捷多邦,专业PCB打样工厂,24小时**SNFJ4A**LVCH16543 16-BIT REGISTERED TRANSCEIVER WITH 3-STATE OUTPUTS

SCES025D - JULY 1995 - REVISED FEBRUARY 1999

- Member of the Texas Instruments
 Widebus™ Family
- EPIC ™ (Enhanced-Performance Implanted CMOS) Submicron Process
- Bus Hold on Data Inputs Eliminates the Need for External Pullup/Pulldown Resistors
- ESD Protection Exceeds 2000 V Per MIL-STD-883, Method 3015; Exceeds 200 V Using Machine Model (C = 200 pF, R = 0)
- Latch-Up Performance Exceeds 250 mA Per JESD 17
- Package Options Include Plastic 300-mil Shrink Small-Outline (DL) and Thin Shrink Small-Outline (DGG) Packages

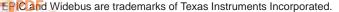
description

This 16-bit registered transceiver is designed for 1.65-V to 3.6-V $V_{\rm CC}$ operation.

The SN74ALVCH16543 can be used as two 8-bit transceivers or one 16-bit transceiver. Separate latch-enable (LEAB or LEBA) and output-enable (OEAB or OEBA) inputs are provided for each register to permit independent control in either direction of data flow.

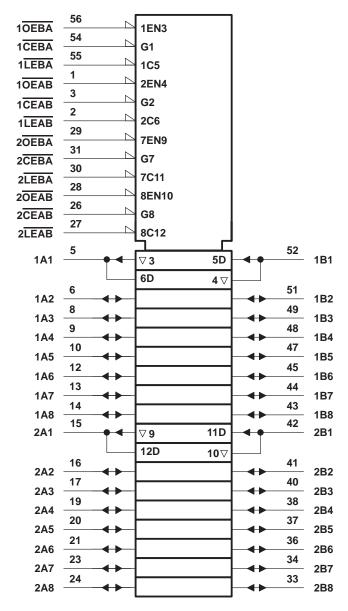
The A-to-B enable (\overline{CEAB}) input must be low to enter data from A or to output data from B. If \overline{CEAB} is low and \overline{LEAB} is low, the A-to-B latches are transparent; a subsequent low-to-high transition of \overline{LEAB} puts the A latches in the storage mode. With \overline{CEAB} and \overline{OEAB} both low, the 3-state B outputs are active and reflect the data present at the output of the A latches. Data flow from B to A is similar, but requires using \overline{CEBA}, \overline{LEBA}, and \overline{OEBA}.

DGG OR DL PACKAGE (TOP VIEW)

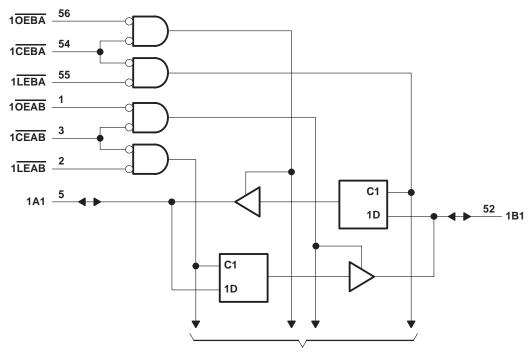

		_			
1 <mark>ОЕАВ</mark> Г	1	U	56	h	1OEBA
1LEAB	2				1LEBA
1CEAB	3		54		1CEBA
GND	4		53	fi	GND
1A1	5			6	1B1
1A2	6		51	6	1B2
V _{CC}	7		50	6	V_{CC}
1A3			49		1B3
1A4 [9		48	_	1B4
1A5 [10		47	6	1B5
GND [11		46	þ	GND
1A6 [12		45		1B6
1A7 [13		44		1B7
1A8	14		43	þ	1B8
2A1	15		42	b	2B1
2A2	16		41	þ	2B2
2A3 [17		40		2B3
GND [18		39		GND
2A4 [19		38		2B4
2A5 [20		37		2B5
2A6 [21		36		2B6
V _{CC} [22		35		V_{CC}
2A7 [23		34	_	2B7
2A8 [24		33		2B8
GND	25		32	_	GND
2CEAB	26		31	г	2CEBA
2LEAB	27		30	0	2LEBA
20EAB 🛚	28		29	P	20EBA

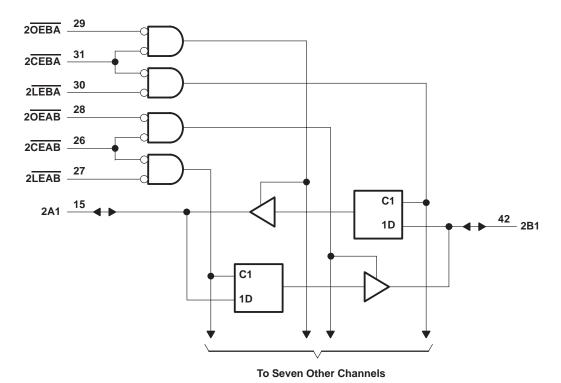
To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level.


The SN74ALVCH16543 is characterized for operation from –40°C to 85°C.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.


logic symbol†


[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)

To Seven Other Channels

SN74ALVCH16543 16-BIT REGISTERED TRANSCEIVER WITH 3-STATE OUTPUTS

SCES025D - JULY 1995 - REVISED FEBRUARY 1999

FUNCTION TABLE[†] (each 8-bit section)

	INPL	JTS		OUTPUT
CEAB	LEAB	OEAB	Α	В
Н	Х	Х	Χ	Z
Х	Χ	Н	Χ	Z
L	Н	L	Χ	в ₀ ‡
L	L	L	L	L
L	L	L	Н	Н

[†] A-to-B data flow is shown; B-to-A flow control is the same except that it uses CEBA, LEBA, and OEBA.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)§

Supply voltage range, V _{CC}	-0.5 V to 4.6 V
Input voltage range, V _I : Except I/O ports (see Note 1)	
I/O ports (see Notes 1 and 2)	
Output voltage range, V _O (see Notes 1 and 2)	\dots -0.5 V to V _{CC} + 0.5 V
Input clamp current, I _{IK} (V _I < 0)	–50 mA
Output clamp current, I _{OK} (V _O < 0)	–50 mA
Continuous output current, I _O	±50 mA
Continuous current through each V _{CC} or GND	±100 mA
Package thermal impedance, θ _{JA} (see Note 3): DGG package	81°C/W
	74°C/W
Storage temperature range, T _{stq}	65°C to 150°C

[§] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.

- 2. This value is limited to 4.6 V maximum.
- 3. The package thermal impedance is calculated in accordance with JESD 51.

[‡] Output level before the indicated steady-state input conditions were established

SN74ALVCH16543 16-BIT REGISTERED TRANSCEIVER WITH 3-STATE OUTPUTS SCES025D – JULY 1995 – REVISED FEBRUARY 1999

recommended operating conditions (see Note 4)

			MIN	MAX	UNIT	
Vсс	Supply voltage		1.65	3.6	V	
		V _{CC} = 1.65 V to 1.95 V	0.65 × V _{CC}			
ViH	High-level input voltage	$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$	1.7		V	
	High-level input voltage $ \begin{array}{c} V_{CC} = 1.65 \text{ V} \\ V_{CC} = 2.3 \text{ V} \text{ t} \\ V_{CC} = 2.7 \text{ V} \text{ t} \\ V_{CC} = 1.65 \text{ V} \\ V_{CC} = 1.65 \text{ V} \\ V_{CC} = 2.3 \text{ V} \text{ t} \\ V_{CC} = 2.3 \text{ V} \text{ t} \\ V_{CC} = 2.7 \text{ V} \text{ t} \\ V_{CC} = 2.7 \text{ V} \text{ t} \\ V_{CC} = 2.7 \text{ V} \\ V_{CC} = 2.3 \text{ V} \\ V_{CC} = 2.3 \text{ V} \\ V_{CC} = 2.3 \text{ V} \\ V_{CC} = 3 \text{ V} \\ V_{CC} = 3 \text{ V} \\ V_{CC} = 2.3 \text{ V} \\ V_{CC} = 3 $	$V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$	2			
		$V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$		0.35 × V _{CC}		
VIL	Low-level input voltage	$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$		0.7	V	
		$V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$		0.8		
٧ı	Input voltage		0	Vcc	V	
٧o	Output voltage		0	Vcc	V	
		V _{CC} = 1.65 V		-4		
	High level output ourrent	V _{CC} = 2.3 V		-12	mA	
ІОН	r ligh-level output current	V _{CC} = 2.7 V		-12	mA	
	Input voltage Output voltage High-level output current Low-level output current	V _{CC} = 3 V		-24		
		V _{CC} = 1.65 V		4		
	Low-level output current	V _{CC} = 2.3 V		12	mA	
lOL		V _{CC} = 2.7 V		12	IIIA	
		V _{CC} = 3 V		24		
Δt/Δν	Input transition rise or fall rate			10	ns/V	
TA	Operating free-air temperature		-40	85	°C	

NOTE 4: All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

SN74ALVCH16543 16-BIT REGISTERED TRANSCEIVER WITH 3-STATE OUTPUTS

SCES025D - JULY 1995 - REVISED FEBRUARY 1999

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PA	RAMETER	TEST C	ONDITIONS	Vcc	MIN	TYP [†]	MAX	UNIT
		I _{OH} = -100 μA		1.65 V to 3.6 V	V _{CC} -0.	.2		
PARAMETER VOH VOL II II(hold) IOZ ICC A or P ports Control inputs	I _{OH} = -4 mA		1.65 V	1.2				
	I _{OH} = -6 mA	$I_{OH} = -6 \text{ mA}$						
Vон				2.3 V	1.7			V
		$I_{OH} = -12 \text{ mA}$		2.7 V	2.2			
				3 V	2.4			
		I _{OH} = -24 mA		3 V	2			
		I _{OL} = 100 μA		1.65 V to 3.6 V			0.2	
		I _{OL} = 4 mA		1.65 V			0.45	
\/O!		I _{OL} = 6 mA		2.3 V			0.4	V
VOL		I _{OL} = 12 mA		2.3 V			0.7	V
		IOL = 12 IIIA		2.7 V			0.4	
		I _{OL} = 24 mA		3 V			0.55	
Ц		$V_I = V_{CC}$ or GND		3.6 V			±5	μΑ
		V _I = 0.58 V		1.65 V	25			
		V _I = 1.07 V		1.65 V	-25			
		V _I = 0.7 V		2.3 V	45			
I _I (hold)		V _I = 1.7 V		2.3 V	-45			μΑ
		V _I = 0.8 V		3 V	75			
		V _I = 2 V		3 V	-75			
		$V_{I} = 0 \text{ to } 3.6 \text{ V}^{\ddagger}$		3.6 V			±500	
loz§		$V_O = V_{CC}$ or GND		3.6 V			±10	μΑ
ICC		$V_I = V_{CC}$ or GND,	I _O = 0	3.6 V			40	μΑ
∆ICC		One input at V _{CC} – 0.6 V,	Other inputs at V _{CC} or GND	3 V to 3.6 V			750	μΑ
Ci	Control inputs	$V_I = V_{CC}$ or GND		3.3 V		3.5		pF
Cio	A or B ports	$V_O = V_{CC}$ or GND		3.3 V		8.5		pF

[†] All typical values are at $V_{CC} = 3.3 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

timing requirements over recommended operating free-air temperature range (unless otherwise noted) (see Figures 1 through 3)

			V _{CC} =	1.8 V	V _{CC} =	2.5 V 2 V	VCC =	2.7 V	V _{CC} =	3.3 V 3 V	UNIT
			MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
t _W	Pulse duration, LE or CE low		¶		3.3		3.3		3.3		ns
t _{su}	Setup time	Data before LE↑ or CE↑	¶		1.2		1.5		1.2		ns
t _h	Hold time	Data after LE↑ or CE↑	¶		1.2		0.8		1.3		ns

This information was not available at the time of publication.

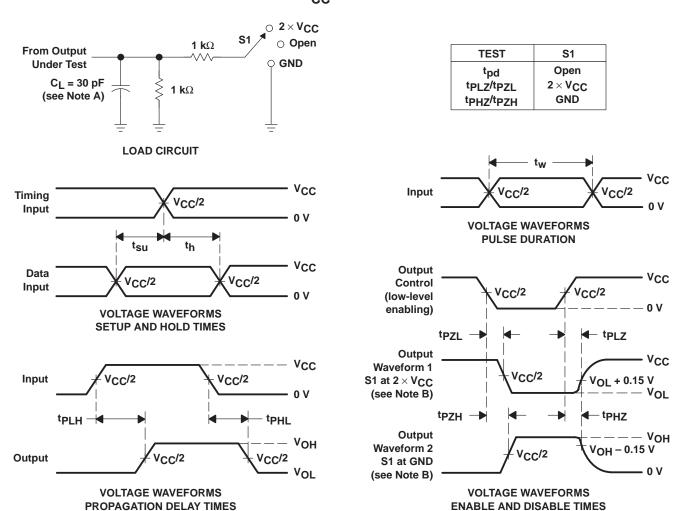
[‡] This is the bus-hold maximum dynamic current. It is the minimum overdrive current required to switch the input from one state to another.

[§] For I/O ports, the parameter IO7 includes the input leakage current.

SN74ALVCH16543 16-BIT REGISTERED TRANSCEIVER WITH 3-STATE OUTPUTS SCES025D – JULY 1995 – REVISED FEBRUARY 1999

switching characteristics over recommended operating free-air temperature range (unless otherwise noted) (see Figures 1 through 3)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 1.8 V	V _{CC} =	2.5 V 2 V	V _{CC} =	2.7 V	V _{CC} =	3.3 V 3 V	UNIT
	(INFOT)	(001701)	TYP	MIN	MAX	MIN	MAX	MIN	MAX	
4 .	A or B	B or A	†	1	5.1		4.8	1	4.3	
^t pd	LE	A or B	†	1	6.5		6.2	1.1	5	ns
t _{en}	CE	A or B	†	1	7.2		6.9	1	5.6	ns
^t dis	CE	A or B	†	1.3	6.1		6.2	1.5	5.1	ns
t _{en}	ŌĒ	A or B	†	1	6.8		6.3	1	5.3	ns
t _{dis}	ŌĒ	A or B	†	1	5.7		4.8	1.1	4.6	ns

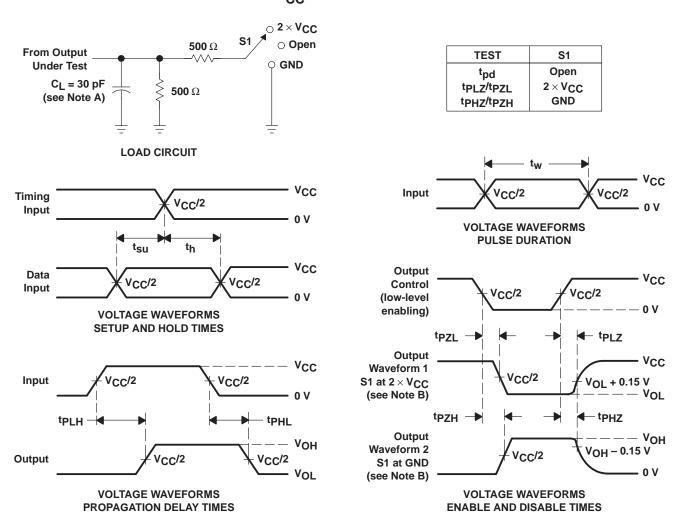

[†] This information was not available at the time of publication.

operating characteristics, $T_A = 25^{\circ}C$

PARAMETER		V _{CC} = 1.8 V	8 V V _{CC} = 2.5 V V _{CC} = 3.3 V		UNIT		
	PARAMETER		TEST CONDITIONS TYP TYP		TYP		
	Power dissipation	Outputs enabled	$C_1 = 50 \text{ pF}, f = 10 \text{ MHz}$	†	54	64	pF
Cpd	capacitance	Outputs disabled	C[= 50 pr, 1 = 10 MHZ	†	6	7	pΓ

[†] This information was not available at the time of publication.

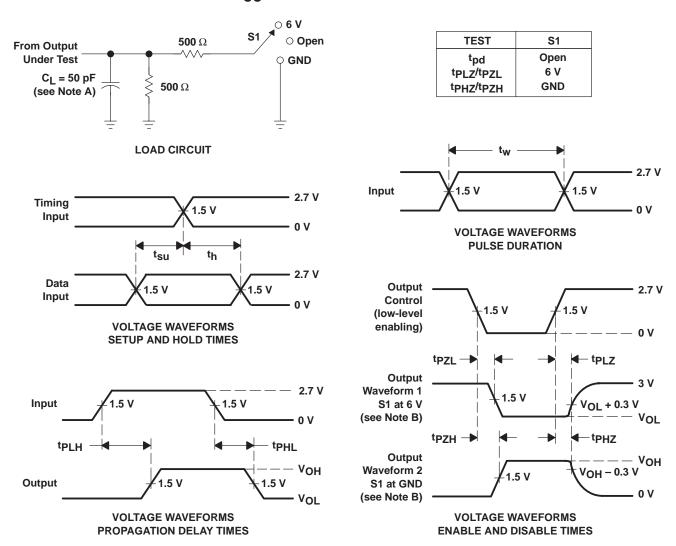
PARAMETER MEASUREMENT INFORMATION V_{CC} = 1.8 V



- NOTES: A. C_L includes probe and jig capacitance.
 - B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
 - C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , $t_f \leq$ 2 ns.
 - D. The outputs are measured one at a time with one transition per measurement.
 - E. tpLZ and tpHZ are the same as tdis.
 - F. tpZL and tpZH are the same as ten.
 - G. tpLH and tpHL are the same as tpd.

Figure 1. Load Circuit and Voltage Waveforms

PARAMETER MEASUREMENT INFORMATION $V_{CC} = 2.5 \text{ V} \pm 0.2 \text{ V}$


NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50~\Omega$, $t_f \leq$ 2 ns. $t_f \leq$ 2 ns.
- D. The outputs are measured one at a time with one transition per measurement.
- E. tpl 7 and tpH7 are the same as tdis.
- F. tpzL and tpzH are the same as ten.
- G. tpLH and tpHL are the same as tpd.

Figure 2. Load Circuit and Voltage Waveforms

PARAMETER MEASUREMENT INFORMATION V_{CC} = 2.7 V AND 3.3 V \pm 0.3 V

NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_Q = 50 \Omega$, $t_f \leq$ 2.5 ns, $t_f \leq$ 2.5 ns.
- D. The outputs are measured one at a time with one transition per measurement.
- E. tpLz and tpHz are the same as tdis.
- F. t_{PZL} and t_{PZH} are the same as t_{en}.
- G. tpLH and tpHL are the same as tpd.

Figure 3. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1999, Texas Instruments Incorporated