词SN74LVC823ADB供应商 NSTRUMENTS www.ti.com

24小时加急**NF4LVC823A** 专业PCB打样工厂 9-BIT BUS-INTERFACE FLIP-FLOP WITH 3-STATE OUTPUTS

DB, DGV, DW, NS, OR PW PACKAGE

(TOP VIEW)

OE

1D 2

3

4

5

6

7

8

10

12

2D

3D

4D**∏**

5D

6D

8D 9 9D

CLR 11

GND[]

7DN

SCAS305I-MARCH 1993-REVISED FEBRUARY 2005

24 Vcc

23 1Q

22 2Q

20 **1** 4Q

19 5Q

17**1**7Q

16 8Q

21

18

15

13Q

6Q

] 9Q

14 CLKEN

WWW.DZSC.CO

13 CLK

FEATURES

- Operates From 1.65 V to 3.6 V
- Inputs Accept Voltages to 5.5 V
- Max t_{pd} of 7.9 ns at 3.3 V
- Typical V_{OLP} (Output Ground Bounce) <0.8 V at V_{CC} = 3.3 V, T_A = 25°C
- Typical V_{OHV} (Output V_{OH} Undershoot) >2 V at V_{CC} = 3.3 V, T_A = 25° C
- Supports Mixed-Mode Signal Operation on All Ports (5-V Input/Output Voltage With 3.3-V V_{CC})
- Ioff Supports Partial-Power-Down Mode Operation
- Latch-Up Performance Exceeds 250 mA Per **JESD 17**
- ESD Protection Exceeds JESD 22
 - 2000-V Human-Body Model (A114-A)
 - 200-V Machine Model (A115-A)
 - 1000-V Charged-Device Model (C101)

DESCRIPTION/ORDERING INFORMATION

This 9-bit bus-interface flip-flop is designed for 1.65-V to 3.6-V V_{CC} operation.

The SN74LVC823A is designed specifically for driving highly capacitive or relatively low-impedance loads. It is particularly suitable for implementing wider buffer registers, I/O ports, bidirectional bus drivers with parity, and working registers.

With the clock-enable (CLKEN) input low, the nine D-type edge-triggered flip-flops enter data on the low-to-high transitions of the clock. Taking CLKEN high disables the clock buffer, latching the outputs. This device has noninverting data (D) inputs. Taking the clear (CLR) input low causes the nine Q outputs to go low, independently of the clock.

TA	P/	ACKAGE ⁽¹⁾	ORDERABLE PART NUMBER	R TOP-SIDE MARKING
- 192		Tube of 25	SN74LVC823ADW	11/00000
	SOIC – DW	Reel of 2000	SN74LVC823ADWR	LVC823A
	SOP – NS	Reel of 2000	SN74LVC823ANSR	LVC823A
4000 to 0500	SSOP – DB	Reel of 2000	SN74LVC823ADBR	LC823A
–40°C to 85°C		Tube of 60	SN74LVC823APW	
	TSSOP – PW	Reel of 2000	SN74LVC823APWR	LC823A
		Reel of 250	SN74LVC823APWT	
	TVSOP - DGV	Reel of 2000	SN74LVC823ADGVR	LC823A

ORDERING INFORMATION

(1) Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

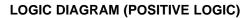
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

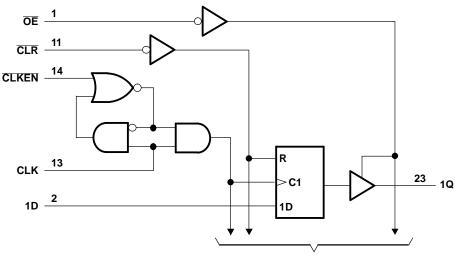
PRODUCTION DATA information is current as of publication date

SCAS305I-MARCH 1993-REVISED FEBRUARY 2005

DESCRIPTION/ORDERING INFORMATION (CONTINUED)

A buffered output-enable (\overline{OE}) input can be used to place the nine outputs in either a normal logic state (high or low logic levels) or the high-impedance state. OE does not affect the internal operations of the latch. Previously stored data can be retained or new data can be entered while the outputs are in the high-impedance state.


Inputs can be driven from either 3.3-V or 5-V devices. This feature allows the use of these devices as translators in a mixed 3.3-V/5-V system environment.


This device is fully specified for partial-power-down applications using Ioff. The Ioff circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

(EACH FLIP-FLOP)										
		INPUTS			OUTPUT					
OE	CLR	CLKEN	CLK	D	Q					
L	L	Х	Х	Х	L					
L	Н	L	\uparrow	Н	Н					
L	Н	L	\uparrow	L	L					
L	Н	Н	Х	Х	Q_0					
н	Х	Х	Х	Х	Z					

ELINICTION TABLE

To Eight Other Channels

SCAS305I-MARCH 1993-REVISED FEBRUARY 2005

Absolute Maximum Ratings⁽¹⁾

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V _{CC}	Supply voltage range		-0.5	6.5	V
VI	Input voltage range ⁽²⁾		-0.5	6.5	V
Vo	Voltage range applied to any output in the h	Voltage range applied to any output in the high-impedance or power-off state ⁽²⁾			
Vo	Voltage range applied to any output in the h	-0.5	V _{CC} + 0.5	V	
I _{IK}	Input clamp current	V ₁ < 0		-50	mA
I _{OK}	Output clamp current	V ₀ < 0		-50	mA
I _O	Continuous output current		±50	mA	
	Continuous current through V_{CC} or GND			±100	mA
		DB package		63	
		DGV package		86	
θ_{JA}	Package thermal impedance ⁽⁴⁾	DW package		46	°C/W
		NS package		65	
		PW package		88	
T _{stg}	Storage temperature range		-65	150	°C

(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.

(3) The value of V_{CC} is provided in the recommended operating conditions table.

(4) The package thermal impedance is calculated in accordance with JESD 51-7.

Recommended Operating Conditions⁽¹⁾

			MIN	MAX	UNIT	
V	Supply voltage	Operating	1.65	3.6	V	
V _{CC}	Supply voltage	Data retention only	1.5		v	
		V _{CC} = 1.65 V to 1.95 V	$0.65 imes V_{CC}$			
V _{IH}	High-level input voltage	V_{CC} = 2.3 V to 2.7 V	1.7		V	
		$V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$	2			
		V _{CC} = 1.65 V to 1.95 V		$0.35 imes V_{CC}$		
V _{IL}	Low-level input voltage	V_{CC} = 2.3 V to 2.7 V		0.7	V	
		V _{CC} = 2.7 V to 3.6 V		0.8		
VI	Input voltage		0	5.5	V	
	Output uskans	High or low state	0	0 V _{CC}		
Vo	Output voltage	3-state	0	5.5	V	
		V _{CC} = 1.65 V		-4		
		$V_{CC} = 2.3 V$		-8		
I _{OH}	High-level output current	V _{CC} = 2.7 V		-12	mA	
		V _{CC} = 3 V		-24		
		V _{CC} = 1.65 V		4		
		V _{CC} = 2.3 V		8		
I _{OL}	Low-level output current	V _{CC} = 2.7 V		12	mA	
		V _{CC} = 3 V		24		
$\Delta t/\Delta v$	Input transition rise or fall rate			10	ns/V	
T _A	Operating free-air temperature		-40	85	°C	

 All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

SCAS305I-MARCH 1993-REVISED FEBRUARY 2005

Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted)

PA	ARAMETER	TEST C	ONDITIONS	V _{cc}	MIN	TYP ⁽¹⁾	MAX	UNIT
		I _{OH} = -100 μA		1.65 V to 3.6 V	$V_{CC} - 0.2$			
		$I_{OH} = -4 \text{ mA}$		1.65 V	1.2			
V		I _{OH} = -8 mA		2.3 V	1.7			V
V _{OH}	L _ 12 mA		2.7 V	2.2			v	
		$I_{OH} = -12 \text{ mA}$		3 V	2.4			
		I _{OH} = -24 mA		3 V	2.2			
		I _{OL} = 100 μA		1.65 V to 3.6 V			0.2	
		I _{OL} = 4 mA		1.65 V			0.45	
V _{OL}		I _{OL} = 8 mA	I _{OL} = 8 mA				0.7	V
		I _{OL} = 12 mA	2.7 V			0.4		
		I _{OL} = 24 mA		3 V			0.55	
I _I		$V_{I} = 0$ to 5.5 V		3.6 V			±5	μA
I _{off}		$V_{I} \text{ or } V_{O} = 5.5 \text{ V}$		0			±10	μA
I _{OZ}		$V_0 = 0$ to 5.5 V		3.6 V			±10	μA
		$V_I = V_{CC}$ or GND		3.6 V			10	<u>,</u>
I _{CC}		$3.6 \text{ V} \le \text{V}_{\text{I}} \le 5.5 \text{ V}^{(2)}$	$I_{O} = 0$	3.0 V			10	μA
ΔI_{CC}		One input at V _{CC} – 0.6 V,	Other inputs at V_{CC} or GND	2.7 V to 3.6 V			500	μA
C	Control inputs			3.3 V	5		۶Ē	
C _i	Data inputs	$V_{I} = V_{CC}$ or GND	3.3 V		4		pF	
Co		$V_0 = V_{CC}$ or GND		3.3 V		7		pF

TEXAS INSTRUMENTS

www.ti.com

Timing Requirements

over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)

			V _{CC} = 1.8 V ± 0.15 V		V_{CC} = 2.5 V ± 0.2 V		V _{CC} = 2.7 V		V_{CC} = 3.3 V ± 0.3 V		UNIT
			MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
f _{clock}	Clock frequency			(1)		(1)		150		150	MHz
t Dulas duration	CLR low	(1)		(1)		3.3		3.3			
t _w	Pulse duration	CLK high or low	(1)		(1)		3.3		3.3		ns
		CLR inactive before CLK1	(1)		(1)		1		1		
t _{su}	Setup time	Data before CLK↑	(1)		(1)		1.3		1.3		ns
		CLKEN low before CLK↑	(1)		(1)		1.8		1.8		
		Data after CLK↑	(1)		(1)		2		2		
t _h	Hold time	CLKEN low after CLK↑	(1)		(1)		1.3		1.3		ns

(1) This information was not available at the time of publication.

SCAS305I-MARCH 1993-REVISED FEBRUARY 2005

Switching Characteristics

over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)

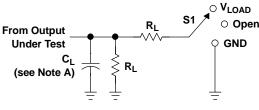
PARAMETER	FROM (INPUT)	TO (OUTPUT)		V _{CC} = 1.8 V ± 0.15 V		V _{CC} = 2.5 V ± 0.2 V		V _{CC} = 2.7 V		3.3 V 3 V	UNIT
			MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
f _{max}			(1)		(1)		150		150		MHz
	CLK	Q	(1)	(1)	(1)	(1)		8.9	1.4	8	
t _{pd}	CLR		(1)	(1)	(1)	(1)		8.8	2.5	7.9	ns
t _{en}	OE	Q	(1)	(1)	(1)	(1)		8.3	1.6	7.2	ns
t _{dis}	OE	Q	(1)	(1)	(1)	(1)		7.1	1.1	6	ns
t _{sk(o)}										1	ns

(1) This information was not available at the time of publication.

Operating Characteristics

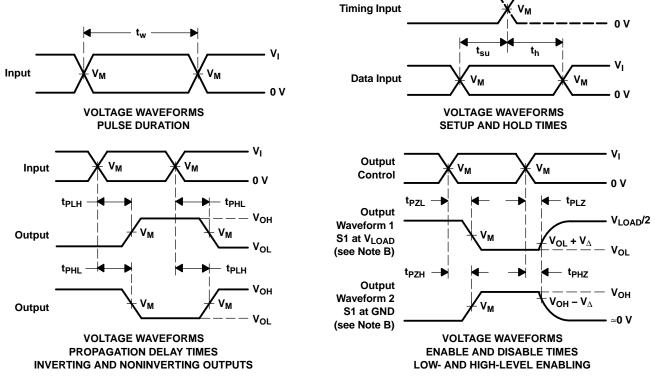
 $T_A = 25^{\circ}C$

PARAMETER			TEST CONDITIONS	V _{CC} = 1.8 V TYP	V _{CC} = 2.5 V TYP	V _{CC} = 3.3 V TYP	UNIT	
C	Power dissipation capacitance	Outputs enabled	f = 10 MHz	(1)	(1)	59	рF	
C _{pd}	per flip-flop	Outputs disabled		(1)	(1)	46		


(1) This information was not available at the time of publication.

SCAS305I-MARCH 1993-REVISED FEBRUARY 2005

٧ı


PARAMETER MEASUREMENT INFORMATION

TEST	S1
t _{PLH} /t _{PHL}	Open
t _{PLZ} /t _{PZL}	V _{LOAD}
t _{PHZ} /t _{PZH}	GND

LOAD CIRCUIT

N N	INPUTS				•	-	
V _{CC}	vı	t _r /t _f	VM	V _{LOAD}	CL	RL	V_{Δ}
$1.8~V\pm0.15~V$	V _{CC}	≤2 ns	V _{CC} /2	$2 \times V_{CC}$	30 pF	1 k Ω	0.15 V
$\textbf{2.5 V} \pm \textbf{0.2 V}$	V _{CC}	≤2 ns	V _{CC} /2	$2 \times V_{CC}$	30 pF	500 Ω	0.15 V
2.7 V	2.7 V	≤2.5 ns	1.5 V	6 V	50 pF	500 Ω	0.3 V
3.3 V \pm 0.3 V	2.7 V	≤2.5 ns	1.5 V	6 V	50 pF	500 Ω	0.3 V

NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
 C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, Z_Q = 50 Ω.
- D. The outputs are measured one at a time, with one transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
- F. t_{PZL} and t_{PZH} are the same as t_{en} .
- G. t_{PLH} and t_{PHL} are the same as t_{pd} .
- H. All parameters and waveforms are not applicable to all devices.

Figure 1. Load Circuit and Voltage Waveforms

PACKAGE OPTION ADDENDUM

9-Aug-2005

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
SN74LVC823ADBLE	OBSOLETE	SSOP	DB	24		TBD	Call TI	Call TI
SN74LVC823ADBR	ACTIVE	SSOP	DB	24	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LVC823ADBRE4	ACTIVE	SSOP	DB	24	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LVC823ADGVR	ACTIVE	TVSOP	DGV	24	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LVC823ADGVRE4	ACTIVE	TVSOP	DGV	24	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LVC823ADW	ACTIVE	SOIC	DW	24	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LVC823ADWE4	ACTIVE	SOIC	DW	24	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LVC823ADWR	ACTIVE	SOIC	DW	24	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LVC823ADWRE4	ACTIVE	SOIC	DW	24	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LVC823ANSR	ACTIVE	SO	NS	24	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LVC823ANSRE4	ACTIVE	SO	NS	24	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LVC823APW	ACTIVE	TSSOP	PW	24	60	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LVC823APWG4	ACTIVE	TSSOP	PW	24	60	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LVC823APWLE	OBSOLETE	TSSOP	PW	24		TBD	Call TI	Call TI
SN74LVC823APWR	ACTIVE	TSSOP	PW	24	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LVC823APWRG4	ACTIVE	TSSOP	PW	24	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LVC823APWT	ACTIVE	TSSOP	PW	24	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LVC823APWTE4	ACTIVE	TSSOP	PW	24	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS) or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined.

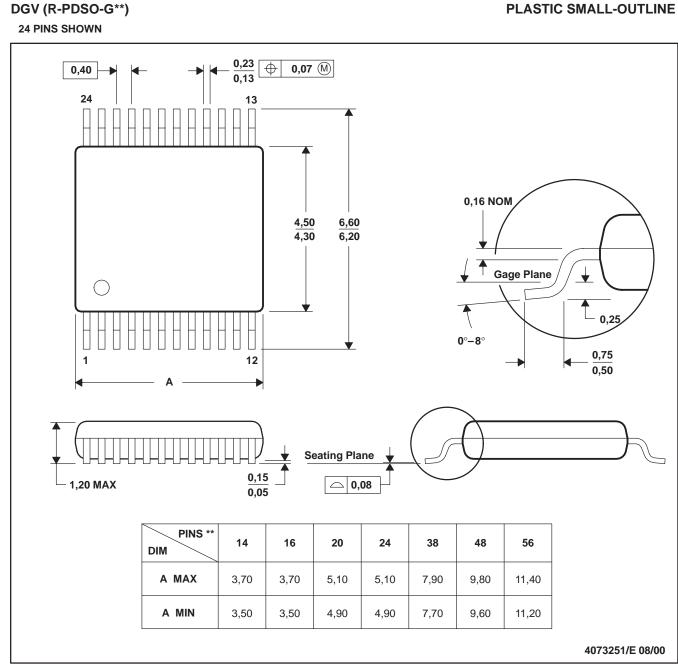
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

PACKAGE OPTION ADDENDUM

9-Aug-2005

⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

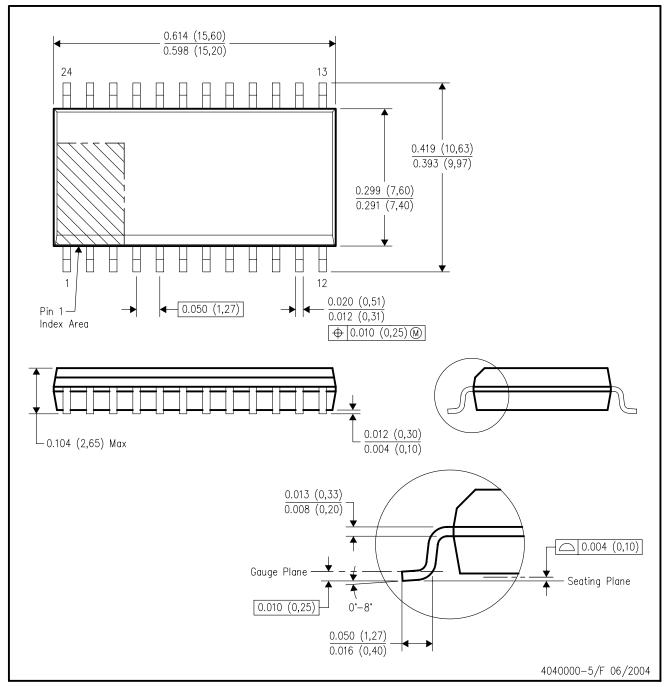

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

MECHANICAL DATA

MPDS006C - FEBRUARY 1996 - REVISED AUGUST 2000

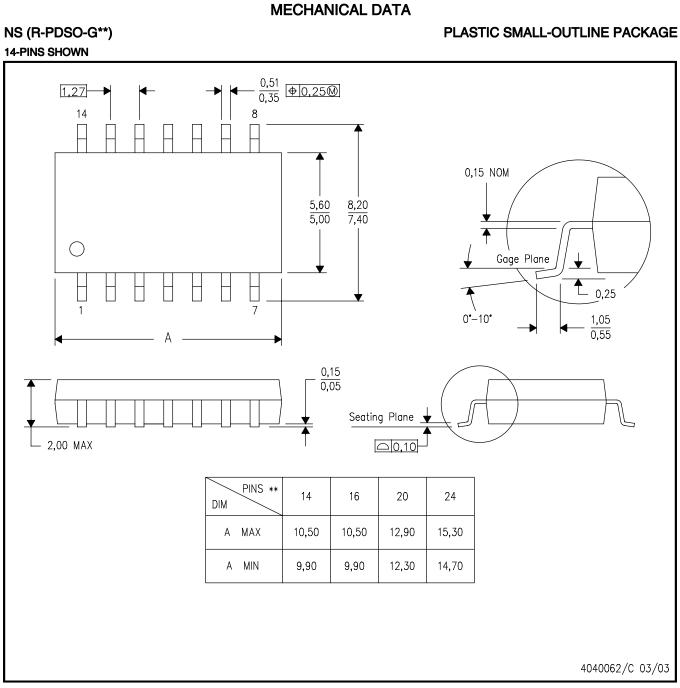
PLASTIC SMALL-OUTLINE


NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15 per side.
- D. Falls within JEDEC: 24/48 Pins MO-153
 - 14/16/20/56 Pins MO-194

DW (R-PDSO-G24)

PLASTIC SMALL-OUTLINE PACKAGE


NOTES: A. All linear dimensions are in inches (millimeters).

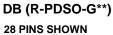
B. This drawing is subject to change without notice.

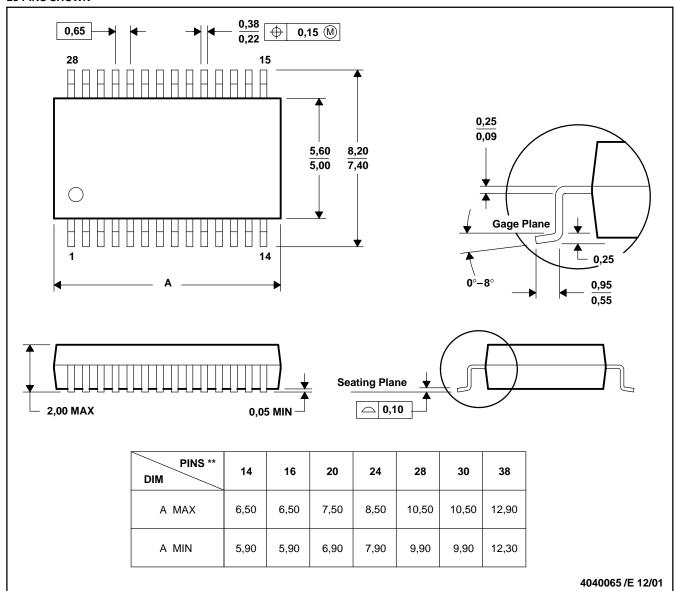
C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).

D. Falls within JEDEC MS-013 variation AD.

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.


C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.



MECHANICAL DATA

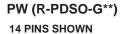
MSSO002E - JANUARY 1995 - REVISED DECEMBER 2001

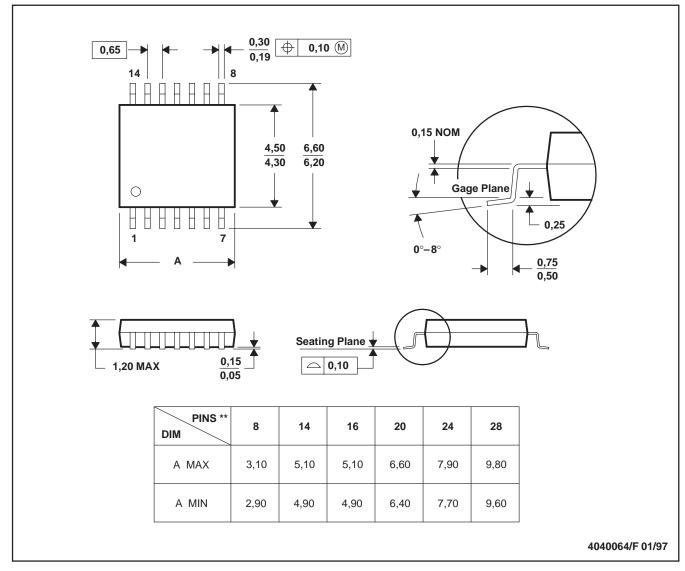
PLASTIC SMALL-OUTLINE

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.


D. Falls within JEDEC MO-150



MECHANICAL DATA

MTSS001C - JANUARY 1995 - REVISED FEBRUARY 1999

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.

D. Falls within JEDEC MO-153

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright © 2005, Texas Instruments Incorporated