Body Capacitance			5.0		V _{DB} = 10V, <i>f</i> = 140kHz
	A LE WWW.DZSD.CO					


SWITCHING CHARACTERISTICS


SYMBOL	CHARACTERISTIC	MAX	UNITS		
$t_{d(on)}$	Turn On Delay Time	45			
t _r	Turn On Rise Time	65	20		
$t_{d(off)}$	Turn Off Delay Time	60	ns		
t _f	Turn Off Fall Time	100			

SWITCHING TEST CIRCUIT

TIMING WAVEFORMS

- 1. Absolute maximum ratings are limiting values above which serviceability may be impaired.
- 2. Device must not be tested at $\pm 125 \text{V}$ more than once or longer than 300ms.

Information furnished by Linear Integrated Systems is believed to be accurate and reliable. However, no responsibility is assumed for its use; nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Linear Integrated Systems.