DATA SHEET

74ABT16543 74ABTH16543

16-bit latched transceivers with dual enable (3-State)

Product specification
Supersedes data of 1995 Aug 17
IC23 Data Handbook

1998 Feb 27

16-bit latched transceivers with dual enable (3-State)

74ABT16543 74ABTH16543

FEATURES

- Two 8-bit octal transceivers with D-type latch
- Live insertion/extraction permitted
- Power-up 3-State
- Power-up reset
- Multiple V_{CC} and GND pins minimize switching noise
- Back-to-back registers for storage
- Separate controls for data flow in each direction
- 74ABTH16543 incorporates bus-hold data inputs which eliminate the need for external pull-up resistors to hold unused inputs
- Output capability: +64mA/–32mA
- Latch-up protection exceeds 500mA per JEDEC Std 17
- ESD protection exceeds 2000V per MIL STD 883 Method 3015 and 200V per Machine Model
- See 74ABT161543 for same function with Master Reset control pins

DESCRIPTION

The 74ABT16543 high-performance BiCMOS device combines low static and dynamic power dissipation with high speed and high output drive.

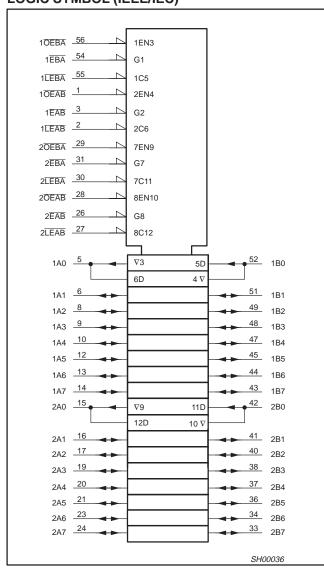
The 74ABT16543 16-bit registered transceiver contains two sets of D-type latches for temporary storage of data flowing in either direction. Separate Latch Enable (nEAB, nEBA) and Output Enable (nOEAB, nOEBA) inputs are provided for each register to permit independent control of data transfer in either direction. The outputs are guaranteed to sink 64mA.

Two options are available, 74ABT16543 which does not have the bus-hold feature and 74ABTH16543 which incorporates the bus-hold feature.

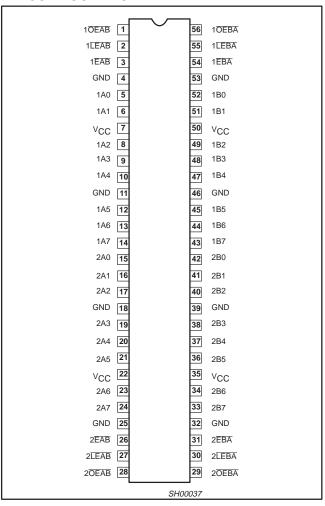
QUICK REFERENCE DATA

SYMBOL	PARAMETER	CONDITIONS T _{amb} = 25°C; GND = 0V	TYPICAL	UNIT
t _{PLH} t _{PHL}	Propagation delay nAx to nBx	$C_L = 50pF; V_{CC} = 5V$	2.5 2.2	ns
C _{IN}	Input capacitance	$V_I = 0V \text{ or } V_{CC}$	3	pF
C _{I/O}	I/O capacitance	V _O = 0V or V _{CC;} 3-State	7	pF
I _{CCZ}	Quiescent supply current	Outputs disabled; V _{CC} = 5.5V	550	μΑ
I _{CCL}	Quiescent supply current	Outputs low; V _{CC} = 5.5V	9	mA

ORDERING INFORMATION

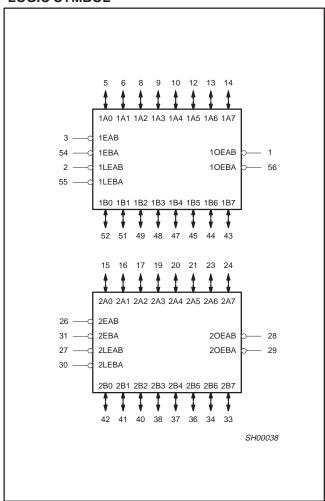

PACKAGES	TEMPERATURE RANGE	OUTSIDE NORTH AMERICA	NORTH AMERICA	DWG NUMBER
56-Pin Plastic SSOP Type III	-40°C to +85°C	74ABT16543 DL	BT16543 DL	SOT371-1
56-Pin Plastic TSSOP Type II	-40°C to +85°C	74ABT16543 DGG	BT16543 DGG	SOT364-1
56-Pin Plastic SSOP Type III	-40°C to +85°C	74ABTH16543 DL	BH16543 DL	SOT371-1
56-Pin Plastic TSSOP Type II	-40°C to +85°C	74ABTH16543 DGG	BH16543 DGG	SOT364-1

PIN DESCRIPTION


PIN NUMBER	SYMBOL	NAME AND FUNCTION			
5, 6, 8, 9, 10, 12, 13, 14 15, 16, 17, 19, 20, 21, 23, 24	1A0 – 1A7, 2A0 – 2A7	Data inputs/outputs			
52, 51, 49, 48, 47, 45, 44, 43 42, 41, 40,38, 37, 36, 34, 33	1B0 – 1B7, 2B0 – 2B7	Data inputs/outputs			
1, 56 28, 29	1 <mark>OEAB</mark> , 1OEBA, 2OEAB, 2OEBA	A to B / B to A Output Enable inputs (active-Low)			
3, 54 26, 31	1 <u>EAB,</u> 1 <u>EBA,</u> 2EAB, 2EBA	A to B / B to A Enable inputs (active-Low)			
2, 55 27, 30	1LEAB, 1LEBA, 2LEAB, 2LEBA	A to B / B to A Latch Enable inputs (active-Low)			
4, 11, 18, 25, 32, 39, 46, 53	GND	Ground (0V)			
7, 22, 35, 50	V _{CC}	Positive supply voltage			

74ABT16543 74ABTH16543

LOGIC SYMBOL (IEEE/IEC)


PIN CONFIGURATION

16-bit latched transceivers with dual enable (3-State)

74ABT16543 74ABTH16543

LOGIC SYMBOL

FUNCTIONAL DESCRIPTION

The 74ABT16543 contains two sets of eight D-type latches, with separate control pins for each set. Using data flow from A to B as an example, when the A-to-B Enable (nEAB) input and the A-to-B Latch Enable (nLEAB) input are Low the A-to-B path is transparent.

A subsequent Low-to-High transition of the n $\overline{\text{LEAB}}$ signal puts the A data into the latches where it is stored and the B outputs no longer change with the A inputs. With $\overline{\text{EAB}}$ and n $\overline{\text{OEAB}}$ both Low, the 3-State B output buffers are active and display the data present at the outputs of the A latches.

Control of data flow from B to A is similar, but using the $n\overline{\text{EBA}}$, $n\overline{\text{LEBA}}$, and $n\overline{\text{OEBA}}$ inputs.

FUNCTION TABLE

	INI	PUTS		OUTPUTS	0747110		
nOEXX	nEXX	nLEXX	nAx or nBx	nBx or nAx	STATUS		
Н	Х	Х	Х	Z	Disabled		
Χ	Н	Х	Х	Z	Disabled		
L L	<u>†</u>	L L	h I	Z Z	Disabled + Latch		
L L	L L	↑	h I	H L	Latch + Display		
L L	L L	L L	H L	H L	Transparent		
L	L	Н	Х	NC	Hold		

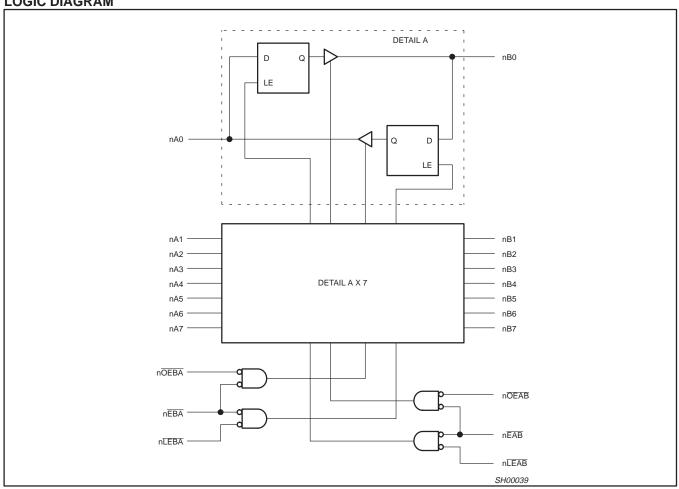
H = High voltage level

h = High voltage level one set-up time prior to the Low-to-High transition of nEXX or nEXX (XX = AB or BA)

L = Low voltage level

I = Low voltage level one set-up time prior to the Low-to-High transition of nEXX or nEXX (XX = AB or BA)

X = Don't care


 \uparrow = Low-to-High transition of n $\overline{\text{LEXX}}$ or n $\overline{\text{EXX}}$ (XX = AB or BA)

NC= No change

Z = High impedance or "off" state

74ABT16543 74ABTH16543

LOGIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS^{1, 2}

SYMBOL	PARAMETER	CONDITIONS	RATING	UNIT
V _{CC}	DC supply voltage		-0.5 to +7.0	V
I _{IK}	DC input diode current	V ₁ < 0	-18	mA
VI	DC input voltage ³		-1.2 to +7.0	V
l _{OK}	DC output diode current	V _O < 0	-50	mA
V _{OUT}	DC output voltage ³	output in Off or High state	-0.5 to +5.5	V
	DC suitant surrent	output in Low state	128	mA
lout	DC output current	output in High state	-64	mA
T _{stg}	Storage temperature range		-65 to 150	°C

- 1. Stresses beyond those listed may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
- The performance capability of a high-performance integrated circuit in conjunction with its thermal environment can create junction temperatures which are detrimental to reliability. The maximum junction temperature of this integrated circuit should not exceed 150°C.
- 3. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

74ABT16543 74ABTH16543

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIM	UNIT	
STWIDOL	PARAMETER	Min	Max	UNII
V _{CC}	DC supply voltage	4.5	5.5	V
VI	Input voltage	0	V _{CC}	V
V _{IH}	High-level input voltage	2.0		V
V_{IL}	Low-level Input voltage		0.8	V
I _{OH}	High-level output current		-32	mA
I _{OL}	Low-level output current		64	mA
Δt/Δν	Input transition rise or fall rate	0	10	ns/V
T _{amb}	Operating free-air temperature range	-40	+85	°C

DC ELECTRICAL CHARACTERISTICS

						LIMITS			
SYMBOL	PARAMETER	TEST CONDITIONS		Ta	_{imb} = +25	°C	T _{amb} =	–40°C 35°C	UNIT
				MIN	TYP	MAX	MIN	MAX	1
V _{IK}	Input clamp voltage	$V_{CC} = 4.5V; I_{IK} = -18mA$			-1.2		-1.2	V	
		$V_{CC} = 4.5V$; $I_{OH} = -3mA$; $V_{I} = V_{IL}$ or $V_{I} = V_{IL}$	V _{IH}	2.5	2.9		2.5		V
V _{OH}	High-level output voltage	$V_{CC} = 5.0V$; $I_{OH} = -3mA$; $V_{I} = V_{IL}$ or $V_{IC} = V_{IL}$	V_{IH}	3.0	3.4		3.0		V
		$V_{CC} = 4.5V$; $I_{OH} = -32mA$; $V_{I} = V_{IL}$ or	r V _{IH}	2.0	2.4		2.0		V
V _{OL}	Low-level output voltage	$V_{CC} = 4.5V$; $I_{OL} = 64mA$; $V_I = V_{IL}$ or $V_{IC} = 0.00$	V _{IH}		0.36	0.55		0.55	V
V _{RST}	Power-up output voltage ³	V_{CC} = 5.5V; I_O = 1mA; V_I = GND or V_I	/ _{CC}		0.13	0.55		0.55	V
l ₁	Input leakage current	$V_{CC} = 5.5V; V_I = GND \text{ or } 5.5V$	Control pins		± 0.01	±1.0		±1.0	μΑ
	Book Hald access of A and B	V _{CC} = 4.5V; V _I = 0.8V		35			35		
I _{HOLD}	Bus Hold current A or B Ports ⁵ 74ABTH16543	$V_{CC} = 4.5V; V_I = 2.0V$		-75			-75		μΑ
		$V_{CC} = 5.5V$; $V_I = 0$ to $5.5V$	±800						
I _{OFF}	Power-off leakage current	$V_{CC} = 0.0V$; V_O or $V_I \le 4.5V$			±2.0	±100		±100	μΑ
I _{PU/PD}	Power-up/down 3-State output current ⁴	V_{CC} = 2.1V; V_{O} = 0.0V or V_{CC} ; V_{I} = GND or V_{CC} ; V_{OE} = Don't care			±1.0	±50		±50	μА
I _{IH} + I _{OZH}	3-State output High current	$V_{CC} = 5.5V$; $V_{O} = 5.5V$; $V_{I} = V_{IL}$ or V_{II}	Н		1.0	10		10	μΑ
I _{IL} + I _{OZL}	3-State output Low current	$V_{CC} = 5.5V; V_{O} = 0.0V; V_{I} = V_{IL} \text{ or } V_{II}$	Н		-1.0	-10		-10	μΑ
I _{CEX}	Output High leakage current	$V_{CC} = 5.5V$; $V_{O} = 5.5V$; $V_{I} = GND$ or $V_{CC} = 5.5V$	V _{CC}		1.0	50		50	μΑ
Ι _Ο	Output current ¹	$V_{CC} = 5.5V; V_{O} = 2.5V$		-50	-100	-200	-50	-200	mA
I _{CCH}		$V_{CC} = 5.5V$; Outputs High, $V_I = GND$			0.55	2		2	mA
I _{CCL}	Quiescent supply current	$V_{CC} = 5.5V$; Outputs Low, $V_I = GND$	or V _{CC}		9	19		19	mA
I _{CCZ}	, , , , , , , , , , , , , , , , , , , ,	V_{CC} = 5.5V; Outputs 3–State; V_{I} = GND or V_{CC}		0.55	2		2	mA	
Δl _{CC}	Additional supply current per input pin ² 74ABT16543	V_{CC} = 5.5V; one input at 3.4V, other inputs at V_{CC} or GND		5.0	50		50	μА	
Δl _{CC}	Additional supply current per input pin ² 74ABTH16543	V_{CC} = 5.5V; one input at 3.4V, other inputs at V_{CC} or GND	_		200	500		500	μΑ

- 1. Not more than one output should be tested at a time, and the duration of the test should not exceed one second.

- This is the increase in supply current for each input at 3.4V.
 For valid test results, data must not be loaded into the flip-flops (or latches) after applying the power.
 This parameter is valid for any V_{CC} between 0V and 2.1V, with a transition time of up to 10msec. From V_{CC} = 2.1V to V_{CC} = 5V ± 10% a transition time of up to 100µsec is permitted.

 5. This is the bus hold overdrive current required to force the input to the opposite logic state.

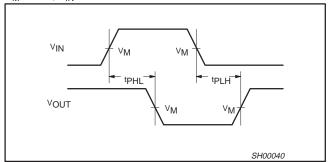
74ABT16543 74ABTH16543

Product specification

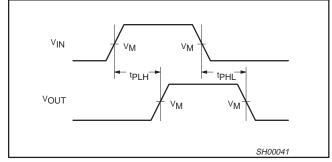
AC CHARACTERISTICS

 $\mbox{GND} = \mbox{0V}, \, t_R = t_F = 2.5 \mbox{ns}, \, C_L = 50 \mbox{pF}, \, R_L = 500 \Omega$

SYMBOL	PARAMETER	WAVEFORM	٦	Γ _{amb} = +25° V _{CC} = +5.0\	C /	T _{amb} = -4 V _{CC} = +5	UNIT	
			MIN	TYP	MAX	MIN	MAX	
t _{PLH} t _{PHL}	Propagation delay nAx to nBx, nBx to nAx	2	1.0 1.0	2.5 2.2	3.3 4.4	1.0 1.0	3.8 5.1	ns
t _{PLH} t _{PHL}	Propagation delay LEBA to nAx, LEAB to nBx	1, 2	1.0 1.2	3.1 3.0	4.3 4.8	1.0 1.2	5.2 5.6	ns
t _{PZH} t _{PZL}	Output enable time OEBA to nAx, OEAB to nBx	4 5	1.0 1.1	3.3 3.3	4.3 5.9	1.0 1.1	5.2 7.0	ns
t _{PHZ} t _{PLZ}	Output disable time OEBA to nAx, OEAB to nBx	4 5	1.9 1.6	3.5 2.6	5.0 4.2	1.9 1.6	5.7 4.6	ns
t _{PZH} t _{PZL}	Output enable time EBA to nAx, EAB to nBx	4 5	1.0 1.2	3.4 3.4	4.9 6.5	1.0 1.2	6.2 7.8	ns
t _{PHZ}	Output disable time EBA to nAx, EAB to nBx	4 5	2.0 1.7	3.4 2.6	5.6 5.1	2.0 1.7	6.6 5.4	ns


AC SETUP REQUIREMENTS

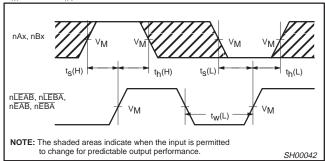
 $\mbox{GND} = \mbox{OV}, \, t_R = t_F = 2.5 \mbox{ns}, \, C_L = 50 \mbox{pF}, \, R_L = 500 \Omega$


				IITS			
SYMBOL	PARAMETER	WAVEFORM	T _{amb} = V _{CC} =	: +25°C : +5.0V	T _{amb} = -40 to +85°C V _{CC} = +5.0V ±0.5V	UNIT	
			MIN	TYP	MIN		
t _S (H) t _S (L)	Setup time nAx to LEAB, nBx to LEBA	3	1.5 3.5	0.4 -0.1	1.5 3.5	ns	
t _h (H) t _h (L)	Hold time nAx to LEAB, nBx to LEBA	3	1.5 2.0	0.2 -0.3	1.5 2.0	ns	
t _S (H) t _S (L)	Setup time nAx to EAB, nBx to EBA	3	1.5 3.5	0.2 -0.3	1.5 3.5	ns	
t _h (H) t _h (L)	Hold time nAx to EAB, nBx to EBA	3	1.5 2.0	0.3 -0.2	1.5 2.0	ns	
t _w (L)	Latch enable pulse width, Low	3	4.0	3.1	4.0	ns	

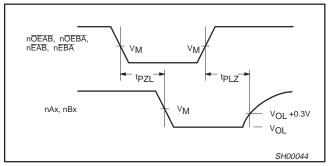
AC WAVEFORMS

 $V_M = 1.5V$, $V_{IN} = GND$ to 3.0V

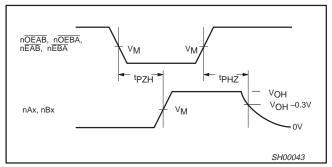
Waveform 1. Propagation Delay For Inverting Output



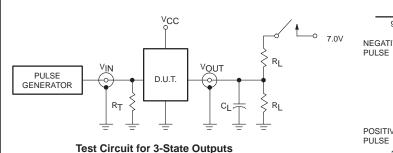
Waveform 2. Propagation Delay For Non-Inverting Output


74ABT16543 74ABTH16543

AC WAVEFORMS (Continued)


 $V_{M} = 1.5V$, $V_{IN} = GND$ to 3.0V

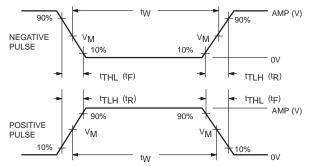
Waveform 3. Data Setup and Hold Times and Latch Enable **Pulse Width**



Waveform 5. 3-State Output Enable Time to Low Level and Output Disable Time from Low Level

Waveform 4. 3-State Output Enable Time to High Level and **Output Disable Time from High Level**

TEST CIRCUIT AND WAVEFORMS

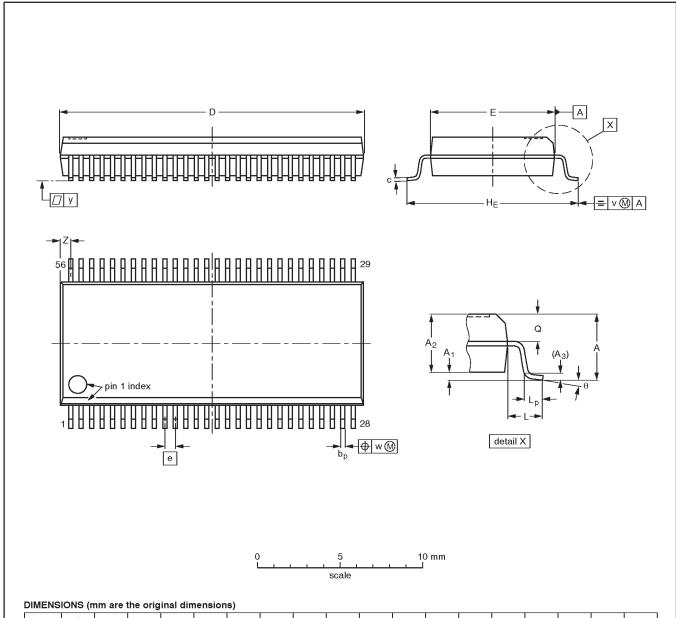


SWITCH POSITION

SWITCE	<u> </u>
TEST	SWITCH
t _{PLZ}	closed
t _{PZL}	closed
All other	open

DEFINITIONS

- R_I = Load resistor; see AC CHARACTERISTICS for value.
- C_L = Load capacitance includes jig and probe capacitance; see AC CHARACTERISTICS for value.
- Termination resistance should be equal to Z_{OUT} of pulse generators.


 $V_M = 1.5V$ **Input Pulse Definition**

PAWILT	Amplitude	Rep. Rate	t _W	t_{R}	t _F
74ABT/H16	3.0V	1MHz	500ns	2.5ns	2.5ns

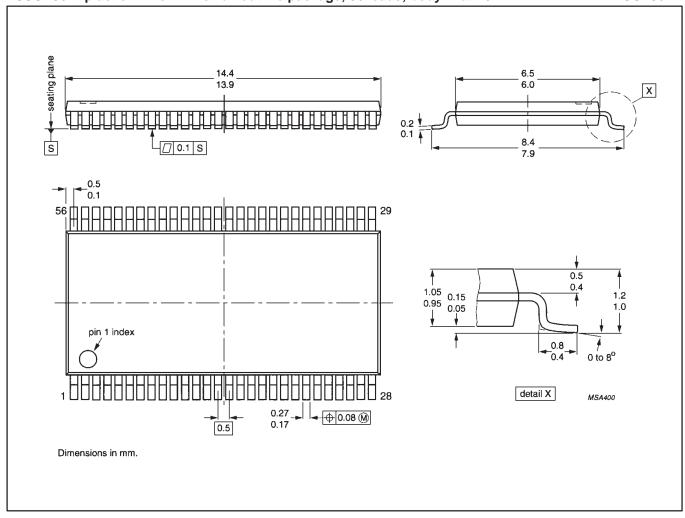
74ABT16543 74ABTH16543

SSOP56: plastic shrink small outline package; 56 leads; body width 7.5 mm

SOT371-1

UN	IT	A max.	Α ₁	A ₂	A ₃	рb	С	D ⁽¹⁾	E ⁽¹⁾	е	HE	L	Lp	Q	v	w	у	Z ⁽¹⁾	θ
mr	n	2.8	0.4 0.2	2.35 2.20	0.25	0.3 0.2	0.22 0.13	18.55 18.30	7.6 7.4	0.635	10.4 10.1	1.4	1.0 0.6	1.2 1.0	0.25	0.18	0.1	0.85 0.40	8° 0°

Note


1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES				EUROPEAN	ISSUE DATE
	IEC	JEDEC	EIAJ		PROJECTION	ISSUE DATE
SOT371-1		MO-118AB				93-11-02 95-02-04

74ABT16543 74ABTH16543

TSSOP56: plastic thin shrink small outline package; 56 leads; body width 6.1mm

SOT364-1

16-bit latched transceivers with dual enable (3-State)

74ABT16543 74ABTH16543

NOTES

16-bit latched transceivers with dual enable (3-State)

74ABT16543 74ABTH16543

Data sheet status

Data sheet status	Product status	Definition [1]	
Objective specification	Development	This data sheet contains the design target or goal specifications for product development. Specification may change in any manner without notice.	
Preliminary specification	Qualification	This data sheet contains preliminary data, and supplementary data will be published at a later date. Philips Semiconductors reserves the right to make chages at any time without notice in order to improve design and supply the best possible product.	
Product specification	Production	This data sheet contains final specifications. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible productions.	

^[1] Please consult the most recently issued datasheet before initiating or completing a design.

Definitions

Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Disclaimers

Life support — These products are not designed for use in life support appliances, devices or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

Philips Semiconductors 811 East Arques Avenue P.O. Box 3409 Sunnyvale, California 94088–3409 Telephone 800-234-7381 © Copyright Philips Electronics North America Corporation 1998 All rights reserved. Printed in U.S.A.

print code

Date of release: 05-96

Document order number:

9397-750-03496

Let's make things better.

