


PRODUCTION DATA documents contain information current as of publication date. Products conform to specifications per the terms of Texas Instruments standard werrenty. Production processing does not processarily include testing of all parameters.

f.dzsc.com

SN5437, SN54LS37, SN437 SN7437, SN74LS37, SN7437 QUADRUPLE 2 INPUT POSITIVE NAND BUFFERS

schematics (each gate)

Resistor values shown are nominal.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC} (see Note 1)	
Input voltage: '37, 'S37	5.5 V
'LS37	.
Operating free-air temperature: \$N54'	
SN74'	0°C to 70°C
Storage temperature range	

NOTE 1: Voltage values are with respect to network ground terminal.

SN5437, SN7437 QUADRUPLE 2-INPUT POSITIVE-NAND BUFFERS

recommended operating conditions

1

-

			SN5437	7	SN7437			UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	
Vcc	Supply voltage	4.5	5	5.5	4.75	5	5.25	V
VIH	High-level input voltage	2			2			V
VIL	Low-level input voltage		•	0.8			0.8	V
IОН	High-level output current			- 1.2	_		- 1.2	mA
IOL	Low-level output current			48			48	mA
ŤA	Operating free-air temperature	- 55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

		TEST CONDIT			SN5437	. –		SN7437	,	
PARAMETER		TEST CONUT		MIN	TYP‡	MAX	MIN	TYP‡	MAX	
V _{IK}	V _{CC} = MIN,	l _l = – 12 mA				- 1.5			- 1.5	V
VOH	$V_{CC} = MIN,$	V _{IL} = 0.8 V,	IOH = - 1.2 mA	2.4	3.3		2.4	3.3		V
VOL	V _{CC} ≈ MIN,	V _{IH} = 2 V,	lot = 48 mA		0.2	0.4		0.2	0.4	V
Ц	V _{CC} ≈ MAX,	V ₁ = 6.5 V				1			1	mA
ЧН	V _{CC} ≃ MAX,	V = 2.4 V				40			40	μA
կլ	V _{CC} = MAX,	V _I ≈ 0.4 V				- 1.6			- 1.6	mA
loss	V _{CC} = MAX			- 20		- 70	- 18		- 70	mA
Гссн	V _{CC} = MAX,	V ₁ = 0 V			9	15.5		9	15.5	mA
ICCL	V _{CC} = MAX,	V ₁ = 4.5 V			34	54	· ·	34	54	mA

† For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions. ‡ All typical values are at $V_{CC} = 5 V$, $T_A = 25^{\circ}C$.

§ Not more than one output should be shorted at a time, and the duration of the short circuit should not exceed one second.

switching characteristics, $V_{CC} = 5 V$, $T_A = 25^{\circ}C$ (see note 2)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CON	TEST CONDITIONS				UNIT
tPLH	A or B			С. – 45 вГ		13	22	กร
^t PHL			R _L = 133 Ω,	CL = 45 pF		8	15	nŝ

NOTE 2: Load circuits and voltage waveforms are shown in Section 1.

SN54LS37, SN74LS37 QUADRUPLE 2-INPUT POSITIVE-NAND BUFFERS

recommended operating conditions

	S	N54LS	37	SN74LS37			UNIT
	MIN	NOM	MAX	MIN	NOM	MAX	
V _{CC} Supply voltage	4.5	5	5.5	4.75	5	5.25	V
VIH High-level input voltage	2			2			V
VIL Low-level input voltage			0.7			0.8	V
IOH High-level output current			- 1.2			- 1.2	mA
IOL Low-level output current			12		-	24	mA
T _A Operating free-air temperature	- 55		125	0		70	°c

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDIT		8	N54LS	17	5	N74LS	37	
FARAMETER		TEST CONDIT		MIN	TYP‡	MAX	MIN	TYP‡	MAX	
VIК	V _{CC} = MIN,	4ι = - 18 mA				- 1.5			- 1.5	v
V _{QH}	V _{CC} = MIN,	V _{IL} ≭ MAX,	^і он = – 1.2 mA	2.5	3.4		2.7	3.4		V
	V _{CC} = MIN,	V _{1H} = 2 V,	lot = 12 mA		0.25	0.4	1	0.25	0.4	.,
VOL	V _{CC} = MIN,	V _{IH} = 2 V,	<u>lol = 24 mA</u>					0.35	0.5	- V
۱ _۱	V _{CC} = MAX,	V ₁ = 7 V				0.1	í —		0.1	mΑ
- ЧН	V _{CC} = MAX,	V _I ≠ 2.7 V	<u></u>			20			20	μA
կլ	Vcc = MAX,	V _I = 0.4 V		_		- 0.4			- 0.4	mΑ
1 ₀₅ §	V _{CC} = MAX			- 30		130	- 30		- 130	mΑ
¹ ССН	VCC = MAX,	V1 = 0 V			0.9	2		0.9	2	mA
ICCL	V _{CC} = MAX,	V _I = 4.5 V			6	12		6	12	mA

† For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

[‡] All typical values are at $V_{CC} = 5 V$, $T_A = 25^{\circ}C$. § Not more than one output should be shorted at a time, and the duration of the short-circuit should not exceed one second.

switching characteristics, $V_{CC} = 5 V$, $T_A = 25^{\circ}C$ (see note 2)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CON	MIN TYP	MAX	UNIT	
^t PLH	A or B	v	D 667 O		12	24	ns
^t PHL	A OLP	T	R _L = 667 Ω,	CL = 45 pF	12	24	រាន

NOTE 2: Load circuits and voltage waveforms are shown in Section 1.

SN54S37, SN74S37 QUADRUPLE 2-INPUT POSITIVE NAND BUFFERS

. .

recommended operating conditions

			SN54S3	7	SN74S37		7	
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Vcc	Supply voltage	4.5	5	5.5	4.75	- 5	5.25	V
VIН	High-level input voltage	2	<u></u>		2			V
VIL	Low-level input voltage			0.8			0.8	V
юн	High-level output current			- 3			- 3	mA
IOL.	Low-level output current			60			60	mA
TA	Operating free-air temperature	- 55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	TEST CONDITIONS T		TEST CONDITIONS [†] SN54S37		SN54S37				
	TEST CONDIT	IONS	MIN	түр‡	MAX	MIN	TYP‡	MAX	V V V MA mA
Vcc = MIN,	lı = - 18 mA				- 1.2			- 1.2	V
V _{CC} = MIN,	V _{IL} = 0.8 V,	l _{OH} = – 3 mA	2.5	3.4		2.7	3.4		V
V _{CC} = MIN,	V _{IH} = 2 V,	IOL = 60 mA			0.5			0.5	V
Vcc = MAX.	VI = 5.5 V				1			1	mΑ
VCC = MAX,	V ₁ = 2.7 V				0.1			0.1	mA
VCC = MAX,	V ₁ = 0.5 V				- 4			- 4	mΑ
Vcc = MAX			- 50		- 225	- 50		- 225	mΑ
VCC = MAX,	V1 = 0 V			20	36		20	36	mA
V _{CC} = MAX,	V _I = 4.5			46	80		46	80	mA
	$V_{CC} = MIN,$ $V_{CC} = MIN,$ $V_{CC} = MAX,$		$V_{CC} = MIN, V_{IL} = 0.8 \text{ V}, I_{OH} = -3 \text{ mA}$ $V_{CC} = MIN, V_{IH} = 2 \text{ V}, I_{OL} = 60 \text{ mA}$ $V_{CC} = MAX, V_{I} = 5.5 \text{ V}$ $V_{CC} = MAX, V_{I} = 2.7 \text{ V}$ $V_{CC} = MAX, V_{I} = 0.5 \text{ V}$ $V_{CC} = MAX, V_{I} = 0.5 \text{ V}$ $V_{CC} = MAX, V_{I} = 0.5 \text{ V}$	$V_{CC} = MIN$, $I_1 = -18 \text{ mA}$ $V_{CC} = MIN$, $V_{IL} = 0.8 \text{ V}$, $I_{OH} = -3 \text{ mA}$ 2.5 $V_{CC} = MIN$, $V_{IH} = 2 \text{ V}$, $I_{OL} = 60 \text{ mA}$ $V_{CC} = MAX$, $V_1 = 5.5 \text{ V}$ $V_{CC} = MAX$, $V_1 = 2.7 \text{ V}$ $V_{CC} = MAX$, $V_1 = 0.5 \text{ V}$ $V_{CC} = MAX$, $V_1 = 0.5 \text{ V}$ $V_{CC} = MAX$ $V_{CC} = MAX$, $V_1 = 0.5 \text{ V}$ $V_{CC} = MAX$ $V_1 = 5.5 \text{ V}$	$ \begin{array}{c} V_{CC} = MIN, I_1 = -18 \text{ mA} \\ V_{CC} = MIN, V_{IL} = 0.8 \text{ V}, I_{OH} = -3 \text{ mA} \\ V_{CC} = MIN, V_{IH} = 2 \text{ V}, I_{OL} = 60 \text{ mA} \\ V_{CC} = MAX, V_I = 5.5 \text{ V} \\ V_{CC} = MAX, V_I = 2.7 \text{ V} \\ V_{CC} = MAX, V_I = 0.5 \text{ V} \\ V_{CC} = MAX, V_I = 0.5 \text{ V} \\ V_{CC} = MAX, V_I = 0.5 \text{ V} \\ V_{CC} = MAX, V_I = 0.7 \text{ V} \\ V_{CC} = MAX, V_I = 0.7 \text{ V} \\ V_{CC} = MAX, V_I = 0.7 \text{ V} \\ V_{CC} = MAX, V_I = 0.7 \text{ V} \\ V_{CC} = MAX, V_I = 0.7 \text{ V} \\ V_{CC} = MAX, V_I = 0.7 \text{ V} \\ V_{CC} = MAX, V_{I} = 0.7 \text{ V} \\ V$	$V_{CC} = MIN$, $I_I = -18 \text{ mA}$ -1.2 $V_{CC} = MIN$, $V_{IL} = 0.8 \text{ V}$, $I_{OH} = -3 \text{ mA}$ 2.5 $V_{CC} = MIN$, $V_{IH} = 2 \text{ V}$, $I_{OL} = 60 \text{ mA}$ 0.5 $V_{CC} = MAX$, $V_I = 5.5 \text{ V}$ 1 $V_{CC} = MAX$, $V_I = 2.7 \text{ V}$ 0.1 $V_{CC} = MAX$, $V_I = 0.5 \text{ V}$ -4 $V_{CC} = MAX$, $V_I = 0.5 \text{ V}$ -50 $V_{CC} = MAX$, $V_I = 0.7 \text{ V}$ 20	$ \begin{array}{c cccc} V_{CC} = MIN, & I_1 = -18 \text{ mA} & -1.2 \\ \hline V_{CC} = MIN, & V_{IL} = 0.8 \text{ V}, & I_{OH} = -3 \text{ mA} & 2.5 & 3.4 & 2.7 \\ \hline V_{CC} = MIN, & V_{IH} = 2 \text{ V}, & I_{OL} = 60 \text{ mA} & 0.5 \\ \hline V_{CC} = MAX, & V_{I} = 5.5 \text{ V} & 1 & \\ \hline V_{CC} = MAX, & V_{I} = 2.7 \text{ V} & 0.1 & \\ \hline V_{CC} = MAX, & V_{I} = 0.5 \text{ V} & -4 & \\ \hline V_{CC} = MAX, & V_{I} = 0.5 \text{ V} & -50 & -225 & -50 \\ \hline V_{CC} = MAX, & V_{I} = 0 \text{ V} & 20 & 36 & \\ \hline \end{array} $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

Ì

-

† For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions. ‡ All typical values are at $V_{CC} = 5 V$, $T_A = 25^{\circ}C$. § Not more than one output should be shorted at a time, and the duration of the short circuit should not exceed 100 milliseconds.

switching characteristics, $V_{CC} = 5 V$, $T_A = 25^{\circ}C$ (see note 2)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CON	DITIONS	MIN TYP	MAX	UNIT
^t PLH				Ci = 50 pF	4	6.5	ns
^t PHL	A or B		RL = 93 Ω,	C[~ 50 PF	4	6.5	ns
TPLH		R _L = 93 Ω, C _L = 150 pF	6		កទ		
^t PHL			μΓ - 93 75'	CL - 100 PF	6		ns

NOTE 2: Load circuits and voltage waveforms are shown in Section 1.

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1998, Texas Instruments Incorporated