

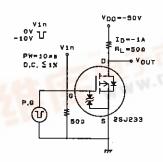
No.3818

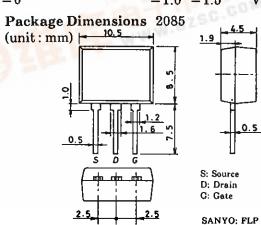
2SJ233

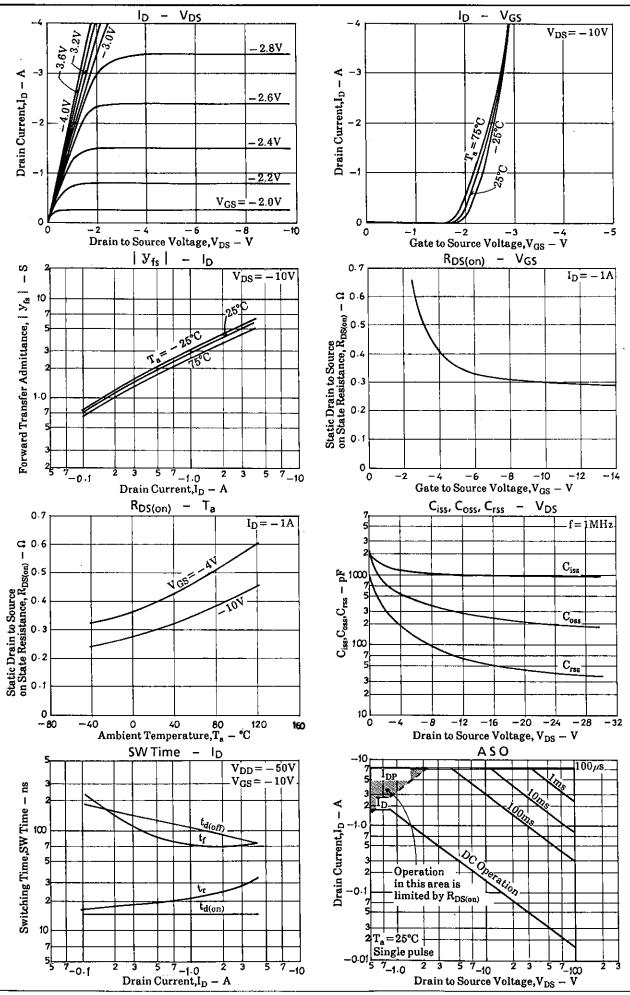
P-Channel MOS Silicon FET

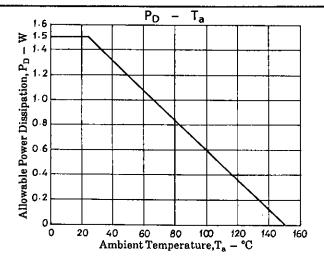
Very High-Speed

Switching Applications


Features


- · Low ON resistance.
- · Very high-speed switching.
- · Low-voltage drive.
- · Its height onboard is 9.5mm.
- · Meets radial taping.


Absolute Maximum Ratings at		unit		
Drain to Source Voltage	$ m V_{DSS}$		-100	V
Gate to Source Voltage	V_{GSS}		±15	V
Drain Current(DC)	$I_{\mathbf{D}}$		-1.8	A
Drain Current(Pulse)	I_{DP}	PW≤10µs, duty cycle≤1%	-7.2	Α
Allowable Power Dissipation	$P_{\mathbf{D}}$	- min (F	1.5	W
Channel Temperature	Tch		150	$^{\circ}\mathrm{C}$
Storage Temperature	Tstg		-55 to +150	$^{\circ}\mathrm{C}$
Electrical Characteristics at To	=25°C		min tyn	may


Electrical Characteristics at Ta=	25°C		min	typ	max	unit
D-S Breakdown Voltage	V _{(BR)DSS}	$I_D = -1 \text{mA,V}_{GS} = 0$	-100	• 1		V
G-S Breakdown Voltage		$I_{G} = \pm 100 \mu A, V_{DS} = 0$	±15			V
Zero Gate Voltage	I_{DSS}	$V_{DS} = -100V, V_{GS} = 0$			-100	μ A
Drain Current						
Gate to Source Leakage Current	I_{GSS}	$V_{GS} = \pm 12V, V_{DS} = 0$			±10	μ A
Cutoff Voltage	$V_{GS(off)}$	$V_{DS} = -10V, I_D = -1mA$	-1.0		-2.0	V
Forward Transfer Admittance	$ \mathbf{y_{fs}} $	$V_{DS} = -10V, I_D = -1A$	1.8	2.8		S
Static Drain to Source	$R_{DS(on)}$	$I_D = -1A, V_{GS} = -10V$		0.3	0.4	Ω
on State Resistance	$R_{DS(on)}$	$I_D = -1A, V_{GS} = -4V$		0.4	0.55	Ω
Input Capacitance	Ciss	$V_{DS} = -20V, f = 1MHz$		950		· pF
Output Capacitance	Coss	$V_{DS} = -20V_{f} = 1MHz$		200		рF
Reverse Transfer Capacitance	Crss	$V_{DS} = -20V, f = 1MHz$		40		рF
Turn-ON Delay Time	t _{d(on)}	See specified Test Circuit.		15		ns
Rise Time	t_r	"		22		ns
Turn-OFF Delay Time	${ m t_{d(off)}}$	"		110		ns
Fall Time	$\mathbf{t_f}$	"		70		ns
Diode Forward Voltage	V_{SD}	$I_S = -1.8 \text{ A,V}_{GS} = 0$	10	-1.0	-1.5	V

Switching Time Test Circuit

- No products described or contained herein are intended for use in surgical implants, life-support systems, aerospace equipment, nuclear power control systems, vehicles, disaster/crime-prevention equipment and the like, the failure of which may directly or indirectly cause injury, death or property loss.
- Anyone purchasing any products described or contained herein for an above-mentioned use shall:
 - ① Accept full responsibility and indemnify and defend SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors and all their officers and employees, jointly and severally, against any and all claims and litigation and all damages, cost and expenses associated with such use:
 - ② Not impose any responsibility for any fault or negligence which may be cited in any such claim or litigation on SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors or any of their officers and employees jointly or severally.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.