MAXIMUM RATINGS

6367254 MOTOROLA SC (XSTRS/R F)

96D 82620 T-31-25

3N211

CASE 20-03, STYLE 9 TO-72 (TO-206AF)

DUAL-GATE MOSFET VHF AMPLIFIER

N-CHANNEL - DEPLETION

Refer to MPF211 for graphs.

Rating	Symbol	3N211 3N212	3N213	Unit	
Drain-Source Voltage	V _{DS}	27	35	Vdc	
Drain-Gate Voltage .	V _{DG1} V _{DG2}	35 35	40 40	Vdc	
Drain Current	ID	50		mAdc	
Gate Current	IG1 IG2	±10 ±10		mAdc	
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD		60 .4	mW mW/°C	
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD		.2 .0	Watt mW/°C	
Lead Temperature, 1/16" From Seated Surface for 10 seconds	TL	300		°C	
Junction Temperature Range	TJ	-65 to	°C		
Storage Temperature Range	T _{stg}	65 to	°C		

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted.)

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS			•		
Drain-Source Breakdown Voltage(1) (ID = 10 μAdc, V _{G1S} = V _{G2S} = -4.0 Vdc)	3N211,212 3N213	V(BR)DSX	25 30	_	Vdc
Instantaneous Drain-Source Breakdown Voltage) (ID = 10 μAdc, V _{G1S} = V _{G2S} = -4.0 Vdc)	3N211,212 3N213	V(BR)DSX	27 35	=	Vdc
Gate 1-Source Breakdown Voltage(2) (I _{G1} = ±10 mAdc, V _{G2S} = V _{DS} = 0)		V(BR)G1SO	±6.0		Vdc
Gate 2-Source Breakdown Voltage(2) (I _{G2} = ±10 mAdc, V _{G1S} = V _{DS} = 0)		V(BR)G2SO	±6.0	n=f	Vdc
Gate 1 Leakage Current $(V_{G1S} = \pm 5.0 \text{ Vdc}, V_{G2S} = V_{DS} = 0)$ $(V_{G1S} = -5.0 \text{ Vdc}, V_{G2S} = V_{DS} = 0, T_A = 150^{\circ}C)$		I _{G1SS}	=	±10 -10	nAdo μAdo
Gate 2 Leakage Current (VG2S = ±5.0 Vdc, VG1S = VDS = 0) (VG2S = -5.0 Vdc, VG1S = VDS = 0, TA = 150°C)	(m)/p	I _{G2SS}	Ξ	±10 -10	nAdo μAdo
Gate 1 to Source Cutoff Voltage (V _{DS} = 15 Vdc, V _{G2S} = 4.0 Vdc, I _D = 20 μAdc)	3N211,213 3N212	VG1S(off)	- 0.5 - 0.5	-5.5 -4.0	Vdc
Gate 2 to Source Cutoff Voltage (V _{DS} = 15 Vdc, V _{G1S} = 0, I _D = 20 μAdc)	3N211 3N212,213	V _{G2S(off)}	-0.2 -0.2	-2.5 -4.0	Vdc

Zero-Gate-Voltage Drain Current(3) 6.0 mAdc DSS $(V_{DS} = 15 \text{ Vdc}, V_{G1S} = 0, V_{G2S} = 4.0 \text{ Vdc})$

SMALL-SIGNAL CHARACTERISTICS

Forward Transfer Admittance(4) $(V_{DS} = 15 \text{ Vdc}, V_{G2S} = 4.0 \text{ Vdc}, V_{G1S} = 0, f = 1.0 \text{ kHz})$	3N211,212 3N213	lyfsl	17 15	40 35	mmhos
Reverse Transfer Capacitance (VDS = 15 Vdc, VG2S = 4.0 Vdc, ID = 1.0 mAdc, f = 1.0 MHz)		C _{rss}	0.005	0.05	pF

FUNCTIONAL CHARACTERISTICS

Noise Figure		NF			dB
(V _{DD} = 16 Vdc, V _{GG} = 7.0 Vdc, f = 200 MHz)	3N211		_	3.5	
(V _{DD} = 24 Vdc, V _{GG} = 6.0 Vdc, f = 45 MHz)	3N211,13		_	4.0	
			-		

MOTOROLA SMALL-SIGNAL SEMICONDUCTORS

6367254 MOTOROLA SC (XSTRS/R F)

96D 82621

3N211, 3N212, 3N213

T-31-25

ELECTRICAL CHARACTERISTICS (continued) (TA = 25°C unless otherwise noted.)

Characteristic		Symbol	Min	Max	Unit
Common Source Power Gain (VDD = 18 Vdc, VGG = 7.0 Vdc, f = 200 MHz) (VDD = 24 Vdc, VGG = 6.0 Vdc, f = 45 MHz) (VDD = 24 Vdc, VGG = 6.0 Vdc, f = 45 MHz) (VDD = 18 Vdc, f _{1,0} = 245 MHz, f _{RF} = 200 MHz)	3N211 3N211 3N213 3N212	G _{ps}	24 29 27 21	35 37 35 28	dB
No. No.	3N211 3N212 3N211,213	BW	5.0 4.0 3.5	12 7.0 6.0	MHz
Gain Control Gate-Supply Voltage(5) (VDD = 18 Vdc, Δ Gps = -30 dB, f = 200 MHz) (VpD = 24 Vdc, Δ Gps = -30 dB, f = 45 MHz)	3N211 2N211,213	VGG(GC)	_	-2.0 ±1.0	Vdc

(1) Measured after five seconds of applied voltage.

(2) All gate breakdown voltages are measured while the device is conducting rated gate current. This ensures that the gate-voltage limiting network is functioning properly.

(3) Pulse Test: Pulse Width = 300 μs, Duty Cycle ≤ 2.0%.

(4) This parameter must be measured with bias voltages applied for less than 5 seconds to avoid overheating. The signal is applied to gate 1 with gate 2 at ac ground.

(5) ΔG_{ps} is defined as the change in G_{ps} from the value at V_{GG} = 7.0 Volts (3N211) and V_{GG} = 6.0 Volts (3N213).

(6) Power Gain Conversion. Amplitude at input from local oscillator is adjusted for maximum G_c.