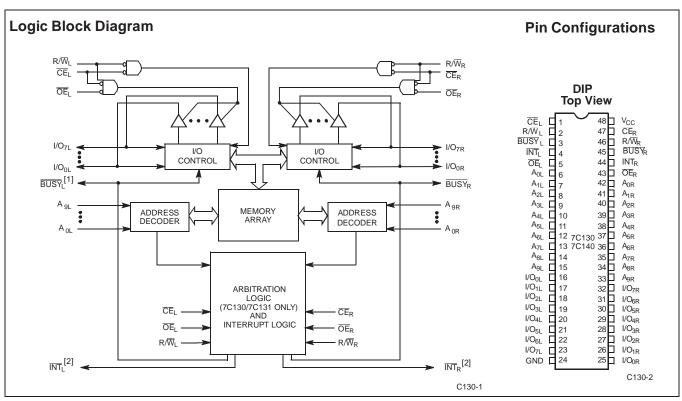


Features

- True Dual-Ported memory cells which allow simultaneous reads of the same memory location
- 1K x 8 organization
- 0.65-micron CMOS for optimum speed/power
- High-speed access: 15 ns
- Low operating power: I_{CC} = 90 mA (max.)
- · Fully asynchronous operation
- · Automatic power-down
- Master CY7C130/CY7C131 easily expands data bus width to 16 or more bits using slave CY7C140/CY7C141
- BUSY output flag on CY7C130/CY7C131; BUSY input on CY7C140/CY7C141
- INT flag for port-to-port communication
- Available in 48-pin DIP (CY7C130/140), 52-pin PLCC and 52-pin TQFP
- Pin-compatible and functionally equivalent to IDT7130/IDT7140

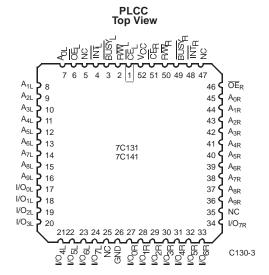

1K x 8 Dual-Port Static Ram

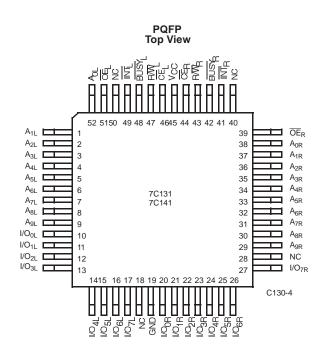
Functional Description

The CY7C130/CY7C131/CY7C140 and CY7C141 are high-speed CMOS 1K by 8 dual-port static RAMs. Two ports are provided permitting independent access to any location in memory. The CY7C130/ CY7C131 can be utilized as either a standalone 8-bit dual-port static RAM or as a master dual-port RAM in conjunction with the CY7C140/CY7C141 slave dual-port device in systems requiring 16-bit or greater word widths. It is the solution to applications requiring shared or buffered data, such as cache memory for DSP, bit-slice, or multiprocessor designs.

Each port has independent control pins; chip enable (\overline{CE}), write enable (R/W), and output enable (\overline{OE}). Two flags are provided on each port, \overline{BUSY} and \overline{INT} . \overline{BUSY} signals that the port is trying to access the same location currently being accessed by the other port. \overline{INT} is an interrupt flag indicating that data has been placed in a unique location (3FF for the left port and 3FE for the right port). An automatic power-down feature is controlled independently on each port by the chip enable (\overline{CE}) pins.

The CY7C130 and CY7C140 are available in 48-pin DIP. The CY7C131 and CY7C141 are available in 52-pin PLCC and PQFP.




Notes:

- CY7C130/CY7C131 (Master): <u>BUSY</u> is open drain output and requires pull-up resistor CY7C140/CY7C141 (Slave): <u>BUSY</u> is input.
- 2. Open drain outputs: pull-up resistor required

Pin Configuration (continued)

Selection Guide

		7C131-15 ^[3,4] 7C141-15	7C131-25 ^[3] 7C141-25	7C130-30 7C131-30 7C140-30 7C141-30	7C130-35 7C131-35 7C140-35 7C141-35	7C130-45 7C131-45 7C140-45 7C141-45	7C130-55 7C131-55 7C140-55 7C141-55
Maximum Access Time (ns)		15	25	30	35	45	55
Maximum Operating	Com'l/Ind	190	170	170	120	90	90
Current (mA)	Military				170	120	120
Maximum Standby	Com'l/Ind	75	65	65	45	35	35
Current (mA)	Military				65	45	45

Maximum Ratings

Notes:

(Above which the useful life may be impaired. For user guidelines, not tested.) Storage Temperature-65°C to +150°C Ambient Temperature with Power Applied......-55°C to +125°C Supply Voltage to Ground Potential (Pin 48 to Pin 24) -0.5V to +7.0V DC Voltage Applied to Outputs in High Z State -0.5V to +7.0V

Output Current into Outputs (LOW)20 mA

15 and 25-ns version available only in PLCC/PQFP packages.

Shaded area contains preliminary information. T_A is the "instant on" case temperature

Static Discharge Voltage	>2001V
(per MIL-STD-883, Method 3015)	
Latch-Up Current	>200 mA

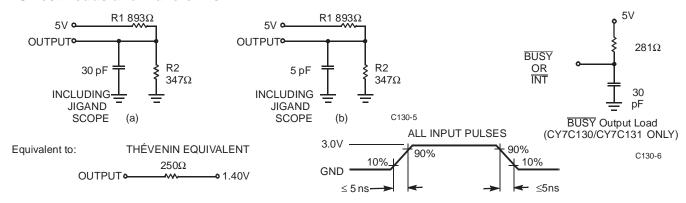
Operating Range

Range	Ambient Temperature	V _{CC}
Commercial	0°C to +70°C	5V ± 10%
Industrial	-40°C to +85°C	5V ± 10%
Military ^[5]	−55°C to +125°C	5V ± 10%

$\textbf{Electrical Characteristics} \ \, \text{Over the Operating Range}^{[6]}$

				7C131 7C14	-15 ^[3,4] 41-15	7C131 7C14	0-30 ^[3] -25,30 40-30 -25,30	7C1 7C1	30-35 31-35 40-35 41-35	7C131 7C140)-45,55 -45,55 -45,55 -45,55	
Parameter	Description	Test Condition	ns	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit
V _{OH}	Output HIGH Voltage	$V_{CC} = Min., I_{OH} = -$	4.0 mA	2.4		2.4		2.4		2.4		V
V _{OL}	Output LOW	$I_{OL} = 4.0 \text{ mA}$			0.4		0.4		0.4		0.4	V
	Voltage	$I_{OL} = 16.0 \text{ mA}^{[7]}$			0.5		0.5		0.5		0.5	
V _{IH}	Input HIGH Voltage			2.2		2.2		2.2		2.2		V
V _{IL}	Input LOW Voltage				0.8		0.8		0.8		0.8	V
I _{IX}	Input Leakage Current	$GND \leq V_I \leq V_CC$		- 5	+5	- 5	+5	-5	+5	- 5	+5	μΑ
I _{OZ}	Output Leakage Current	$\begin{array}{l} {\sf GND} \leq {\sf V}_{\sf O} \leq {\sf V}_{\sf CC}, \\ {\sf Output \ Disabled} \end{array}$		-5	+5	- 5	+5	-5	+5	- 5	+5	μΑ
I _{OS}	Output Short Circuit Current ^[8, 9]	V _{CC} = Max., V _{OUT} = GND			-350		-350		-350		-350	mA
I _{CC}	V_{CC} Operating $\overline{CE} = V_{IL}$,	Com'l		190		170		120		90	mA	
	Supply Current	Outputs Open, f = f _{MAX} ^[10]	Mil						170		120	
I _{SB1}	Standby Current	\overline{CE}_L and $\overline{CE}_R \ge Com$ V_{IH} , $f = f_{MAX}^{[10]}$ Mil	Com'l		75		65		45		35	mA
	Both Ports, TTL Inputs	V_{IH} , $f = f_{MAX}^{I \cap J}$	Mil						65		45	
I _{SB2}	Standby Current	\overline{CE}_L or $\overline{CE}_R \ge V_{IH}$,	Com'l		135		115		90		75	mA
	One Port, TTL Inputs	Active Port Out- puts Open, f = f _{MAX} ^[10]	Mil						115		90	
I _{SB3}	Standby Current	Both Ports CE _I	Com'l		15		15		15		15	mA
	Both Ports, CMOS Inputs	$\begin{array}{l} \text{and } \overline{\text{CE}}_{R} \geq \text{V}_{CC} - \\ \text{0.2V,} \\ \text{V}_{IN} \geq \text{V}_{CC} - \text{0.2V} \\ \text{or } \text{V}_{IN} \leq \text{0.2V, f} = 0 \end{array}$	Mil						15		15	
I _{SB4}	Standby Current	One Port CE _L or	Com'l		125		105		85		70	mA
Notaci	One Port, CMOS Inputs	$\begin{array}{l} \overline{CE}_R \geq V_{CC} - 0.2V, \\ V_{IN} \geq V_{CC} - 0.2V \\ \text{or } V_{IN} \leq 0.2V, \\ \text{Active Port Outputs} \\ \text{Open,} \\ f = f_{MAX}^{[10]} \end{array}$	Mil						105		85	

Notes:


- See the last page of this specification for Group A subgroup testing information.
 BUSY and INT pins only.
 Duration of the short circuit should not exceed 30 seconds.
 This parameter is guaranteed but not tested.
 At f=f_{MAX}, address and data inputs are cycling at the maximum frequency of read cycle of 1/t_{RC} and using AC Test Waveforms input levels of GND to 3V.

Capacitance^[9]

Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$T_A = 25^{\circ}C, f = 1 \text{ MHz},$	15	pF
C _{OUT}	Output Capacitance	$V_{CC} = 5.0V$	10	pF

AC Test Loads and Waveforms

Switching Characteristics Over the Operating Range^[6,11]

		7C131 7C14	-15 ^[3,4] 41-15	7C13	0-25 ^[3] 31-25 40-25 41-25	7C13	30-30 31-30 40-30 41-30	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Unit
READ CYCL	-E							
t _{RC}	Read Cycle Time	15		25		30		ns
t _{AA}	Address to Data Valid ^[12]		15		25		30	ns
t _{OHA}	Data Hold from Address Change	0		0		0		ns
t _{ACE}	CE LOW to Data Valid ^[12]		15		25		30	ns
t _{DOE}	OE LOW to Data Valid ^[12]		10		15		20	ns
t _{LZOE}	OE LOW to Low Z ^[9,13, 14]	3		3		3		ns
t _{HZOE}	OE HIGH to High Z ^[9,13, 14]		10		15		15	ns
t _{LZCE}	CE LOW to Low Z ^[9,13, 14]	3		5		5		ns
t _{HZCE}	CE HIGH to High Z ^[9,13, 14]		10		15		15	ns
t _{PU}	CE LOW to Power-Up ^[9]	0		0		0		ns
t _{PD}	CE HIGH to Power-Down ^[9]		15		25		25	ns
WRITE CYC	LE ^[15]	•		•				
t _{WC}	Write Cycle Time	15		25		30		ns
t _{SCE}	CE LOW to Write End	12		20		25		ns
t _{AW}	Address Set-Up to Write End	12		20		25		ns
t _{HA}	Address Hold from Write End	2		2		2		ns
t _{SA}	Address Set-Up to Write Start	0		0		0		ns
t _{PWE}	R/W Pulse Width	12		15	ĺ	25		ns
t _{SD}	Data Set-Up to Write End	10		15		15		ns
t _{HD}	Data Hold from Write End	0		0		0		ns
t _{HZWE}	R/\overline{W} LOW to High $Z^{[14]}$		10		15		15	ns
t _{LZWE}	R/W HIGH to Low Z ^[14]	0		0		0		ns

Notes:

- Test conditions assume signal transition times of 5 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V and output loading of the specified

13.

 I_{O_1}/I_{O_1} , and 30-pF load capacitance. AC Test Conditions use $V_{O_1} = 1.4V$. At any given temperature and voltage condition for any given device, t_{HZCE} is less than t_{LZOE} is less than t_{LZOE} . t_{LZOE} , t_{HZOE} and t_{HZDE} are tested with $C_L = 5$ pF as in part (b) of AC Test Loads. Transition is measured t_{HZOE} and t_{HZDE} are tested with t_{LZOE} . t_{HZOE} and t_{HZDE} are tested with t_{LZOE} and t_{HZDE} is less than t_{LZOE} . t_{LZDE} is less than t_{LZOE} and t_{HZDE} is less than t_{LZOE} . t_{LZDE} is less than t_{LZOE} and t_{HZDE} is less than t_{LZOE} . t_{LZDE} is less than t_{LZOE} is less than t_{LZOE} and t_{HZDE} is less than t_{LZOE} . t_{LZDE} is less than t_{LZOE} is less than t_{LZOE} and t_{HZDE} is less than t_{LZOE} . t_{LZDE} is less than t_{LZOE} and t_{HZDE} is less than t_{LZOE} and t_{HZDE} is less than t_{LZOE} . t_{LZDE} is less than t_{LZOE} is less than t_{LZOE} is less than t_{LZOE} and t_{HZDE} is less than t_{LZOE} . t_{LZOE} is less than t_{LZOE} is less than t_{LZOE} and t_{LZOE} is less than t_{LZOE} is less than t_{LZOE} . 14. 15.

Switching Characteristics Over the Operating Range^[6,11] (continued)

		7C131-15 ^[3,4] 7C141-15		7C130-25 ^[3] 7C131-25 7C140-25 7C141-25		7C130-30 7C131-30 7C140-30 7C141-30		
Parameter Description		Min.	Max.	Min.	Max.	Min.	Max.	Unit
BUSY/INTE	RRUPT TIMING							
t _{BLA}	BUSY LOW from Address Match		15		20		20	ns
t _{BHA}	BUSY HIGH from Address Mismatch ^[16]		15		20		20	ns
t _{BLC}	BUSY LOW from CE LOW		15		20		20	ns
t _{BHC}	BUSY HIGH from CE HIGH ^[16]		15		20		20	ns
t _{PS}	Port Set Up for Priority	5		5		5		ns
t _{WB} ^[17]	R/W LOW after BUSY LOW	0		0		0		ns
t _{WH}	R/W HIGH after BUSY HIGH	13		20		30		ns
t _{BDD}	BUSY HIGH to Valid Data		15		25		30	ns
t _{DDD}	Write Data Valid to Read Data Valid		Note 18		Note 18		Note 18	ns
t _{WDD}	Write Pulse to Data Delay		Note 18		Note 18		Note 18	ns
INTERRUPT	TIMING				•		-	_
t _{WINS}	R/W to INTERRUPT Set Time		15		25		25	ns
t _{EINS}	CE to INTERRUPT Set Time		15		25		25	ns
t _{INS}	Address to INTERRUPT Set Time		15		25		25	ns
t _{OINR}	OE to INTERRUPT Reset Time ^[16]		15		25		25	ns
t _{EINR}	CE to INTERRUPT Reset Time ^[16]		15		25		25	ns
t _{INR}	Address to INTERRUPT Reset Time ^[16]		15		25		25	ns

Notes:

Switching Characteristics Over the Operating Range^[6,11]

		7C1:	30-35 31-35 40-35 41-35	7C13 7C13 7C14 7C14	1-45 0-45	7C13	30-55 31-55 40-55 41-55	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Unit
READ CYCL	E		•					
t _{RC}	Read Cycle Time	35		45		55		ns
t _{AA}	Address to Data Valid ^[12]		35		45		55	ns
t _{OHA}	Data Hold from Address Change	0		0		0		ns
t _{ACE}	CE LOW to Data Valid ^[12]		35		45		55	ns
t _{DOE}	OE LOW to Data Valid ^[12]		20		25		25	ns
t _{LZOE}	OE LOW to Low Z ^[9,13, 14]	3		3		3		ns
t _{HZOE}	OE HIGH to High Z ^[9,13, 14]		20		20		25	ns
t _{LZCE}	CE LOW to Low Z ^[9,13, 14]	5		5		5		ns
t _{HZCE}	CE HIGH to High Z ^[9,13, 14]		20		20		25	ns
t _{PU}	CE LOW to Power-Up ^[9]	0		0		0		ns
t _{PD}	CE HIGH to Power-Down ^[9]		35		35		35	ns

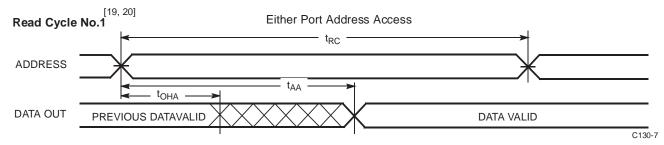
^{16.} These parameters are measured from the input signal changing, until the output pin goes to a high-impedance state.

17. CY7C140/CY7C141 only.

18. A write operation on Port A, where Port A has priority, leaves the data on Port B's outputs undisturbed until one access time after one of the following: BUSY on Port B goes HIGH.

Port B's address is toggled.

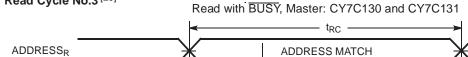
CE for Port B is toggled.

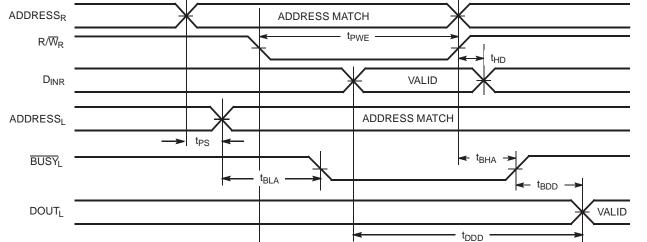

RW for Port B is toggled during valid read.

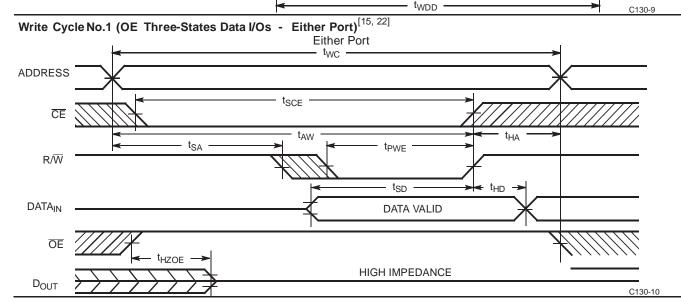
$\textbf{Switching Characteristics} \ \ \text{Over the Operating Range}^{[6,11]} \ \ (\text{continued})$

		7C13	7C130-35 7C131-35 7C140-35 7C141-35		7C130-45 7C131-45 7C140-45 7C141-45		7C130-55 7C131-55 7C140-55 7C141-55	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Unit
WRITE CYC			1	Г		Т	Г	1
t _{WC}	Write Cycle Time	35		45		55		ns
t _{SCE}	CE LOW to Write End	30		35		40		ns
t _{AW}	Address Set-Up to Write End	30		35		40		ns
t _{HA}	Address Hold from Write End	2		2		2		ns
t _{SA}	Address Set-Up to Write Start	0		0		0		ns
t _{PWE}	R/W Pulse Width	25		30		30		ns
t _{SD}	Data Set-Up to Write End	15		20		20		ns
t _{HD}	Data Hold from Write End	0		0		0		ns
t _{HZWE}	R/\overline{W} LOW to High $Z^{[14]}$		20		20		25	ns
t _{LZWE}	R/\overline{W} HIGH to Low $Z^{[14]}$	0		0		0		ns
BUSY/INTER	RRUPT TIMING							
t _{BLA}	BUSY LOW from Address Match		20		25		30	ns
t _{BHA}	BUSY HIGH from Address Mismatch ^[16]		20		25		30	ns
t _{BLC}	BUSY LOW from CE LOW		20		25		30	ns
t _{BHC}	BUSY HIGH from CE HIGH ^[16]		20		25		30	ns
t _{PS}	Port Set Up for Priority	5		5		5		ns
t _{WB} ^[17]	R/W LOW after BUSY LOW	0		0		0		ns
t _{WH}	R/W HIGH after BUSY HIGH	30		35		35		ns
t _{BDD}	BUSY HIGH to Valid Data		35		45		45	ns
t _{DDD}	Write Data Valid to Read Data Valid		Note 18		Note 18		Note 18	ns
t _{WDD}	Write Pulse to Data Delay		Note 18		Note 18		Note 18	ns
INTERRUPT	TIMING			•		•	•	
t _{WINS}	R/W to INTERRUPT Set Time		25		35		45	ns
t _{EINS}	CE to INTERRUPT Set Time		25		35		45	ns
t _{INS}	Address to INTERRUPT Set Time		25		35		45	ns
t _{OINR}	OE to INTERRUPT Reset Time ^[16]		25		35		45	ns
t _{EINR}	CE to INTERRUPT Reset Time ^[16]		25		35		45	ns
t _{INR}	Address to INTERRUPT Reset Time ^[16]		25		35		45	ns

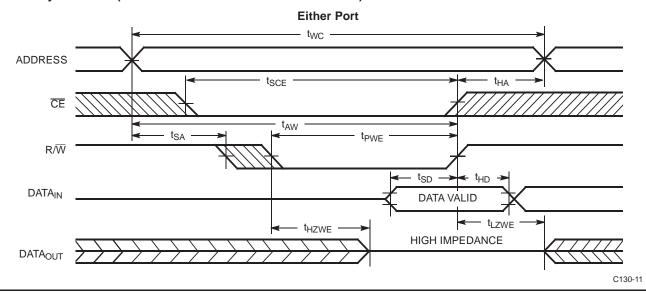
Switching Waveforms


Notes:

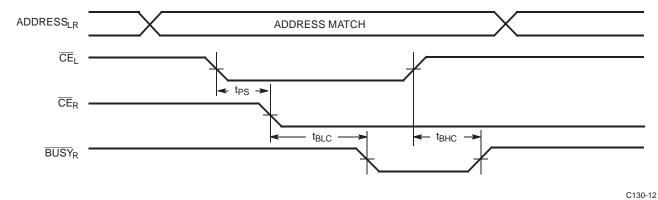

^{19.} R/ \overline{W} is HIGH for read cycle. 20. Device is continuously selected, $\overline{CE} = V_{\parallel L}$ and $\overline{OE} = V_{\parallel L}$



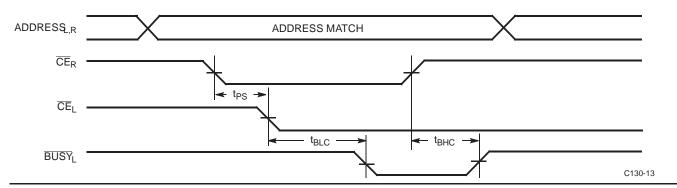
Switching Waveforms (continued)


Notes:

Address valid prior to or coincident with \overline{CE} transition LOW. If \overline{OE} is LOW during a R/W controlled write cycle, the write pulse width must be the larger of t_{PWE} or $t_{HZWE} + t_{SD}$ to allow the data I/O pins to enter high impedance and for data to be placed on the bus for the required t_{SD} .


Switching Waveforms (continued)

Write Cycle No. 2 ($R\overline{/W}$ Three-States Data I/Os - Either Port) $^{[16,\ 23]}$

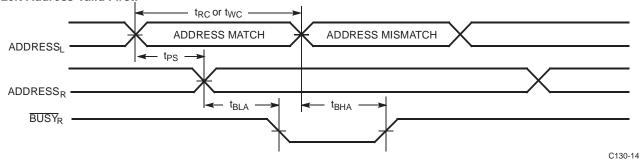


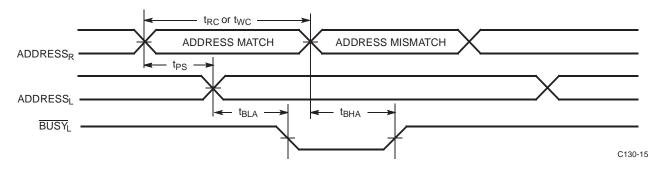
Busy Timing Diagram No. 1 (CE Arbitration)

CE_L Valid First:

CE_R Valid First:

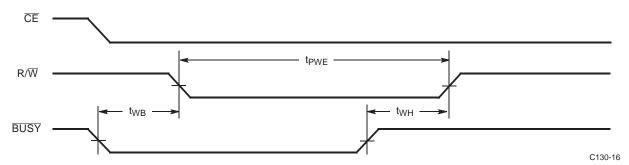
Note


23. If the $\overline{\text{CE}}$ LOW transition occurs simultaneously with or after the R/W LOW transition, the outputs remain in the high-impedance state


Switching Waveforms (continued)

Busy Timing Diagram No. 2 (Address Arbitration)

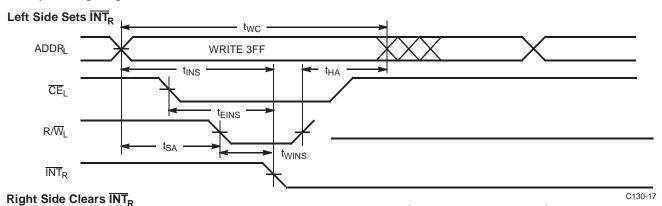
Left Address Valid First:

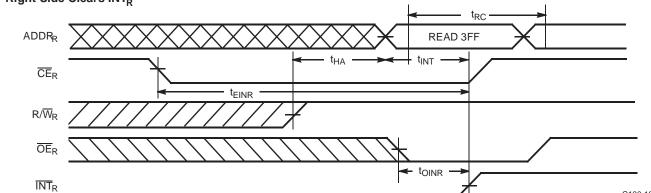


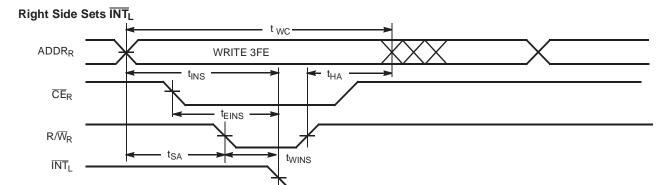
Right Address Valid First:

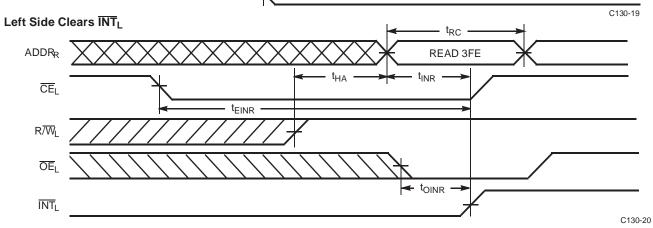
Busy Timing Diagram No. 3

Write with BUSY (Slave:CY7C140/CY7C141)

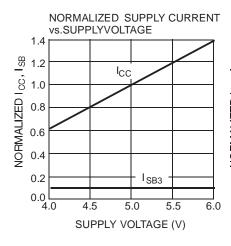


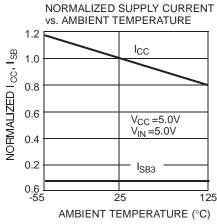

C130-18

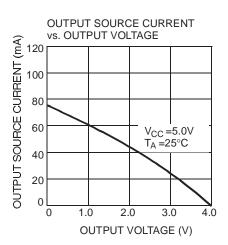


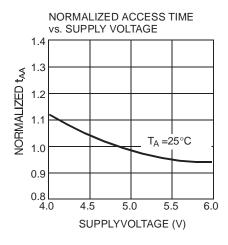

Switching Waveforms (continued)

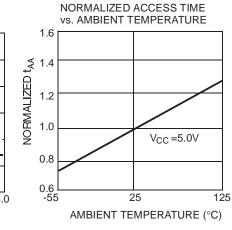
Interrupt Timing Diagrams

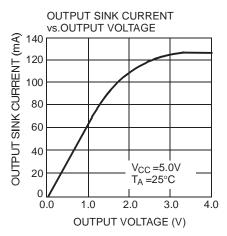


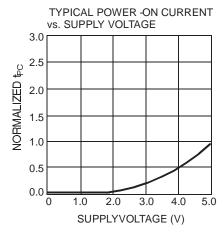


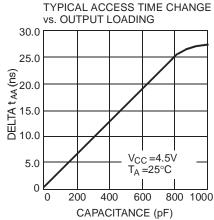


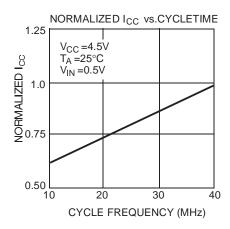



Typical DC and AC Characteristics









Ordering Information

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
30	CY7C130-30PC	P25	48-Lead (600-Mil) Molded DIP	Commercial
	CY7C130-30PI	P25	48-Lead (600-Mil) Molded DIP	Industrial
35	CY7C130-35PC	P25	48-Lead (600-Mil) Molded DIP	Commercial
	CY7C130-35PI	P25	48-Lead (600-Mil) Molded DIP	Industrial
	CY7C130-35DMB	D26	48-Lead (600-Mil) Sidebraze DIP	Military
45	CY7C130-45PC	P25	48-Lead (600-Mil) Molded DIP	Commercial
	CY7C130-45PI	P25	48-Lead (600-Mil) Molded DIP	Industrial
	CY7C130-45DMB	D26	48-Lead (600-Mil) Sidebraze DIP	Military
55	CY7C130-55PC	P25	48-Lead (600-Mil) Molded DIP	Commercial
	CY7C130-55PI	P25	48-Lead (600-Mil) Molded DIP	Industrial
	CY7C130-55DMB	D26	48-Lead (600-Mil) Sidebraze DIP	Military

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
15	CY7C131-15JC	J69	52-Lead Plastic Leaded Chip Carrier	Commercial
	CY7C131-15NC	N52	52-Pin Plastic Quad Flatpack]
25	CY7C131-25JC	J69	52-Lead Plastic Leaded Chip Carrier	Commercial
	CY7C131-25NC	N52	52-Pin Plastic Quad Flatpack	
	CY7C131-25JI	J69	52-Lead Plastic Leaded Chip Carrier	Industrial
	CY7C131-25NI	N52	52-Pin Plastic Quad Flatpack	
30	CY7C131-30JC	J69	52-Lead Plastic Leaded Chip Carrier	Commercial
	CY7C131-30NC	N52	52-Pin Plastic Quad Flatpack]
	CY7C131-30JI	J69	52-Lead Plastic Leaded Chip Carrier	Industrial
35	CY7C131-35JC	J69	52-Lead Plastic Leaded Chip Carrier	Commercial
	CY7C131-35NC	N52	52-Pin Plastic Quad Flatpack]
	CY7C131-35JI	J69	52-Lead Plastic Leaded Chip Carrier	Industrial
	CY7C131-35NI	N52	52-Pin Plastic Quad Flatpack]
45	CY7C131-45JC	J69	52-Lead Plastic Leaded Chip Carrier	Commercial
	CY7C131-45NC	N52	52-Pin Plastic Quad Flatpack]
	CY7C131-45JI	J69	52-Lead Plastic Leaded Chip Carrier	Industrial
	CY7C131-45NI	N52	52-Pin Plastic Quad Flatpack]
55	CY7C131-55JC	J69	52-Lead Plastic Leaded Chip Carrier	Commercial
	CY7C131-55NC	N52	52-Pin Plastic Quad Flatpack	
	CY7C131-55JI	J69	52-Lead Plastic Leaded Chip Carrier	Industrial
	CY7C131-55NI	N52	52-Pin Plastic Quad Flatpack]

Shaded area contains preliminary information.

Ordering Information (continued)

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
30	CY7C140-30PC	P25	48-Lead (600-Mil) Molded DIP	Commercial
	CY7C140-30PI	P25	48-Lead (600-Mil) Molded DIP	Industrial
35	CY7C140-35PC	P25	48-Lead (600-Mil) Molded DIP	Commercial
	CY7C140-35PI	P25	48-Lead (600-Mil) Molded DIP	Industrial
	CY7C140-35DMB	D26	48-Lead (600-Mil) Sidebraze DIP	Military
45	CY7C140-45PC	P25	48-Lead (600-Mil) Molded DIP	Commercial
	CY7C140-45PI	P25	48-Lead (600-Mil) Molded DIP	Industrial
	CY7C140-45DMB	D26	48-Lead (600-Mil) Sidebraze DIP	Military
55	CY7C140-55PC	P25	48-Lead (600-Mil) Molded DIP	Commercial
	CY7C140-55PI	P25	48-Lead (600-Mil) Molded DIP	Industrial
	CY7C140-55DMB	D26	48-Lead (600-Mil) Sidebraze DIP	Military

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
15	CY7C141-15JC	J69	52-Lead Plastic Leaded Chip Carrier	Commercial
	CY7C141-15NC	N52	52-Pin Plastic Quad Flatpack]
25	CY7C141-25JC	J69	52-Lead Plastic Leaded Chip Carrier	Commercial
	CY7C141-25NC	N52	52-Pin Plastic Quad Flatpack]
	CY7C141-25JI	J69	52-Lead Plastic Leaded Chip Carrier	Industrial
	CY7C141-25NI	N52	52-Pin Plastic Quad Flatpack]
30	CY7C141-30JC	J69	52-Lead Plastic Leaded Chip Carrier	Commercial
	CY7C141-30NC	N52	52-Pin Plastic Quad Flatpack]
	CY7C141-30JI	J69	52-Lead Plastic Leaded Chip Carrier	Industrial
35	CY7C141-35JC	J69	52-Lead Plastic Leaded Chip Carrier	Commercial
	CY7C141-35NC	N52	52-Pin Plastic Quad Flatpack]
	CY7C141-35JI	J69	52-Lead Plastic Leaded Chip Carrier	Industrial
	CY7C141-35NI	N52	52-Pin Plastic Quad Flatpack]
45	CY7C141-45JC	J69	52-Lead Plastic Leaded Chip Carrier	Commercial
	CY7C141-45NC	N52	52-Pin Plastic Quad Flatpack]
	CY7C141-45JI	J69	52-Lead Plastic Leaded Chip Carrier	Industrial
	CY7C141-45NI	N52	52-Pin Plastic Quad Flatpack	1
55	CY7C141-55JC	J69	52-Lead Plastic Leaded Chip Carrier	Commercial
	CY7C141-55NC	N52	52-Pin Plastic Quad Flatpack	1
	CY7C141-55JI	J69	52-Lead Plastic Leaded Chip Carrier	Industrial
	CY7C141-55NI	N52	52-Pin Plastic Quad Flatpack	1

Shaded area contains preliminary information.

MILITARY SPECIFICATIONS

Group A Subgroup Testing

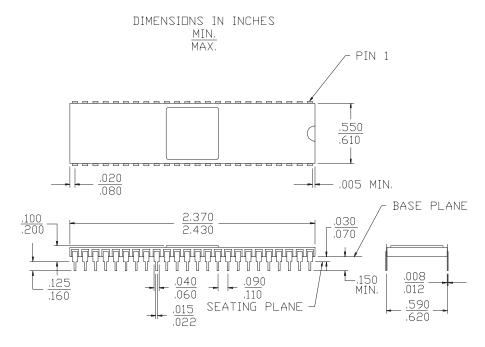
DC Characteristics

Parameter	Subgroups
V _{OH}	1, 2, 3
V _{OL}	1, 2, 3
V _{IH}	1, 2, 3
V _{IL} Max.	1, 2, 3
I _{IX}	1, 2, 3
l _{OZ}	1, 2, 3
I _{CC}	1, 2, 3
I _{SB1}	1, 2, 3
I _{SB2}	1, 2, 3
I _{SB3}	1, 2, 3
I _{SB4}	1, 2, 3

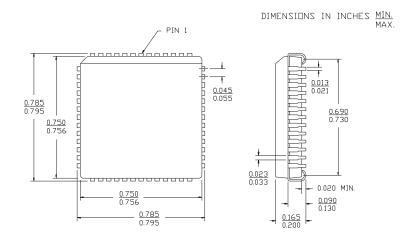
Switching Characteristics

Parameter	Subgroups		
READ CYCLE			
t _{RC}	7, 8, 9, 10, 11		
t _{AA}	7, 8, 9, 10, 11		
t _{ACE}	7, 8, 9, 10, 11		
t _{DOE}	7, 8, 9, 10, 11		
WRITE CYCLE			
t _{WC}	7, 8, 9, 10, 11		
t _{SCE}	7, 8, 9, 10, 11		
t _{AW}	7, 8, 9, 10, 11		
t _{HA}	7, 8, 9, 10, 11		
t _{SA}	7, 8, 9, 10, 11		
t _{PWE}	7, 8, 9, 10, 11		
t _{SD}	7, 8, 9, 10, 11		
t _{HD}	7, 8, 9, 10, 11		

Parameter	Subgroups			
BUSY/INTERRUPT TIMING				
t _{BLA}	7, 8, 9, 10, 11			
t _{BHA}	7, 8, 9, 10, 11			
t _{BLC}	7, 8, 9, 10, 11			
t _{BHC}	7, 8, 9, 10, 11			
t _{PS}	7, 8, 9, 10, 11			
t _{WINS}	7, 8, 9, 10, 11			
t _{EINS}	7, 8, 9, 10, 11			
t _{INS}	7, 8, 9, 10, 11			
t _{OINR}	7, 8, 9, 10, 11			
t _{EINR}	7, 8, 9, 10, 11			
t _{INR}	7, 8, 9, 10, 11			
BUSY TIMING				
t _{WB} ^[24]	7, 8, 9, 10, 11			
t _{WH}	7, 8, 9, 10, 11			
t _{BDD}	7, 8, 9, 10, 11			

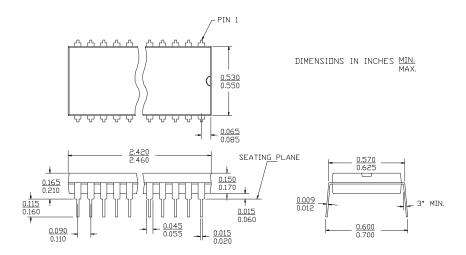

Note:

24. CY7C140/CY7C141 only. Document #: 38-00027-L



Package Diagrams

48-Lead (600-Mil) Sidebraze DIP D26


52-Lead Plastic Leaded Chip Carrier J69

Package Diagrams (continued)

48-Lead (600-Mil) Molded DIP P25

Copyright © Each Manufacturing Company.

All Datasheets cannot be modified without permission.

This datasheet has been download from:

www.AllDataSheet.com

100% Free DataSheet Search Site.

Free Download.

No Register.

Fast Search System.

www.AllDataSheet.com