LINEAR SYSTEMS ### Linear Integrated Systems | FEATURES | | | | | | | | |--|-----------------|--|--|--|--|--|--| | VERY HIGH INPUT IMPEDANCE | | | | | | | | | HIGH GATE BREAKDOWN | | | | | | | | | ULTRA LOW LEAKAGE | | | | | | | | | LOW CAPACITANCE | | | | | | | | | ABSOLUTE MAXIMUM RATINGS (NOTE 1) | | | | | | | | | (T _A = 25°C unless otherwise noted) | 0250 | | | | | | | | Drain-Source or Drain-Gate Voltage (NOTE 2) | | | | | | | | | 3N165 | 40 V | | | | | | | | 3N166 | 30 V | | | | | | | | Transient G-S Voltage (NOTE 3) | ±125 V | | | | | | | | Gate-Gate Voltage | ±80 V | | | | | | | | Drain Current (NOTE 2) | 50 mA | | | | | | | | Storage Temperature | -65°C to +200°C | | | | | | | | Operating Temperature | -55°C to +150°C | | | | | | | | Lead Temperature (Soldering, 10 sec.) | +300°C | | | | | | | | Power Dissipation (One Side) | 300 mW | | | | | | | | Total Derating above 25°C | 1.2 m\\\/°C | | | | | | | # 3N165, 3N166 MONOLITHIC DUAL P-CHANNEL ENHANCEMENT MODE MOSFET ### ELECTRICAL CHARACTERISTICS (T $_{\rm A}$ =25 $^{\circ}$ C and V $_{\rm BS}$ =0 unless otherwise specified) | | ` A | LIMITS | | | DZSt. | |-----------------------------------|---|--------|------|-------|--| | SYMBOL | CHARACTERISTICS | MIN. | MAX. | UNITS | CONDITIONS | | IGSSR | Gate Reverse Leakage Current | - 107 | 10 | W6 + | V _{GS} = 40 V | | I _{GSSF} | Gate Forward Leakage Current | DP. | -10 | 100 | V _{GS} = -40 V | | | FB T 978 | 2.50 | -25 | pА | T _A =+125°C | | IDSS | Drain to Source Leakage Current | | -200 | | V _{DS} = -20 V | | I _{SDS} | Source to Drain Leakage Current | | -400 | | $V_{SD} = -20 V$ $V_{DB} = 0$ | | l _{D(on)} | On Drain Current | -5 | -30 | mA | $V_{DS} = -15 V$ $V_{GS} = -10 V$ | | V _{GS(th)} | Gate Source Threshold Voltage | -2 | -5 | V | $V_{DS} = -15 \text{ V}$ $I_{D} = -10 \mu \text{A}$ | | V _{GS(th)} | Gate Source Threshold Voltage | -2 | -5 | V | $V_{DS} = V_{GS}$ $I_{D} = -10 \mu A$ | | r _{DS(on)} | Drain Source ON Resistance | | 300 | ohms | $V_{GS} = -20 \text{ V}$ $I_{D} = -100 \mu\text{A}$ | | g _{fs} | Forward Transconductance | 1500 | 3000 | μs | $V_{DS} = -15V$ $I_{D} = -10mA$ $f = 1kHz$ | | g _{os} | Output Admittance | | 300 | μs | | | C _{iss} | Input Capacitance | 2.60 | 3.0 | | | | C _{rss} | Rev <mark>erse Transfer Ca</mark> pacitance | | 0.7 | pF | $V_{DS} = -15V$ $I_{D} = -10mA$ $f=1MHz$ | | Coss | Output Capacitance | | 3.0 | | (<u>NOTE 4</u>) | | R _E (Y _{fs}) | Common Source Forward Transconductance | 1200 | | μs | $V_{DS} = -15V$ $I_{D} = -10mA$ $f = 100MHz$ | | | | | | | (<u>NOTE 4</u>) | **MATCHING CHARACTERISTICS 3N165** | | | LIMITS | | | | |--------------------------------------|--|--------|------|-------|--| | SYMBOL | CHARACTERISTICS | MIN. | MAX. | UNITS | CONDITIONS | | Y _{fs1} /Y _{fs2} | Forward Transconductance Ratio | 0.90 | 1.0 | | $V_{DS} = -15 \text{ V}$ $I_{D} = -500 \mu\text{A}$ $f = 1 \text{kHz}$ | | V _{GS1-2} | Gate Source Threshold Voltage Differential | | 100 | mV | $V_{DS} = -15 \text{ V}$ $I_{D} = -500 \mu\text{A}$ | | $\Delta V_{\text{GS1-2}} / \Delta T$ | Gate Source Threshold Voltage Differential | | 100 | μV/°C | $V_{DS} = -15 \text{ V}$ $I_{A} = -500 \mu\text{A}$ | | | Change with Temperature | | | | $T_A = -55$ °C to = +25°C | #### NOTES: - 1. MOS field-effect transistors have extremely high input resistance and can be damaged by the accumulation of excess static charge. To avoid possible damage to the device while wiring, testing, or in actual operation, follow these procedures: To avoid the build-up of static charge, the leads of the devices should remain shorted together with a metal ring except when being tested or used. Avoid unnecessary handling. Pick up devices by the case instead of the leads. Do not insert or remove devices from circuits with the power on, as transient voltages may cause permanant damage to the devices. - 2. Per transistor. - 3. Devices must mot be tested at ± 125 V more than once, nor for longer than 300ms. - 4. For design reference only, not 100% tested. Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.