
#### 查询ADG733BRQ供应商

#### 捷多邦,专业PCB打样工厂,24小时加急出货

## ANALOG DEVICES

# CMOS, 2.5 $\Omega$ Low Voltage, Triple/Quad SPDT Switches

## ADG733/ADG734



#### **GENERAL DESCRIPTION**

The ADG733 and ADG734 are low voltage, CMOS devices comprising three independently selectable SPDT (single pole, double throw) switches and four independently selectable SPDT switches respectively.

Low power consumption and operating supply range of 1.8 V to 5.5 V and dual  $\pm 3$  V make the ADG733 and ADG734 ideal for battery powered, portable instruments. All channels exhibit break-before-make switching action preventing momentary shorting when switching channels. An EN input on the ADG733 is used to enable or disable the device. When disabled, all channels are switched OFF.

These 2–1 multiplexers/SPDT switches are designed on an enhanced submicron process that provides low power dissipation yet gives high switching speed, very low on resistance, high signal bandwidths and low leakage currents. On resistance is in the region of a few ohms, is closely matched between switches and very flat over the full signal range. These parts can operate equally well in either direction and have an input signal range which extends to the supplies.

The ADG733 is available in small TSSOP and QSOP packages, while the ADG734 is available in a small TSSOP package.

#### **PRODUCT HIGHLIGHTS**

- 1. Single/Dual Supply Operation. The ADG733 and ADG734 are fully specified and guaranteed with 3 V and 5 V single supply rails and  $\pm 3$  V dual supply rails.
- 2. Low On Resistance (2.5  $\Omega$  typical).
- 3. Low Power Consumption ( $<0.01 \mu$ W).
- 4. Guaranteed Break-Before-Make Switching Action.



Internation furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its ouse not for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781/329-4700 World Wide Web Site: http://www.analog.com

## $\label{eq:additional} \underline{ADG733} \\ \underline{ADG733} \\ \underline{ADG734} \\ \underline{SPECIFICATIONS^1} (v_{DD} = 5 \ V \pm 10\%, \ V_{SS} = 0 \ V, \ \text{GND} = 0 \ V, \ \text{unless otherwise noted.} )$

|                                                         | <b>B</b> Version       |                 |                  |                                                                                 |
|---------------------------------------------------------|------------------------|-----------------|------------------|---------------------------------------------------------------------------------|
| Parameter                                               | -40°C<br>25°C to +85°C |                 | Unit             | Test Conditions/Comments                                                        |
|                                                         | 23 0                   |                 | Cint             |                                                                                 |
| ANALOG SWITCH                                           |                        | 0 V to V        | V                |                                                                                 |
| Analog Signal Range                                     | 2.5                    | 0 V to $V_{DD}$ |                  | $\mathbf{V} = 0 \mathbf{V} + 0 \mathbf{V}$ $\mathbf{I} = 10 + 0$                |
| On Resistance (R <sub>ON</sub> )                        | 2.5                    | 5.0             | Ω typ            | $V_{\rm S} = 0$ V to $V_{\rm DD}$ , $I_{\rm DS} = 10$ mA;                       |
| On Desistance Match hoters on                           | 4.5                    | 5.0             | $\Omega$ max     | Test Circuit 1<br>Y = 0 Y + V                                                   |
| On-Resistance Match between                             |                        | 0.1             | $\Omega$ typ     | $V_{\rm S} = 0$ V to $V_{\rm DD}$ , $I_{\rm DS} = 10$ mA                        |
| Channels $(\Delta R_{ON})$                              | 0.5                    | 0.4             | $\Omega$ max     | $\mathbf{X} = 0 \mathbf{X} + \mathbf{X} = 1 0 + 0$                              |
| On-Resistance Flatness (R <sub>FLAT(ON)</sub> )         | 0.5                    | 1.0             | $\Omega$ typ     | $V_{\rm S} = 0$ V to $V_{\rm DD}$ , $I_{\rm DS} = 10$ mA                        |
|                                                         |                        | 1.2             | $\Omega$ max     |                                                                                 |
| LEAKAGE CURRENTS                                        |                        |                 |                  | $V_{DD} = 5.5 V$                                                                |
| Source OFF Leakage I <sub>S</sub> (OFF)                 | ±0.01                  |                 | nA typ           | $V_{\rm D} = 4.5 \text{ V}/1 \text{ V}, V_{\rm S} = 1 \text{ V}/4.5 \text{ V};$ |
|                                                         | ±0.1                   | ±0.3            | nA max           | Test Circuit 2                                                                  |
| Channel ON Leakage I <sub>D</sub> , I <sub>S</sub> (ON) | ±0.01                  |                 | nA typ           | $V_{\rm D} = V_{\rm S} = 1$ V, or 4.5 V;                                        |
|                                                         | ±0.1                   | $\pm 0.5$       | nA max           | Test Circuit 3                                                                  |
| DIGITAL INPUTS                                          |                        |                 |                  |                                                                                 |
| Input High Voltage, V <sub>INH</sub>                    |                        | 2.4             | V min            |                                                                                 |
| Input Low Voltage, V <sub>INL</sub>                     |                        | 0.8             | V max            |                                                                                 |
| Input Low Voltage, V <sub>INL</sub>                     |                        | 0.0             | y IIIAA          |                                                                                 |
| I <sub>INL</sub> or I <sub>INH</sub>                    | 0.005                  |                 | μA typ           | $V_{\rm IN} = V_{\rm INL}$ or $V_{\rm INH}$                                     |
| INL OF INH                                              | 0.005                  | ±0.1            | μA typ<br>μA max |                                                                                 |
| C <sub>IN</sub> , Digital Input Capacitance             | 4                      | ± 0.1           | pF typ           |                                                                                 |
|                                                         | -                      |                 | r= -Jr           |                                                                                 |
| DYNAMIC CHARACTERISTICS <sup>2</sup>                    | 10                     |                 |                  | P = 200 O C = 25 - E                                                            |
| t <sub>ON</sub>                                         | 19                     | 24              | ns typ           | $R_L = 300 \Omega$ , $C_L = 35 pF$ ;                                            |
|                                                         | 7                      | 34              | ns max           | $V_s = 3 V$ , Test Circuit 4                                                    |
| t <sub>OFF</sub>                                        | 7                      | 10              | ns typ           | $R_L = 300 \Omega$ , $C_L = 35 pF$ ;                                            |
| $ADC722 + \overline{(EN)}$                              | 20                     | 12              | ns max           | $V_s = 3 V$ , Test Circuit 4                                                    |
| ADG733 $t_{ON}(\overline{EN})$                          | 20                     | 40              | ns typ           | $R_L = 300 \Omega$ , $C_L = 35 pF$ ;<br>$V_r = 3 V$ . Test Circuit 5            |
|                                                         | 7                      | 40              | ns max           | $V_s = 3 V$ , Test Circuit 5                                                    |
| $t_{OFF}(\overline{EN})$                                | 7                      | 10              | ns typ           | $R_L = 300 \Omega$ , $C_L = 35 pF$ ;                                            |
| Dreak Defens Make Time Deler                            | 12                     | 12              | ns max           | $V_s = 3 V$ , Test Circuit 5                                                    |
| Break-Before-Make Time Delay, $t_D$                     | 13                     | 1               | ns typ           | $R_L = 300 \Omega$ , $C_L = 35 pF$ ;                                            |
|                                                         |                        | 1               | ns min           | $V_s = 3 V$ , Test Circuit 6                                                    |
| Charge Injection                                        | ±3                     |                 | pC typ           | $V_S = 2 V, R_S = 0 \Omega, C_L = 1 nF;$                                        |
| Off Icolotion                                           | 62                     |                 | dD torr          | Test Circuit 7<br>$P_{r} = 50 Q_{r} C_{r} = 5 r F_{r} f = 10 MHr;$              |
| Off Isolation                                           | -62                    |                 | dB typ           | $R_L = 50 \Omega, C_L = 5 pF, f = 10 MHz;$                                      |
|                                                         | -82                    |                 | dB typ           | $R_L = 50 \Omega$ , $C_L = 5 pF$ , $f = 1 MHz$ ;                                |
| Channel-to-Channel Crosstalk                            | -62                    |                 | dB typ           | Test Circuit 8<br>$R_L = 50 \Omega$ , $C_L = 5 pF$ , f = 10 MHz;                |
| Ghannei-to-Ghannei Grosstaik                            |                        |                 | • •              |                                                                                 |
|                                                         | -82                    |                 | dB typ           | $R_L = 50 \Omega$ , $C_L = 5 pF$ , $f = 1 MHz$ ;<br>Test Circuit 9              |
| -3 dB Bandwidth                                         | 200                    |                 | MHz typ          | $R_{\rm L} = 50 \ \Omega, C_{\rm L} = 5 \ pF$ , Test Circuit 8                  |
| $C_{\rm S}$ (OFF)                                       | 11                     |                 |                  | $K_{\rm L} = 50.32$ , $C_{\rm L} = 5$ pr, rest circuit o                        |
| $C_{\rm S}$ (OFF)<br>$C_{\rm D}$ , $C_{\rm S}$ (ON)     | 34                     |                 | pF typ<br>pF typ |                                                                                 |
|                                                         |                        |                 | pr typ           |                                                                                 |
| POWER REQUIREMENTS                                      |                        |                 | _                | $V_{DD} = 5.5 V$                                                                |
| I <sub>DD</sub>                                         | 0.001                  |                 | μA typ           | Digital Inputs = 0 V or 5.5 V                                                   |
|                                                         |                        | 1.0             | μA max           |                                                                                 |

NOTES

<sup>1</sup>Temperature range is as follows: B Version: -40°C to +85°C.

<sup>2</sup>Guaranteed by design, not subject to production test.

Specifications subject to change without notice.

## $\label{eq:specifications} SPECIFICATIONS^1 \ (v_{\text{DD}} = 3 \ \text{V} \pm 10\%, \ v_{\text{SS}} = 0 \ \text{V}, \ \text{GND} = 0 \ \text{V}, \ \text{unless otherwise noted.})$

|                                                         | B Version |                           |              |                                                                             |
|---------------------------------------------------------|-----------|---------------------------|--------------|-----------------------------------------------------------------------------|
| Parameter                                               | 25°C      | -40°C<br>to +85°C         | Unit         | Test Conditions/Comments                                                    |
| ANALOG SWITCH                                           |           |                           |              |                                                                             |
| Analog Signal Range                                     |           | $0 \text{ V}$ to $V_{DD}$ | V            |                                                                             |
| On Resistance (R <sub>ON</sub> )                        | 6         | 22                        | Ω typ        | $V_{\rm S} = 0 \text{ V to } V_{\rm DD}, I_{\rm DS} = 10 \text{ mA};$       |
|                                                         | 11        | 12                        | $\Omega$ max | Test Circuit 1                                                              |
| On-Resistance Match between                             |           | 0.1                       | Ω typ        | $V_{\rm S} = 0$ V to $V_{\rm DD}$ , $I_{\rm DS} = 10$ mA                    |
| Channels ( $\Delta R_{ON}$ )                            |           | 0.4                       | $\Omega$ max |                                                                             |
| On-Resistance Flatness (R <sub>FLAT(ON)</sub> )         |           | 3                         | Ω typ        | $V_{\rm S} = 0$ V to $V_{\rm DD}$ , $I_{\rm DS} = 10$ mA                    |
| LEAKAGE CURRENTS                                        |           |                           |              | $V_{\rm DD} = 3.3 \text{ V}$                                                |
| Source OFF Leakage I <sub>S</sub> (OFF)                 | ±0.01     |                           | nA typ       | $V_{\rm S} = 3 \text{ V}/1 \text{ V}, V_{\rm D} = 1 \text{ V}/3 \text{ V};$ |
|                                                         | ±0.1      | ±0.3                      | nA max       | Test Circuit 2                                                              |
| Channel ON Leakage I <sub>D</sub> , I <sub>S</sub> (ON) | ±0.01     |                           | nA typ       | $V_{\rm S} = V_{\rm D} = 1 \text{ V or } 3 \text{ V};$                      |
|                                                         | ±0.1      | $\pm 0.5$                 | nA max       | Test Circuit 3                                                              |
| DIGITAL INPUTS                                          |           |                           |              |                                                                             |
| Input High Voltage, V <sub>INH</sub>                    |           | 2.0                       | V min        |                                                                             |
| Input Low Voltage, V <sub>INL</sub>                     |           | 0.4                       | V max        |                                                                             |
| Input Current                                           |           |                           |              |                                                                             |
| I <sub>INL</sub> or I <sub>INH</sub>                    | 0.005     |                           | μA typ       | $V_{IN} = V_{INL}$ or $V_{INH}$                                             |
|                                                         |           | $\pm 0.1$                 | µA max       |                                                                             |
| C <sub>IN</sub> , Digital Input Capacitance             | 4         |                           | pF typ       |                                                                             |
| DYNAMIC CHARACTERISTICS <sup>2</sup>                    |           |                           |              |                                                                             |
| t <sub>ON</sub>                                         | 28        |                           | ns typ       | $R_{\rm L} = 300 \Omega, C_{\rm L} = 35 \mathrm{pF};$                       |
|                                                         |           | 55                        | ns max       | $V_8 = 2 V$ , Test Circuit 4                                                |
| t <sub>OFF</sub>                                        | 9         |                           | ns typ       | $R_L = 300 \Omega, C_L = 35 pF;$                                            |
|                                                         |           | 16                        | ns max       | $V_8 = 2 V$ , Test Circuit 4                                                |
| ADG733 $t_{ON}(\overline{EN})$                          | 29        |                           | ns typ       | $R_L = 300 \Omega, C_L = 35 pF;$                                            |
|                                                         |           | 60                        | ns max       | $V_8 = 2 V$ , Test Circuit 5                                                |
| $t_{OFF}(\overline{EN})$                                | 9         |                           | ns typ       | $R_{\rm L} = 300 \ \Omega, C_{\rm L} = 35 \ \rm pF;$                        |
|                                                         |           | 16                        | ns max       | $V_{\rm S} = 2$ V, Test Circuit 5                                           |
| Break-Before-Make Time Delay, t <sub>D</sub>            | 22        | 10                        | ns typ       | $R_L = 300 \Omega, C_L = 35 \text{ pF;}$                                    |
|                                                         |           | 1                         | ns min       | $V_8 = 2 V$ , Test Circuit 6                                                |
| Charge Injection                                        | ±3        | -                         | pC typ       | $V_{\rm S} = 1$ V, $R_{\rm S} = 0$ $\Omega$ , $C_{\rm L} = 1$ nF;           |
|                                                         |           |                           | P - JP       | Test Circuit 7                                                              |
| Off Isolation                                           | -62       |                           | dB typ       | $R_{\rm L} = 50 \ \Omega, C_{\rm L} = 5 \ pF, f = 10 \ MHz;$                |
|                                                         | -82       |                           | dB typ       | $R_L = 50 \Omega, C_L = 5 pF, f = 1 MHz;$                                   |
|                                                         |           |                           |              | Test Circuit 8                                                              |
| Channel-to-Channel Crosstalk                            | -62       |                           | dB typ       | $R_{L} = 50 \Omega$ , $C_{L} = 5 pF$ , $f = 10 MHz$ ;                       |
|                                                         | -82       |                           | dB typ       | $R_L = 50 \Omega$ , $C_L = 5 pF$ , $f = 1 MHz$ ;<br>Test Circuit 9          |
| -3 dB Bandwidth                                         | 200       |                           | MHz typ      | $R_{\rm L} = 50 \ \Omega, C_{\rm L} = 5 \ pF$ , Test Circuit 8              |
| C <sub>S</sub> (OFF)                                    | 11        |                           | pF typ       |                                                                             |
| $C_D, C_S$ (ON)                                         | 34        |                           | pF typ       |                                                                             |
| POWER REQUIREMENTS                                      |           |                           |              | $V_{\rm DD} = 3.3  {\rm V}$                                                 |
| I <sub>DD</sub>                                         | 0.001     |                           | μA typ       | Digital Inputs = $0 \text{ V or } 3.3 \text{ V}$                            |
|                                                         |           | 1.0                       | µA max       |                                                                             |

NOTES

 $^1Temperature$  ranges are as follows: B Version:  $-40\,^\circ C$  to  $+85\,^\circ C.$ 

<sup>2</sup>Guaranteed by design, not subject to production test.

Specifications subject to change without notice.

## ADG733/ADG734-SPECIFICATIONS<sup>1</sup>

**DUAL SUPPLY** ( $V_{DD}$  = +3 V ± 10%,  $V_{SS}$  = -3 V ± 10%, GND = 0 V, unless otherwise noted.)

|                                                         | B Version<br>-40°C      |                                    |                  |                                                                                                                    |
|---------------------------------------------------------|-------------------------|------------------------------------|------------------|--------------------------------------------------------------------------------------------------------------------|
| Parameter                                               | 25°C                    | to +85°C                           | Unit             | <b>Test Conditions/Comments</b>                                                                                    |
| ANALOG SWITCH                                           |                         |                                    |                  |                                                                                                                    |
| Analog Signal Range                                     |                         | V <sub>SS</sub> to V <sub>DD</sub> | V                |                                                                                                                    |
| On Resistance (R <sub>ON</sub> )                        | 2.5                     |                                    | $\Omega$ typ     | $V_{S} = V_{SS}$ to $V_{DD}$ , $I_{DS} = 10$ mA;                                                                   |
|                                                         | 4.5                     | 5.0                                | $\Omega$ max     | Test Circuit 1                                                                                                     |
| On-Resistance Match between                             |                         | 0.1                                | $\Omega$ typ     | $V_{S} = V_{SS}$ to $V_{DD}$ , $I_{DS} = 10 \text{ mA}$                                                            |
| Channels ( $\Delta R_{ON}$ )                            |                         | 0.4                                | $\Omega$ max     |                                                                                                                    |
| On-Resistance Flatness (R <sub>FLAT(ON)</sub> )         | 0.5                     |                                    | $\Omega$ typ     | $V_{S} = V_{SS}$ to $V_{DD}$ , $I_{DS} = 10 \text{ mA}$                                                            |
|                                                         |                         | 1.2                                | $\Omega$ max     |                                                                                                                    |
| LEAKAGE CURRENTS                                        |                         |                                    |                  | $V_{DD} = +3.3 \text{ V}, V_{SS} = -3.3 \text{ V}$                                                                 |
| Source OFF Leakage $I_S$ (OFF)                          | ±0.01                   |                                    | nA typ           | $V_{\rm DD} = +3.5$ V, $V_{\rm SS} = -3.5$ V<br>V <sub>S</sub> = +2.25 V/-1.25 V, V <sub>D</sub> = -1.25 V/+2.25 V |
| Source OIT Leakage IS (011)                             | $\pm 0.01$<br>$\pm 0.1$ | ±0.3                               | nA max           | $v_{s} = (2.25 \text{ V} + 1.25 \text{ V}, v_{B} = -1.25 \text{ V} + 2.25 \text{ V}$<br>Test Circuit 2             |
| Channel ON Leakage I <sub>D</sub> , I <sub>S</sub> (ON) | $\pm 0.1$<br>$\pm 0.01$ | ±0.5                               |                  | $V_{\rm S} = V_{\rm D} = +2.25 \text{ V/}-1.25 \text{ V}$ , Test Circuit 3                                         |
| Channel ON Leakage ID, IS (ON)                          | $\pm 0.01$<br>$\pm 0.1$ | ±0.5                               | nA typ<br>nA max | $v_{\rm S} = v_{\rm D} = +2.23 v_{\rm f} = 1.23 v_{\rm s}$ rest clicuit 3                                          |
|                                                         |                         |                                    |                  |                                                                                                                    |
| DIGITAL INPUTS<br>Input High Voltage, V <sub>INH</sub>  |                         | 2.0                                | V min            |                                                                                                                    |
| Input Low Voltage, V <sub>INL</sub>                     |                         | 0.4                                | V max            |                                                                                                                    |
| Input Low Voltage, VINL                                 |                         | 0.4                                | v IIIax          |                                                                                                                    |
| -                                                       | 0.005                   |                                    | u A trop         | $V_{IN} = V_{INL}$ or $V_{INH}$                                                                                    |
| I <sub>INL</sub> or I <sub>INH</sub>                    | 0.005                   | ±0.1                               | μA typ<br>μA max | $\mathbf{v}_{\rm IN} - \mathbf{v}_{\rm INL}$ or $\mathbf{v}_{\rm INH}$                                             |
| C <sub>IN</sub> , Digital Input Capacitance             | 4                       | ±0.1                               | pF typ           |                                                                                                                    |
|                                                         |                         |                                    | prityp           |                                                                                                                    |
| DYNAMIC CHARACTERISTICS <sup>2</sup>                    |                         |                                    |                  |                                                                                                                    |
| t <sub>on</sub>                                         | 21                      |                                    | ns typ           | $R_L = 300 \Omega, C_L = 35 pF;$                                                                                   |
|                                                         |                         | 35                                 | ns max           | $V_s = 1.5 V$ , Test Circuit 4                                                                                     |
| t <sub>OFF</sub>                                        | 10                      |                                    | ns typ           | $R_L = 300 \Omega, C_L = 35 pF;$                                                                                   |
|                                                         |                         | 16                                 | ns max           | $V_{\rm S}$ = 1.5 V, Test Circuit 4                                                                                |
| ADG733 $t_{ON}(\overline{EN})$                          | 21                      |                                    | ns typ           | $R_L = 300 \Omega, C_L = 35 pF;$                                                                                   |
|                                                         |                         | 40                                 | ns max           | $V_s = 1.5 V$ , Test Circuit 5                                                                                     |
| $t_{OFF}(\overline{EN})$                                | 10                      |                                    | ns typ           | $R_L = 300 \Omega, C_L = 35 pF;$                                                                                   |
|                                                         |                         | 16                                 | ns max           | $V_s = 1.5 V$ , Test Circuit 5                                                                                     |
| Break-Before-Make Time Delay, $t_D$                     | 13                      |                                    | ns typ           | $R_L = 300 \Omega, C_L = 35 pF;$                                                                                   |
|                                                         |                         | 1                                  | ns min           | $V_{\rm S}$ = 1.5 V, Test Circuit 6                                                                                |
| Charge Injection                                        | ±5                      |                                    | pC typ           | $V_S = 0 V, R_S = 0 \Omega, C_L = 1 nF;$                                                                           |
| Off Isolation                                           | -62                     |                                    | dD true          | Test Circuit 7<br>$P_{r} = 500$ C = 5 pE f = 10 MHz                                                                |
| Oli Isolation                                           |                         |                                    | dB typ           | $R_L = 50 \Omega$ , $C_L = 5 pF$ , $f = 10 MHz$ ;                                                                  |
|                                                         | -82                     |                                    | dB typ           | $R_L = 50 \Omega$ , $C_L = 5 pF$ , $f = 1 MHz$ ;<br>Test Circuit 8                                                 |
| Channel-to-Channel Crosstalk                            | -62                     |                                    | dB typ           | $R_L = 50 \Omega$ , $C_L = 5 pF$ , $f = 10 MHz$ ;                                                                  |
|                                                         | -82                     |                                    | dB typ           | $R_{\rm L} = 50 \ \Omega, C_{\rm L} = 5 \ pF, f = 1 \ MHz;$                                                        |
|                                                         |                         |                                    | ub typ           | Test Circuit 9                                                                                                     |
| -3 dB Bandwidth                                         | 200                     |                                    | MHz typ          | $R_L = 50 \Omega$ , $C_L = 5 pF$ , Test Circuit 8                                                                  |
| C <sub>S</sub> (OFF)                                    | 11                      |                                    | pF typ           |                                                                                                                    |
| $C_D, C_S (ON)$                                         | 34                      |                                    | pF typ           |                                                                                                                    |
| POWER REQUIREMENTS                                      |                         |                                    |                  | $V_{DD} = 3.3 V$                                                                                                   |
| I <sub>DD</sub>                                         | 0.001                   |                                    | μA typ           | Digital Inputs = $0 \text{ V}$ or $3.3 \text{ V}$                                                                  |
|                                                         |                         | 1.0                                | μA max           |                                                                                                                    |
| I <sub>SS</sub>                                         | 0.001                   |                                    | μA typ           | $V_{SS} = -3.3 \text{ V}$                                                                                          |
|                                                         |                         |                                    | MAALYN           |                                                                                                                    |

NOTES

 $^1 Temperature range is as follows: B Version: <math display="inline">-40\,^{\circ}C$  to  $+85\,^{\circ}C.$   $^2 Guaranteed by design, not subject to production test.$ 

Specifications subject to change without notice.

#### ABSOLUTE MAXIMUM RATINGS<sup>1</sup>

| $(T_A = 25^{\circ}C \text{ unless otherwise noted})$               |
|--------------------------------------------------------------------|
| $V_{DD}$ to $V_{SS}$ $\hfill \ldots \hfill 7$ V                    |
| $V_{DD}$ to GND0.3 V to +7 V                                       |
| $V_{SS}$ to GND $\ldots$ +0.3 V to -3.5 V                          |
| Analog Inputs <sup>2</sup> $V_{SS} - 0.3$ V to $V_{DD} + 0.3$ V or |
| 30 mA, Whichever Occurs First                                      |
| Digital Inputs <sup>2</sup> $-0.3$ V to V <sub>DD</sub> + 0.3 V or |
| 30 mA, Whichever Occurs First                                      |
| Peak Current, S or D100 mA                                         |
| (Pulsed at 1 ms, 10% Duty Cycle max)                               |
| Continuous Current, S or D 30 mA                                   |
| Operating Temperature Range                                        |
| Industrial (A, B Versions)40°C to +85°C                            |
| Storage Temperature Range65°C to +150°C                            |

| Junction Temperature150°C                                |
|----------------------------------------------------------|
| 16-Lead TSSOP, $\theta_{IA}$ Thermal Impedance 150.4°C/W |
| 20-Lead TSSOP, $\theta_{JA}$ Thermal Impedance 143°C/W   |
| 16-Lead QSOP, $\theta_{JA}$ Thermal Impedance 149.97°C/W |
| Lead Temperature, Soldering (10 sec) 300°C               |
| IR Reflow, Peak Temperature                              |
|                                                          |

#### NOTES

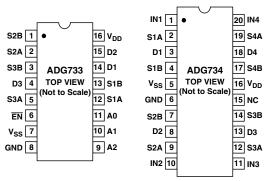
<sup>1</sup>Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Only one absolute maximum rating may be applied at any one time.

<sup>2</sup>Overvoltages at IN, S or D will be clamped by internal diodes. Current should be limited to the maximum ratings given.

#### CAUTION -

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the ADG733/ADG734 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high-energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.




#### **ORDERING GUIDE**

| Model     | Temperature Range | Package Description                       | Package Option |
|-----------|-------------------|-------------------------------------------|----------------|
| ADG733BRU | -40°C to +85°C    | Thin Shrink Small Outline Package (TSSOP) | RU-16          |
| ADG733BRQ | -40°C to +85°C    | Quarter Size Outline Package (QSOP)       | RQ-16          |
| ADG734BRU | -40°C to +85°C    | Thin Shrink Small Outline Package (TSSOP) | RU-20          |

#### **PIN CONFIGURATIONS**

#### TSSOP/QSOP

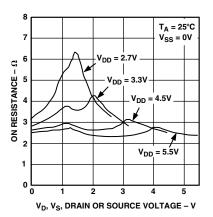
#### TSSOP



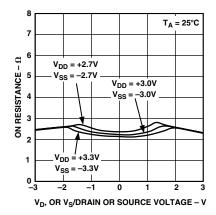
NC = NO CONNECT

#### Table I. ADG733 Truth Table

| A2 | A1 | A0 | EN | ON Switch              |
|----|----|----|----|------------------------|
| X  | X  | X  | 1  | None                   |
| 0  | 0  | 0  | 0  | D1-S1A, D2-S2A, D3-S3A |
| 0  | 0  | 1  | 0  | D1-S1B, D2-S2A, D3-S3A |
| 0  | 1  | 0  | 0  | D1-S1A, D2-S2B, D3-S3A |
| 0  | 1  | 1  | 0  | D1-S1B, D2-S2B, D3-S3A |
| 1  | 0  | 0  | 0  | D1-S1A, D2-S2A, D3-S3B |
| 1  | 0  | 1  | 0  | D1-S1B, D2-S2A, D3-S3B |
| 1  | 1  | 0  | 0  | D1-S1A, D2-S2B, D3-S3B |
| 1  | 1  | 1  | 0  | D1-S1B, D2-S2B, D3-S3B |

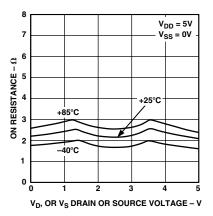

X = Don't Care.

#### Most Positive Power Supply Potential. V<sub>DD</sub> CIN Digital Input Capacitance. Most Negative Power Supply in a Dual Supply Vss Delay time measured between the 50% and t<sub>ON</sub> Application. In single supply applications, this 90% points of the digital inputs and the switch "ON" condition. should be tied to ground close to the device. $I_{\rm DD}$ Positive Supply Current. Delay time measured between the 50% and toFF 90% points of the digital input and the switch Negative Supply Current. $\mathbf{I}_{SS}$ "OFF" condition. GND Ground (0 V) Reference. $t_{ON}(\overline{EN})$ Delay time between the 50% and 90% points S Source Terminal. May be an input or output. of the $\overline{EN}$ digital input and the switch "ON" condition. D Drain Terminal. May be an input or output. IN $t_{OFF}(\overline{EN})$ Delay time between the 50% and 90% points Logic Control Input. of the $\overline{EN}$ digital input and the switch "OFF" Analog Voltage on Terminals D, S $V_D(V_S)$ condition. Ohmic Resistance between D and S. R<sub>ON</sub> "OFF" time measured between the 80% t<sub>OPEN</sub> On Resistance Match between Any Two $\Delta R_{ON}$ points of both switches when switching from Channels, i.e., R<sub>ON</sub>max - R<sub>ON</sub>min one address state to another. Flatness is defined as the difference between the R<sub>FLAT(ON)</sub> Charge A measure of the glitch impulse transferred maximum and minimum value of on-resistance Injection from the digital input to the analog output as measured over the specified analog signal range. during switching. I<sub>S</sub> (OFF) Source Leakage Current with the Switch Off Isolation A measure of unwanted signal coupling "OFF." through an "OFF" switch. Channel Leakage Current with the Switch $I_D, I_S (ON)$ Crosstalk A measure of unwanted signal that is coupled "ON." through from one channel to another as a result of parasitic capacitance. Maximum Input Voltage for Logic "0." VINL Bandwidth The frequency at which the output is Minimum Input Voltage for Logic "1." VINH attenuated by 3 dBs. Input Current of the Digital Input. $I_{INL}(I_{INH})$ The Frequency Response of the "ON" Switch. On Response "OFF" Switch Source Capacitance. C<sub>S</sub> (OFF) Insertion Loss The loss due to the ON resistance of the switch. Measured with reference to ground. "ON" Switch Capacitance. Measured $C_D, C_S(ON)$ with reference to ground.

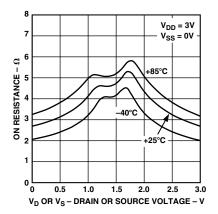

#### TERMINOLOGY

#### Table II. ADG734 Truth Table

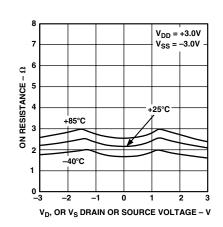
| Logic | Switch A | Switch B |
|-------|----------|----------|
| 0     | OFF      | ON       |
| 1     | ON       | OFF      |



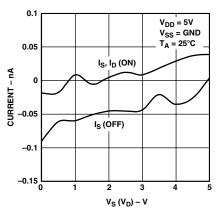

TPC 1. On Resistance as a Function of  $V_D$  ( $V_S$ ) for Single Supply



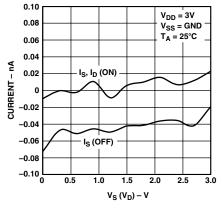

Typical Performance Characteristics-ADG733/ADG734


TPC 2. On Resistance as a Function of  $V_D$  ( $V_S$ ) for Dual Supply

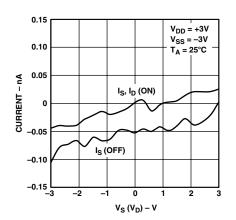



TPC 3. On Resistance as a Function of  $V_D$  ( $V_S$ ) for Different Temperatures, Single Supply

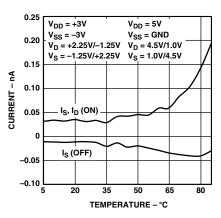



TPC 4. On Resistance as a Function of  $V_D$  ( $V_S$ ) for Different Temperatures, Single Supply

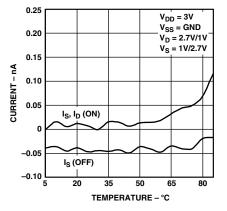



TPC 5. On Resistance as a Function of  $V_D$  ( $V_S$ ) for Different Temperatures, Dual Supply

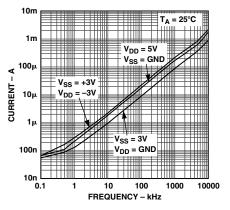



TPC 6. Leakage Currents as a Function of  $V_D$  ( $V_S$ )




TPC 7. Leakage Currents as a Function of  $V_D$  ( $V_S$ )

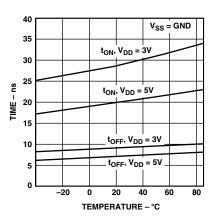



TPC 8. Leakage Currents as a Function of  $V_D$  ( $V_S$ )

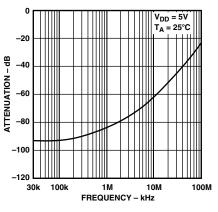



*TPC 9. Leakage Currents as a Function of Temperature* 

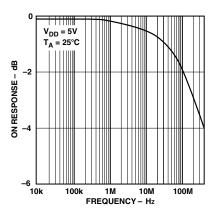



TPC 10. Leakage Currents as a Function of Temperature

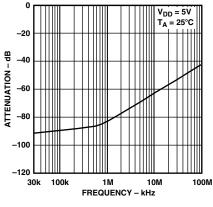



*TPC 13. Input Current, I<sub>DD</sub> vs. Switching Frequency* 



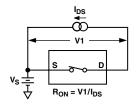

*TPC 16. Charge Injection vs. Source Voltage* 



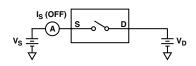

TPC 11. t<sub>ON</sub>/t<sub>OFF</sub> Times vs. Temperature



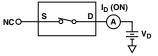
TPC 14. Off Isolation vs. Frequency



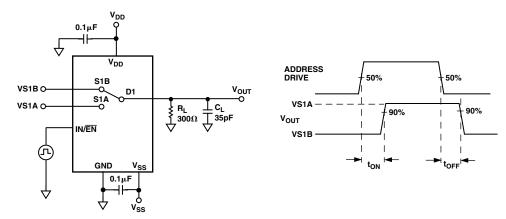

TPC 12. On Response vs. Frequency



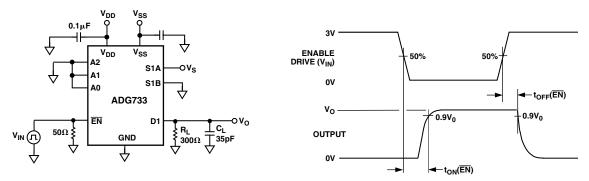

TPC 15. Crosstalk vs. Frequency


## **Test Circuits**

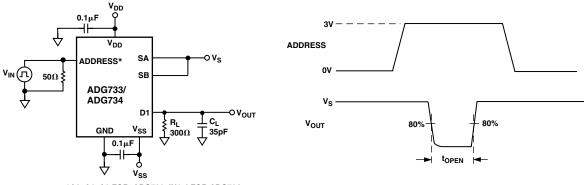



Test Circuit 1. On Resistance



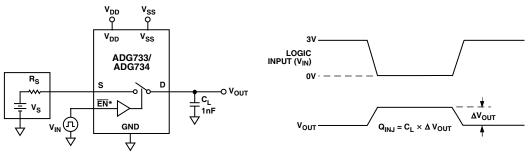

Test Circuit 2. I<sub>S</sub> (OFF)



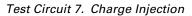

Test Circuit 3. I<sub>D</sub> (ON)

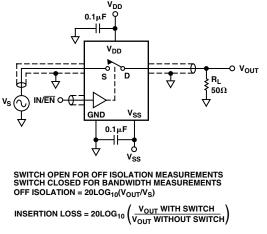


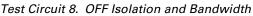
Test Circuit 4. Switching Times, ton, toFF

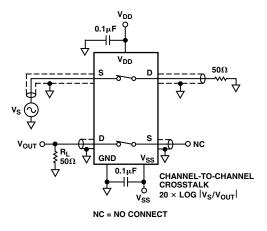



Test Circuit 5. Enable Delay, t<sub>ON</sub> (EN), t<sub>OFF</sub> (EN)

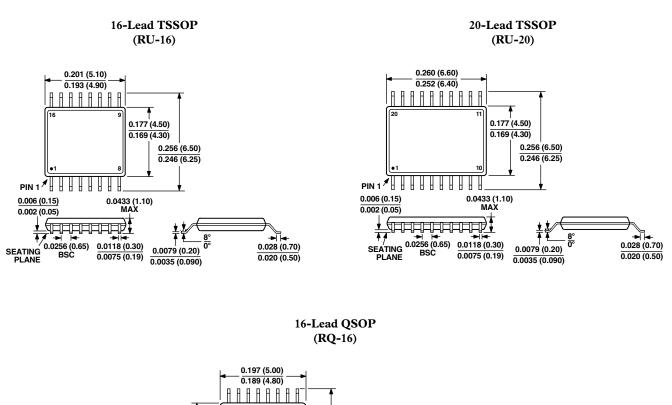




\*A0, A1, A2 FOR ADG733, IN1-4 FOR ADG734


Test Circuit 6. Break-Before-Make Delay, t<sub>OPEN</sub>

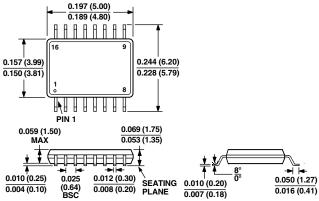



\* IN1-4 FOR ADG734








Test Circuit 9. Channel-to-Channel Crosstalk



**OUTLINE DIMENSIONS** 

Dimensions shown in inches and (mm).

