NIPPON PRECISION CIRCUITS INC

OVERVIEW

The SM5843A×1 is a multi-function digital filter IC, fabricated using NPC's Molybdenum-gate CMOS process, for digital audio reproduction equipment. It features 8-times oversampling (interpolation), digital deemphasis and soft muting functions. It accepts 16, 18, or 20-bit input data, and outputs data in 18 or 20bit format. It operates using either a 384fs or 256fs system clock.

FEATURES

- Filter configuration (2-channel processing)
 - 8-times oversampling (interpolation)
 - 3-stage FIR configuration
 - · Deemphasis filter
 - IIR filter configuration for correct gain and phase characteristics
 - 2-channel independent ON/OFF control
 - 32/44.1/48 kHz sampling frequency (fs)
 - \times 22-bit parallel multiplier/25-bit 21 accumulator for high precision
 - Overflow limiter
- 2 oversampling filter characteristics
- Sharp roll-off characteristic (response 1)
 - $\leq \pm 0.00005$ dB passband ripple (0 to 0.4535fs)
 - \geq 110 dB stopband attenuation (0.5465fs to 7.4535fs)
- Slow roll-off characteristic (response 2)
 - $\leq \pm 0.00003$ dB passband ripple (0 to 0.235fs)
- ≥ 77 dB stopband attenuation (0.745fs to 7.255fs)
- Soft muting
- Digital attenuator
- Input data format
 - 2s complement, MSB first
 - LR alternating, 16/18/20-bit serial, trailing data
 - LR alternating, 20-bit serial, leading data
 - LR simultaneous, 20-bit serial, leading data
- Output data format
 - 2s complement, MSB first, LR simultaneous
 - 18/20-bit serial
 - BCKO burst (NPC format)
- Dither processing ON/OFF control
- Jitter-free/Sync mode selectable
- 256fs/384fs system clock selectable PD21.2/14.2MHz maximum

con

(384fs/256fs)

frequency

SM5843A×1

Audio Multi-function Digital Filter

- TTL-compatible input/outputs
 28-pin plastic DIP and SOT

- Molybdenum-gate CMOS

APPLICATIONS

- CD players
- DAT players
- PCM systems

ORDERING INFOMATION

Device	Package
SM5843AP1	28pin DIP
SM5843AS1	28pin SOP

PINOUT(TOP VIEW)

28-pin DIP

PACKAGE DIMENSIONS(Unit: mm)

28-pin DIP

28-pin SOP

28-pin SOP

BLOCK DIAGRAM

PIN DESCRIPTION

Number	Name	I/O ¹				Desc	ription			
1	DI/INF2N	lp	Data input w	Data input when INF1N is LOW, and input format select pin when INF1N is HIGH.						
2	BCKI	lp	Input bit cloc	k						
3	CKSLN	lp	Oscillator an	d system cloo	ck select	t input. 384fs wl	nen HIGH,	and 256fs wh	nen LOW.	
			Input format	select pin. IN	F1N and	d INF2N select	the pin fun	ctions below.		
			INF1N	DI/INF2N		Input forma	t	Pin f	unction sele	ction
				Diriti Lit		input ionna		DI/INF2N	IW1N/DIL	IW2N/DIR
4	INF1N	lp	LOW	LOW	IR	alternating, traili	ing data	DI	IW1N	IW2N
			LOW	HIGH		anornaung, train	ing data			100210
			HIGH	LOW	LR a	Ilternating, lead	ing data	INF2N	DIL	DIR
			HIGH	HIGH	LR sir	multaneous, lea	ding data		DIL	Dire
			Input bit leng IW1N and IV			IF1N is LOW, a lata length.	nd left-cha	nnel data inp	ut when INF1	N is HIGH.
			INF	1N	IV	W2N/DIL	IW	1N/DIR	Input b	oit length
						LOW		LOW	20	bits
5	IW1N/DIL	lp		NA/		LOW		HIGH	20) bits
			LO			HIGH		LOW		
						HIGH		HIGH		
			HIC	GH	× ×		20 bits			
6	ХТІ	1	Oscillator inp	out connection	n					
7	XTO	0	Oscillator ou	tput connecti	on					
8	VSS	-	Ground							
9	СКО	0	Oscillator ou	tput clock. Sa	ame freq	uency as XTI.				
10	IW2N/DIR	lp				IF2N is LOW, a lata length as s				2N is HIGH.
11	MDT	lp	Attenuator se	erial data inpu	ut					
12	МСК	lp	Attenuator bi	it clock input						
13	MLEN	lp	Attenuator la	tch enable in	put					
14	RSTN	lp	System rese	t. Reset oper	ation wh	en LOW, and n	ormal oper	ation when H	IIGH.	
15	MUTE	lp	Mute control	signal. Mutin	ig when	HIGH, and norr	nal operati	on when LOV	V.	
16	DEMP	lp	Deemphasis	control signa	al. OFF v	vhen LOW, and	ON when	HIGH.		
			Deemphasis	filter select in	nputs					
17	FSEL1	lp		FSEL1		FS	EL2	Sa	mpling frequ	iency (fs)
				LOW		L	WC		44.1 kH	z
			1	LOW		H	GH		48 kHz	2
18	FSEL2	lp		HIGH		L	WC		Test mo	de
				HIGH HIGH 32 kHz						2
19	OW20N	lp	Output bit ler	ngth select pi	n. 20-bit	output when L	OW, and 18	8-bit output w	hen HIGH.	
20	SYNCN	lp	Sync mode s	select pin. No	rmal syr	nc mode when I	_OW, and j	itter-free mod	le when HIGI	1.
21	TMOD1	lp	Dither proces	Dither processing control. ON when LOW, and OFF when HIGH.						
22	VDD	-	5 V supply							

SM5843A×1

Number	Name	I/O ¹	Description
23	DOR	0	Right-channel data output
24	DOL	0	Left-channel data output
25	WCKO	0	Output word clock
26	ВСКО	0	Output bit clock
27	TMOD2	lp	Filter characteristic select pin. Sharp roll-off (response 1) when HIGH, and slow roll-off (response 2) when LOW.
28	LRCI	lp	Input data sample rate (fs) clock

1. I = input, Ip = Input with pull-up resistor, O = output

SPECIFICATIONS

Absolute Maximum Ratings

 $V_{SS} = 0 V$

Parameter	Symbol	Rating	Unit
Supply voltage range	V _{DD}	-0.3 to 7.0	V
Input voltage range	V _{IN}	-0.3 to V _{DD} + 0.3	V
Storage temperature range	T _{stg}	-40 to 125	٥C
Power dissipation	PD	550 (DIP)	mW
	0	390 (SOP)	11100
Soldering temperature	T _{sld}	255	°C
Soldering time	t _{sld}	10	S

Recommended Operating Conditions

fs = 384 fs (CKSLN = HIGH): $V_{SS} = 0 V$

Parameter	Symbol	Rating	Unit
Supply voltage range	V _{DD}	4.5 to 5.5	V
Operating temperature range	T _{opr}	-20 to 80	°C

fs = 256fs (CKSLN = LOW): $V_{SS} = 0 V$

Parameter	Symbol	Rating	Unit
Supply voltage range	V _{DD}	4.75 to 5.25	V
Operating temperature range	T _{opr}	-20 to 70	٥°

DC Electrical Characteristics

 V_{DD} = 4.5 to 5.5 V, V_{SS} = 0 V, T_a = -20 to 80 °C

Parameter	Symbol	Condition		Rating			
	Jymbol	Condition	min	typ	max	Unit	
Current consumption	I _{DD}	V _{DD} = 5.0 V ¹	-	50	65	mA	
XTI HIGH-level input voltage	V _{IH1}		0.7V _{DD}	-	-	V	
XTI LOW-level input voltage	V _{IL1}		-	-	0.3V _{DD}	V	
XTI AC-coupled input voltage	V _{INAC}		0.3V _{DD}	-	-	V _{p-p}	
HIGH-level input voltage ²	V _{IH2}		2.4	-	_	V	
LOW-level input voltage ²	V _{IL2}		-	-	0.5	V	
HIGH-level output voltage ³	V _{OH}	I _{OH} = -0.4 mA	2.5	-	-	V	
LOW-level output voltage ³	V _{OL}	I _{OL} = 1.6 mA	-	-	0.4	V	
XTI HIGH-level input current	I _{IH}	V _{IN} = V _{DD}	-	10	20	μA	
XTI LOW-level input current	I _{IL1}	V _{IN} = 0 V	-	10	20	μA	
LOW-level input current ²	I _{IL2}	V _{IN} = 0 V	-	10	20	μA	
Input leakage current ²	I _{LH}	V _{IN} = V _{DD}	-	-	1.0	μΑ	

 f_{SYS} = 256fs = 14.2 MHz (CKSLN = LOW), no output load
 Pins DI/INF2N, BCKI, CKSLN, INF1N, IW1N/DIL, IW2N/DIR, MDT, MCK, MLEN, RSTN, MUTE, DEMP, FSEL1, FSEL2, OW20N, SYNCN, LRCI, TMOD1, TMOD2

3. Pins CKO, DOL, DOR, BCKO, WCKO

AC Electrical Characteristics

Input Clock (XTI)

Crystal oscillator

fs = 384fs (CKSLN = HIGH): V_{DD} = 4.5 to 5.5 V, V_{SS} = 0 V, T_a = -20 to 80 °C

Parameter	Symbol		Unit		
Falameter	Symbol	min	typ	max	Onit
Oscillator frequency	f _{OSC}	2.0	-	21.2	MHz

fs = 256fs (CKSLN = LOW): V_{DD} = 4.75 to 5.25 V, V_{SS} = 0 V, T_a = -20 to 70 $^{\circ}\text{C}$

Parameter	Symbol		Unit			
Falanetei	Symbol	min	typ	max	Ont	
Oscillator frequency	f _{OSC}	1.0	-	14.2	MHz	

External clock input

fs = 384fs (CKSLN = HIGH): V_{DD} = 4.5 to 5.5 V, V_{SS} = 0 V, T_a = -20 to 80 °C

Parameter	Symbol		Unit			
i arameter	Symbol	min	typ	max	ont	
Clock HIGH-level pulsewidth	t _{сwн}	20	-	250	ns	
Clock LOW-level pulsewidth	t _{CWL}	20	-	250	ns	
Clock pulse cycle time	t _{XI}	47	-	500	ns	

fs = 256fs (CKSLN = LOW): V_{DD} = 4.75 to 5.25 V, V_{SS} = 0 V, T_a = -20 to 70 °C

Parameter	Symbol		Unit		
	Symbol	min	typ	max	onit
Clock HIGH-level pulsewidth	t _{сwн}	30	-	500	ns
Clock LOW-level pulsewidth	t _{CWL}	30	-	500	ns
Clock pulse cycle time	t _{XI}	70	-	1000	ns

Serial input timing (BCKI, DI, DIL, DIR, LRCI)

 V_{DD} = 4.5 to 5.5 V, V_{SS} = 0 V, T_a = –20 to 80 $^\circ C$

Parameter	Symbol		Unit		
	Symbol	min	typ	max	
BCKI HIGH-level pulsewidth	t _{BCWH}	50	-	-	ns
BCKI LOW-level pulsewidth	t _{BCWL}	50	-	-	ns
BCKI pulse cycle	t _{BCY}	100	-	-	ns
DIN setup time	t _{DS}	50	-	-	ns
DIN hold time	t _{DH}	50	-	-	ns
Last BCKI rising edge to LRCI edge	t _{BL}	50	-	-	ns
LRCI edge to first BCKI rising edge	t _{LB}	50	-	-	ns

Reset timing (RSTN)

 V_{DD} = 4.5 to 5.5 V, V_{SS} = 0 V, T_a = –20 to 80 $^\circ C$

Parameter	Symbol	Symbol Condition		Rating		
	Symbol	Condition	min	typ	max	Unit
RST LOW-level reset pulsewidth t _{RST}		At power-ON	1	-	-	μs
	IRST	At all other times	50	_	_	ns

Attenuator timing (MDT, MCK, MLEN)

 V_{DD} = 4.5 to 5.5 V, V_{SS} = 0 V, T_a = –20 to 80 $^\circ C$

Parameter	Symbol		Unit		
	Symbol	min	typ	max	
MDT setup time	t _{MDS}	20	-	-	ns
MDT hold time	t _{MDH}	20	-	-	ns
MLEN setup time	t _{MCS}	40	-	-	ns
MLEN hold time	t _{MCH}	20	-	-	ns
MLEN LOW-level pulsewidth	t _{MEWL}	20	-	-	ns
MLEN HIGH-level pulsewidth	t _{MEWH}	20	-	-	ns
MLEN pulse cycle time	t _{MLEY}	6	-	-	t _{SYS} 1

1. $t_{SYS} = 1/384$ fs when CKSLN is HIGH, and 1/256fs when CKSLN is LOW.

SM5843A×1

Output timing

 V_{DD} = 4.5 to 5.5 V, V_{SS} = 0 V, T_a = –20 to 80 °C, C_L = 15 pF

Parameter	Symbol	Condition		Rating		Unit
Falainetei	Symbol	Condition	min	min typ		
XTI to XTO delay	t _{XTO}	XTI fall to XTO rise	3	-	15	ns
XTI to CKO delay	t _{CKO}	XTI fall to CKO fall	10	-	35	ns
XTI to BCKO delay (CKSLN = HIGH)	t _{sbH}	XTI fall to BCKO rise	20	-	60	ns
XII IO BOKO Uelay (OKSLIN = HIGH)	t _{sbL}	XTI fall to BCKO fall	20	-	60	115
XTI to BCKO delay (CKSLN = LOW)	t _{sbH}	XTI fall to BCKO rise	20	-	60	ns
ATT to bene delay (Cholin = LOW)	t _{sbL}	XTI fall to BCKO fall	20	-	60	115
	t _{bdH}	BCKO fall to output rise	-5	-	10	ns
BCKO to DOL, DOR, WCKO delay	t _{bdL}	BCKO fall to output fall	-5	-	10	115
CKO TODOL, DOR, WCKO delay	t _{cdH}	CKO fall to output rise	5	-	25	ns
	t _{cdL}	CKO fall to output fall	5	-	25	115
XTO TODOL, DOR, WCKO delay	t _{xdH}	XTO rise to output rise	15	-	50	nc
	t _{xdL}	XTO rise to output fall	15	-	50	ns

Filter Characteristics

8-times interpolation filter (sharp roll-off: response 1)

Parameter	Condition	Rating @ 256fs
Passband		0 to 0.4535fs
Stopband		0.5465fs to 7.4535fs
Passband ripple		≤ ±0.00005 dB
Stopband attenuation		≥ 110 dB
Group delay ¹	SYNCN = LOW	44.625/fs
Group delay	SYNCN = HIGH	44.25/fs to 45.0/fs

1. The digital filter arithmetic computation time from when the completion of data input at rate fs to the start of data output at rate 8fs.

8fs filter response with deemphasis OFF

8fs filter band transition response with deemphasis OFF

8fs filter passband response with deemphasis OFF

8-times interpolation filter (slow roll-off: response 2)

Parameter	Condition	Rating @ 256fs
Passband	< 3 dB attenuation	0 to 0.455fs
Stopband	> 77 dB attenuation	0.745fs to 7.255fs
Passband ripple	0 to 0.235fs	$\leq \pm 0.00003 \text{ dB}$
Stopband attenuation		≥ 77 dB
Group delay ¹	SYNCN = LOW	25.625/fs
Group delay	SYNCN = HIGH	25.25/fs to 26.0/fs

1. The digital filter arithmetic computation time from when the completion of data input at rate fs to the start of data output at rate 8fs.

8fs filter response with deemphasis OFF

8fs filter band transition response with deemphasis OFF

8fs filter passband response with deemphasis OFF

8fs filter passband response [amplitude gain enlarged]

Deemphasis filter

Parameter .		Sampling frequency (fs)			
		32 kHz	44.1 kHz	48 kHz	
Passband bandwidth (kHz)		0 to 14.5	0 to 20.0	0 to 21.7	
Deviation from ideal characteristic	Attenuation	≤ ±0.001 dB			
	viation from ideal characteristic Phase, θ		0 to 1.5°		

Passband response with deemphasis ON (logarithmic frequency axis)

Passband response with deemphasis ON (linear frequency axis)

FUNCTIONAL DESCRIPTION

The basic arithmetic block is shown in figure 1, and the function of each block is described in the following sections.

Figure 1. Arithmetic block diagram

8-times Oversampling (Interpolation)

The interpolation arithmetic block is comprised of 3 cascaded, 2-times FIR interpolation filters, as shown in figure 1.

The input signal is sampled at rate fs, and then 8times oversampling data is output. Sampling noise in the 0.5465fs to 7.4535fs stopband for the sharp rolloff (response 1) characteristic, 0.745fs to 7.255fs for the slow roll-off (response 2) characteristic, is removed by the interpolation filter.

Digital Deemphasis

The digital deemphasis filter has the same construction as analog filters. It is implemented as an IIR filter to faithfully reproduce the gain and phase characteristics of standard analog deemphasis filters. The three sets of filter coefficients for the three fs = 32.0/44.1/48.0 kHz sampling frequencies are selected by FSEL1 and FSEL2 when the sampling frequency is specified, as shown in the following table. Deemphasis is ON when DEMP is HIGH, and OFF when DEMP is LOW.

FSEL1	FSEL2	Sampling frequency (fs)
LOW	LOW	44.1 kHz
LOW	HIGH	48 kHz
HIGH	LOW	Test mode
HIGH	HIGH	32 kHz

Note that test mode is not available for operation.

Soft Muting

The muting function controls the muting of both left and right channels simultaneously. Muting is ON when MUTE is HIGH, muting is OFF when MUTE is LOW. When MUTE goes HIGH, the attenuation changes smoothly from 0 to $-\infty$ dB in 512/fs, or approximately 11.6 ms when fs = 44.1 kHz. When MUTE goes LOW, muting is released and the attenuation changes smoothly from $-\infty$ to 0 dB, again taking approximately 11.6 ms.

Figure 2. Mute timing

When RSTN goes LOW, the DOL and DOR outputs go LOW, immediately muting the output signal.

Muting is released and timing is synchronized immediately after RSTN goes HIGH.

Digital Attenuator (MDT, MCK, MLEN)

The attenuation function is controlled by MDT, MCK and MLEN. MDT data, in 11-bit serial MSB first format, is shifted into an internal shift register on the rising edge of the serial data clock MCK. The contents of the shift register are transferred to the internal processing circuits on the rising edge of the MLEN gate pulse. The attenuation data format is shown in figure 3.

Figure 3. Attenuation data format

The attenuation register data DATT can take on any value between 0 and 1024 (400_{H}). The attenuation is given by the following equation for both left and right channels simultaneously.

Attenuation = $20 \times \log_{10}(DATT/1024)$ [dB]

Thus, the attenuation level is $-\infty$ when DATT is 0, and attenuation is 0 dB when DATT is 1024. DATT is set to 1024 (400_H) after system reset initialization. The attenuation data and attenuation level for sample DATT values are shown in the following table.

Attenuation data DATT	Attenuation level (dB)
000 _H	-∞
001 _H to 3FF _H	60.206 to 0.0085
400 _H	0

Attenuation operation

When an attenuation value DATT is set, the attenuation changes smoothly from the current attenuation level to the new level. The new attenuation data is stored in the attenuation register while the current attenuation data is stored in a temporary register. The attenuation then changes smoothly by ramping between the two register values, updating the temporary register with each step. If a new attenuation value for DATT is set before the previous target attenuation level is reached, the attenuation then ramps toward the new attenuation level.

When MUTE is HIGH, the attenuation level is $-\infty$. When MUTE goes LOW (muting OFF), the attenuation level returns to that of the original value of DATT.

System Clock (XTI, XTO, CKO, CKSLN)

Two system clock frequencies, 384fs and 256fs, can be used. An external clock source can be input on XTI, or a crystal oscillator can be constructed by connecting a crystal between XTI and XTO. The system clock is also buffered and then output on CKO. The system clock frequency selection and the internal clock frequency are shown in the following table.

Parameter	CKSL		
ranneter	HIGH	LOW	
XTI input clock frequency (f _{XI} = 1/t _{XI})	384fs	256fs	
CKO clock frequency	384fs	256fs	
Internal clock frequency (t _{SYS})	$2 \times t_{XI}$	t _{XI}	

Figure 5. Clock generator circuit

Audio Data Input (INF1N, INF2N, IW1N, IW2N, DI, DIL, DIR, BCKI, LRCI)

The input data format and several input pin functions are selected by the state of INF1N and INF2N.

INF1N	DI/INF2N	Input format	Р	in function selection	n
INFIN	DI/INFZIN	inputionnat	DI/INF2N	IW1N/DIL	IW2N/DIR
LOW	LOW	LR alternating ¹ , trailing data	DI	IW1N	IW2N
LOW	HIGH			IVVIIN	IVVZIN
HIGH	LOW	LR alternating, leading data	LR alternating, leading data INF2N DIL		DIR
HIGH	HIGH	LR simultaneous ² , leading data		DIL	DIK

1. Alternating left-channel and right-channel data input on a single input DI.

2. Simultaneous left-channel and right-channel data input on two inputs, DIL and DIR, respectively.

The input data word length is selected by the state of IW1N and IW2N when INF1N is LOW. 20-bit is selected when INF1N is HIGH.

INF1N	IW2N/DIL	IW1N/DIR	Input bit length
	LOW	LOW	20 bits
LOW	LOW	HIGH	20 bits
LOW	HIGH	LOW	18 bits
	HIGH	HIGH	16 bits
HIGH	×	×	20 bits

Jitter-free Function (SYNCN)

The arithmetic circuit and output control timing is derived from the system clock, and is therefore independent of the input LRCI and BCKI clocks. Accordingly, any jitter in the data input clock (LRCI and BCKI) does not cause jitter in the output.

Generally, the internal timing is synchronized to the LRCI input timing after a system reset release, when RSTN goes from LOW to HIGH, on the first LRCI clock start edge. If the input timing and LRCI start edge timing subsequently drift, the input timing is automatically resynchronized when the timing error

Audio Data Output (DOL, DOR, BCKO, WCKO, OW20N)

The output data is in serial, simultaneous left and right-channel, 2s complement, MSB first, BCKO burst (NPC format) format. The output data word length is selected by the state of OW20N. 18-bit output is selected when OW20N is HIGH, and 20-bit output when OW20N is LOW.

8fs serial data is output in sync with the falling edge of the internal system clock and BCKO clock. The number of BCKO bit clock pulses per word changes depending on the output bit length selected (18/20 bits). Consequently, output data is latched into the internal output register on the falling of the edge of an output word clock WCKO, which has timing exceeds a certain value. There are 2 timing error values at which resynchronization occurs, selected by the state of SYNCN.

Jitter-free mode (SYNCN = HIGH)

When SYNCN is HIGH, the timing error value is $\pm 3/8 \times$ (LRCI clock period). When the difference between the input timing and LRCI start edge position do not exceed this value, internal timing is not resynchronized and all functions continue to operate normally.

Sync mode (SYNCN = LOW)

When SYNCN is LOW, the timing error value is $\pm 1 \times$ (system clock period), which is a much smaller timing error tolerance than in jitter-free mode. In this mode, the internal timing is guaranteed to follow the LRCI clock timing within this tolerance, making this mode useful for systems constructed from a multiple number of SM5843A×1 devices.

Note that resynchronization affects the internal operation and can generate a momentary click noise output.

independent of the number of output bits as specified in the following table.

Parameter	Symbol	CKSLN = HIGH	CKSLN = LOW
Bit clock rate	Τ _Β	1/192fs	1/256fs
Data word length	T _{DW}	24t _{SYS}	32t _{SYS}

System Reset (RSTN)

The SM5843A \times 1 must be reset under the following conditions.

- At power-ON.
- When the LRCI clock and internal operation timing need to be resynchronized.
- When switching the CKSLN clock select input.
- When switching between filter characteristics using TMOD2.
- When either or both of the LRCI and XTI clocks stop or are interrupted.

The system is reset by applying a LOW-level pulse on RSTN.

The arithmetic and output timing counters are reset on the first LRCI start edge after reset is released, as long as the XTI clock has already stabilized. The LRCI start edge is determined by the state of INF1N and INF2N. When INF1N is LOW or when both INF1N and INF2N are HIGH, the start edge is the rising edge. When INF1N is HIGH and INF2N is LOW, the start edge is the falling edge.

When RSTN is LOW, the DOL and DOR outputs are LOW, muting the output signal to an attenuation level of $-\infty$.

The power-ON reset pulse can be applied by a microcontroller or, for systems where XTI and LRCI are stable at power-ON, by connecting a capacitor of several hundred pF between RSTN and VSS. For systems that do not use a microcontroller, the capacitor must be chosen such that the XTI and LRCI clocks fully stabilize before RSTN goes from LOW to HIGH.

Figure 6. System reset timing and output muting

Filter Characteristic Selection (TMOD2)

There are 2 digital filter frequency response characteristics incorporated into the SM5843A×1, selected by the state of TMOD2. A sharp roll-off characteristic (response 1) is selected when TMOD2 is HIGH, and a slow roll-off characteristic (response 2) when TMOD2 is LOW. The response is modified by changing the number of taps in the 1st FIR filter stage, as shown in figure 1.

- Filter response 1
 - 153-tap 1st FIR
 - 29-tap 2nd FIR
 - 17-tap 3rd FIR
- Filter response 2
 - 25-tap 1st FIR
 - 29-tap 2nd FIR
 - 17-tap 3rd FIR

Note that the device should be reset when changing TMOD2 during normal operation.

Dither Rounding-off Processing (TMOD1)

Dither rounding-off processing of output data is ON when TMOD1 is LOW. Dither is OFF and normal processing mode is selected when TMOD1 is HIGH.

TIMING DIAGRAMS

Input Timing Examples (DIN, BCKI, LRCI)

Data after lsb (bit20) is ignored. After bit 20, BCKI clock input is not needed. Figure 9. LR simultaneous, leading data, 20-bit input

Output Timing Examples (DOL, DOR, BCKO, WCKO)

The number of output bits is determined by the output bit length selected.

The number of output bits is determined by the output bit length selected.

Figure 11. 18/20-bit output ($\overline{CKSL} = LOW$)

Data Input to Output Delay Timing

This is the digital filter arithmetic computation time from the completion of data input at rate fs (t_{INPUT})

on the rising edge of LRCI to the start of data output at rate 8fs (t_{OUTPUT}) on the falling edge of WCKO.

Filter response	CKSLN	SYNCN	Mode	t _{output} — t _{input}
Filter response 1	LOW (256fs)	LOW	After reset + sync mode	44.625/fs
		HIGH	Jitter-free mode	44.25/fs – 45.0/fs
	HIGH (384fs)	LOW	After reset + sync mode	44.75/fs
		HIGH	Jitter-free mode	44.375/fs – 45.125/fs
Filter response 2	LOW (256fs)	LOW	After reset + sync mode	25.625/fs
		HIGH	Jitter-free mode	25.25/fs – 26.0/fs
	HIGH (384fs)	LOW	After reset + sync mode	25.75/fs
		HIGH	Jitter-free mode	25.375/fs – 26.125/fs

Figure 12. Delay timing (SYNCN = LOW)

Figure 13. Delay timing (SYNCN = CKSLN = LOW)

APPLICATION CIRCUITS

Input Interface Circuits

CD decoder (CXD2500Q) connection

Digital audio interface receiver (YM3623B) connection

Output Interface Circuits

20-bit input $\Sigma\Delta$ DAC (SM5864AP) connection 1

20-bit input $\Sigma\Delta$ DAC (SM5864AP) connection 2

L/R-channel independent complementary PWM output

NIPPON PRECISION CIRCUITS INC. reserves the right to make changes to the products described in this data sheet in order to improve the design or performance and to supply the best possible products. Nippon Precision Circuits Inc. assumes no responsibility for the use of any circuits shown in this data sheet, conveys no license under any patent or other rights, and makes no claim that the circuits are free from patent infringement. Applications for any devices shown in this data sheet are for illustration only and Nippon Precision Circuits Inc. makes no claim or warranty that such applications will be suitable for the use specified without further testing or modification. The products described in this data sheet are not intended to use for the apparatus which influence human lives due to the failure or malfunction of the products. Customers are requested to comply with applicable laws and regulations in effect now and hereinafter, including compliance with export controls on the distribution or dissemination of the products. Customers shall not export, directly or indirectly, any products without first obtaining required licenses and approvals from appropriate government agencies.

NIPPON PRECISION CIRCUITS INC.

4-3, Fukuzumi 2-chome Koto-ku, Tokyo 135-8430, Japan Telephone: 03-3642-6661 Facsimile: 03-3642-6698

NC9626AE 1997.03

NIPPON PRECISION CIRCUITS-24