捷多邦,专**SN54ABTH16828**は**SN7.4A**BTH16823 18-BIT BUS-INTERFACE FLIP-FLOPS WITH 3-STATE OUTPUTS

SCBS664B - APRIL 1996 - REVISED MAY 1997

- Members of the Texas Instruments
 Widebus™ Family
- State-of-the-Art EPIC-IIB™ BiCMOS Design Significantly Reduces Power Dissipation
- ESD Protection Exceeds 2000 V Per MIL-STD-883, Method 3015; Exceeds 200 V Using Machine Model (C = 200 pF, R = 0)
- Typical V_{OLP} (Output Ground Bounce) < 1 V at V_{CC} = 5 V, T_A = 25°C
- High-Impedance State During Power Up and Power Down
- Distributed V_{CC} and GND Pin Configuration
 Minimizes High-Speed Switching Noise
- Flow-Through Architecture Optimizes PCB Lavout
- High-Drive Outputs (–32-mA I_{OH}, 64-mA I_{OL})
- Bus Hold on Data Inputs Eliminates the Need for External Pullup/Pulldown Resistors
- Package Options Include Plastic 300-mil Shrink Small-Outline (DL) and Thin Shrink Small-Outline (DGG) Packages and 380-mil Fine-Pitch Ceramic Flat (WD) Package Using 25-mil Center-to-Center Spacings

description

These 18-bit flip-flops feature 3-state outputs designed specifically for driving highly capacitive or relatively low-impedance loads. They are particularly suitable for implementing wider buffer registers, I/O ports, bidirectional bus drivers with parity, and working registers.

SN54ABTH16823 . . . WD PACKAGE SN74ABTH16823 . . . DGG OR DL PACKAGE (TOP VIEW)

			100
1CLR	1`	56] 1CLK
10E	2	55] 1CLKEN
1Q1 [3	54]1D1
GND [4	53] GND
1Q2 [5	52] 1D2
1Q3 [6	51] 1D3
V _{CC} [7	50]v _{cc}
1Q4 [8	49] 1D4
1Q5 [9	48] 1D5
1Q6 [10	47] 1D6
GND [11	46] GND
1Q7 [12	45]1D7
1Q8	13	44]1D8
1Q9 [14	43] 1D9
2Q1 [15	42]2D1
2Q2 [16	41]2D2
2Q3 [17	40] 2D3
GND [18	39] GND
2Q4 [19	38]2D4
2Q5 [20	37	2D5
2Q6 [21	36]2D6
v _{cc} [22	35] V _{CC}
2Q7 [23	34	2D7
2Q8 [24	33	2D8
GND [25	32] GND
2Q9 [26	31] 2 <u>D9</u>
20E [27	30	
2CLR	28	29]2CLK

The 'ABTH16823 can be used as two 9-bit flip-flops or one 18-bit flip-flop. With the clock-enable (CLKEN) input low, the D-type flip-flops enter data on the low-to-high transitions of the clock. Taking CLKEN high disables the clock buffer, latching the outputs. Taking the clear (CLR) input low causes the Q outputs to go low independently of the clock.

A buffered output-enable (OE) input can be used to place the nine outputs in either a normal logic state (high or low logic levels) or a high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and increased drive provide the capability to drive bus lines without need for interface or pullup components.

OE does not affect the internal operation of the flip-flops. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

debus and EPIC-IIB are trademarks of Texas Instruments Incorporated.

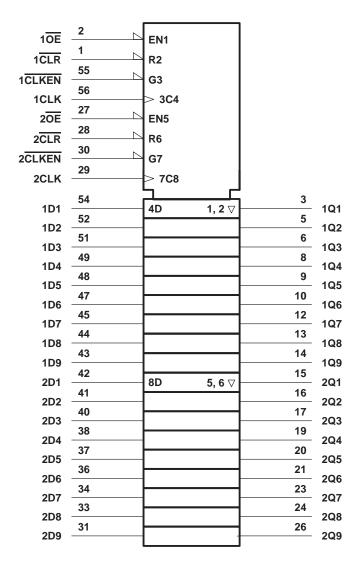
SN54ABTH16823, SN74ABTH16823 18-BIT BUS-INTERFACE FLIP-FLOPS WITH 3-STATE OUTPUTS

SCBS664B - APRIL 1996 - REVISED MAY 1997

description (continued)

When V_{CC} is between 0 and 2.1 V, the device is in the high-impedance state during power up or power down. However, to ensure the high-impedance state above 2.1 V, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

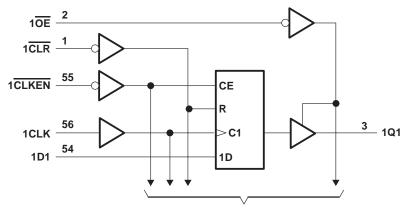
Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level.

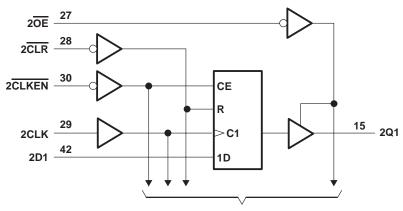

The SN54ABTH16823 is characterized for operation over the full military temperature range of -55° C to 125° C. The SN74ABTH16823 is characterized for operation from -40° C to 85° C.

FUNCTION TABLE (each 9-bit flip-flop)

	INPUTS						
OE	CLR	CLKEN	CLK	D	Q		
L	L	X	Х	Χ	L		
L	Н	L	\uparrow	Н	Н		
L	Н	L	\uparrow	L	L		
L	Н	L	L	Χ	Q ₀		
L	Н	Н	Χ	Χ	Q ₀		
Н	Χ	X	Χ	Χ	Z		

SCBS664B - APRIL 1996 - REVISED MAY 1997


logic symbol†


 $^{\ ^\}dagger$ This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

SCBS664B - APRIL 1996 - REVISED MAY 1997

logic diagram (positive logic)

To Eight Other Channels

To Eight Other Channels

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage range, V _{CC} –	-0.5 V to 7 V
Input voltage range, V _I (see Note 1) –	-0.5 V to 7 V
Voltage range applied to any output in the high or power-off state, V _O	.5 V to 5.5 V
Current into any output in the low state, IO: SN54ABTH16823	96 mA
SN74ABTH16823	128 mA
Input clamp current, I _{IK} (V _I < 0)	–18 mA
Output clamp current, I _{OK} (V _O < 0)	–50 mA
Package thermal impedance, θ _{JA} (see Note 2): DGG package	81°C/W
DL package	74°C/W
Storage temperature range, T _{stq} –65	°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

^{2.} The package thermal impedance is calculated in accordance with EIA/JEDEC Std JESD51.

SN54ABTH16823, SN74ABTH16823 18-BIT BUS-INTERFACE FLIP-FLOPS WITH 3-STATE OUTPUTS SCBS664B - APRIL 1996 - REVISED MAY 1997

recommended operating conditions (see Note 3)

			SN54ABTI	H16823	SN74ABTI	H16823	UNIT
			MIN	MAX	MIN	MAX	UNIT
Vcc	Supply voltage		4.5	5.5	4.5	5.5	V
VIH	High-level input voltage		2		2		V
V _{IL}	Low-level input voltage			0.8		0.8	V
VI	Input voltage		0	VCC	0	Vcc	V
loн	High-level output current			-24		-32	mA
loL	Low-level output current			48		64	mA
Δt/Δν	Input transition rise or fall rate	Outputs enabled		10		10	ns/V
Δt/ΔV _{CC}	Power-up ramp rate		200	·	200		μs/V
TA	Operating free-air temperature		-55	125	-40	85	°C

NOTE 3: Unused inputs must be held high or low to prevent them from floating.

SN54ABTH16823, SN74ABTH16823 18-BIT BUS-INTERFACE FLIP-FLOPS WITH 3-STATE OUTPUTS

SCBS664B - APRIL 1996 - REVISED MAY 1997

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST OF	ONDITIONS	Ţ	A = 25°C		SN54ABTI	116823	SN74ABTH16823		UNIT		
PA	RAMETER	l lesi C	ONDITIONS	MIN	TYP [†]	MAX	MIN	MAX	MIN	MAX	UNII	
VIK		$V_{CC} = 4.5 \text{ V},$	I _I = -18 mA			-1.2		-1.2		-1.2	V	
		V _{CC} = 4.5 V,	I _{OH} = -3 mA	2.5			2.5		2.5			
VOH	V _{CC} = 5 V,	IOH = -3 mA	3			3		3		V		
VOH		V 45V	I _{OH} = -24 mA	2			2				V	
		V _{CC} = 4.5 V	$I_{OH} = -32 \text{ mA}$	2*					2			
V		V45V	I _{OL} = 48 mA			0.55		0.55			V	
VOL		$V_{CC} = 4.5 \text{ V}$	I _{OL} = 64 mA			0.55*				0.55	V	
V _{hys}					100						mV	
П		V _{CC} = 0 to 5.5 \	$V_1 = V_{CC}$ or GND			±1		±1		±1	μА	
1		V 45V	V _I = 0.8 V	100			100		100			
I(hold))	$V_{CC} = -4.5 \text{ V}$	V _I = 2 V	-100			-100		-100		μΑ	
lozpu	ı‡	$V_{CC} = 0 \text{ to } 2.1 \text{ V}_{O} = 0.5 \text{ V to } 2.1 \text{ V}_{O} = 0.5 \text{ V to } 2.1 \text{ V}_{O} = 0.5 \text{ V to } 2.1 \text{ V}_{O} = 0.5 \text{ V to } 2.1 \text{ V}_{O} = 0.5 \text{ V to } 2.1 \text{ V}_{O} = 0.1 \text{ V}_{O} = 0.1$	/, 7 V, OE = X			±50		±50		±50	μА	
lozpd	,‡	$V_{CC} = 2.1 \text{ V to } 0$ $V_{O} = 0.5 \text{ V to } 2.2 \text{ V}$), 7 V, OE = X			±50		±50		±50	μА	
lozh		$V_{CC} = 2.1 \text{ V to } 5$ $V_{O} = 2.7 \text{ V, OE} 3$				10**		50		10	μА	
lozL		$V_{CC} = 2.1 \text{ V to } 5$ $V_{O} = 0.5 \text{ V, OE} 3$				-10**		-50		-10	μА	
l _{off}		$V_{CC} = 0$,	V_I or $V_O \le 4.5 \text{ V}$			±100				±100	μА	
ICEX	Outputs high	V _{CC} = 5.5 V,	V _O = 5.5 V			50		50		50	μА	
IO§		V _{CC} = 5.5 V,	V _O = 2.5 V	-50	-100	-200	-50	-200	-50	-200	mA	
	Outputs high					0.5		0.5		0.5		
loo	Outputs low	V _{CC} = 5.5 V, I _O				80		80		80	mA	
Icc	Outputs disabled	V _I = V _{CC} or GND			0.5		0.5		0.5	IIIA		
Δlcc¶		V _{CC} = 5.5 V, On Other inputs at V				1.5		1.5		1.5	mA	
C _i		V _I = 2.5 V or 0.5	V		4						pF	
Со		$V_0 = 2.5 \text{ V or } 0.$	5 V		8.5						pF	

^{*} On products compliant to MIL-PRF-38535, this parameter does not apply.

^{**} These limits apply only to the SN74ABTH16823.

[†] All typical values are at $V_{CC} = 5 \text{ V}$.

[‡] This parameter is characterized, but not production tested.

[§] Not more than one output should be tested at a time, and the duration of the test should not exceed one second.

[¶] This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.

SN54ABTH16823, SN74ABTH16823 18-BIT BUS-INTERFACE FLIP-FLOPS WITH 3-STATE OUTPUTS

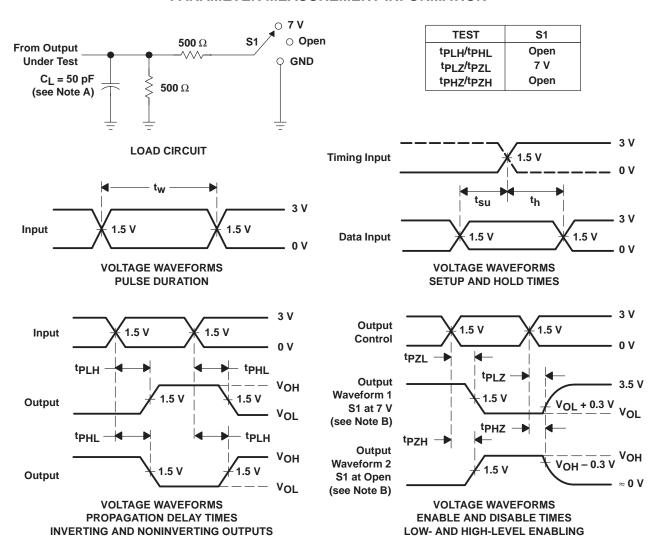
SCBS664B - APRIL 1996 - REVISED MAY 1997

timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 1)

				= 5 V, 25°C	SN54ABTI	H16823	SN74ABTI	UNIT		
			MIN	MAX	MIN	MAX	MIN	MAX		
fclock	Clock frequency		0	150	0	150	0	150	MHz	
t _W Pulse duration	Dulce duration	CLR low	3.3		3.3		3.3			
	Fulse duration	CLK high or low	3.3		3.3		3.3		ns	
		CLR inactive	1.6		2		1.6		ns	
t _{su}	Setup time before CLK↑	Data	1.7		1.7		1.7			
		CLKEN low	2.8		2.8		2.8			
	Hald Cara of the COLKA	Data	1.2		1.2		1.2			
t _h	Hold time after CLK↑	CLKEN low	0.6		0.6		0.6		ns	

switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $C_L = 50$ pF (unless otherwise noted) (see Figure 1)

PARAMETER	FROM TO (OUTPUT)		V ₍	CC = 5 V \(\frac{1}{2} = 25°C	/, ;	MIN	MAX	UNIT
			MIN	TYP	MAX	1		
f _{max}			150			150		MHz
t _{PLH}	CLK	Q	1.6	3.9	5.5	1.6	7.7	ns
^t PHL		Q	2.1	3.9	5.4	2.1	6.4	115
t _{PHL}	CLR	Q	1.9	4.1	6	1.9	6.9	ns
^t PZH	ŌĒ	Q	1	3.1	4.2	1	5.1	no
t _{PZL}		Q	1.5	3.5	4.6	1.5	5.7	ns
[†] PHZ	ŌĒ	Q	2.2	4.3	6	2.2	6.8	ns
^t PLZ	OL .	<u> </u>	1.6	4.3	6.4	1.6	9.9	115


switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $C_L = 50$ pF (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)		CC = 5 V \(\frac{1}{2} = 25°C	/, ;	MIN	MAX	UNIT
		MIN	TYP	MAX				
fmax			150			150		MHz
t _{PLH}	CLK	Q	1.6	3.9	5.5	1.6	6.8	ns
t _{PHL}		ų ,	2.1	3.9	5.4	2.1	6	115
t _{PHL}	CLR	Q	1.9	4.1	6	1.9	6.7	ns
^t PZH	ŌĒ	Q	1	3.1	4.2	1	4.9	ns
t _{PZL}		ų ,	1.5	3.5	4.6	1.5	5.5	115
t _{PHZ}	ŌĒ	Q	2.2	4.3	5.6	2.2	6.1	ns
t _{PLZ}	OE .		1.6	4.3	6.4	1.6	8.7	115

SCBS664B - APRIL 1996 - REVISED MAY 1997

PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_{Ω} = 50 Ω , $t_r \leq$ 2.5 ns, $t_f \leq$ 2.5 ns.
- D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1998, Texas Instruments Incorporated