

Data sheet acquired from Harris Semiconductor SCHS258

January 1997

NOT RECOMMENDED FOR NEW DESIGNS Use CMOS Technology

Features

- · Buffered Inputs
- Typical Propagation Delay: 6.4ns at V_{CC} = 5V,
 T_A = 25°C, C_L = 50pF
- Noninverting
- Family Features
 - SCR Latchup Resistant BiCMOS Process and

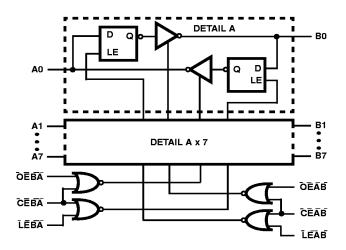
BiCMOS FCT Interface Logic, Octal Register/Transceiver, Three-State

Circuit Design

- Speed of Bipolar FAST™/AS/S
- 64mA Output Sink Current
- Output Voltage Swing Limited to 3.7V at V_{CC} = 5V
- Controlled Output Edge Rates
- Input/Output Isolation to V_{CC}
- BiCMOS Technology with Low Quiescent Power

Ordering Information

PART NUMBER	TEMP. RANGE (°C)	PACKAGE	PKG. NO.
CD74FCT543EN	0 to 70	24 Ld PDIP	E24.3
CD74FCT543M	0 to 70	24 Ld SOIC	M24.3
CD74FCT543SM	0 to 70	24 Ld SSOP	M24.209


NOTE: When ordering the suffix M and SM packages, use the entire part number. Add the suffix 96 to obtain the variant in the tape and reel.

Pinout

CD74FCT543 (PDIP, SOIC, SSOP) TOP VIEW

LEBA 1	$egin{array}{cccccccccccccccccccccccccccccccccccc$	24	vcc
OEBA 2]	23	CEBA
A0 3		22	B0
A1 4		21	B1
A2 5	A FAN	20	B2
A3 6	NA.	19	B3
A4 7		18	B4
A5 8	1	17	B5
A6 9]	16	B6
A7 10	1	15	B7
CEAB 11	1	14	LEAB
GND 12		13	OEAB

Functional Diagram

TRUTH TABLE For A to B (Symmetric with B to A)

	INPUTS		LATCH STATUS	OUTPUT BUFFERS
CEAB	LEAB	OEAB	A TO B	B0 THRU B7
Н	X	X	Storing	High Z
Х	Н	-	Storing	-
Х	-	Н	-	High Z
L	L	L	Transparent	Current A Inputs
L	Н	L	Storing	Previous A Inputs (Note 1)

NOTE:

1. Before **LEAB** LOW to HIGH Transition

H = HIGH Voltage Level

L = LOW Voltage Level

X = Immaterial

A to B data flow shown; B to A flow control is the same, except using $\overline{\text{CEBA}}$, $\overline{\text{LEBA}}$, and $\overline{\text{OEBA}}$.

IEC Logic Symbol

Thermal Information

	•
Thermal Resistance (Typical, Note 2)	θ _{JA} (°C/W)
PDIP Package	75
SOIC Package	75
SSOP Package	
Maximum Junction Temperature	150°C
Maximum Storage Temperature Range65	5°C to 150°C
Maximum Lead Temperature (Soldering 10s)	
(SOIC and SSOP-Lead Tips Only)	

Operating Conditions

Operating Temperature Range (TA)	0°C to 70°C
Supply Voltage Range, V _{CC}	4.75V to 5.25V
DC Input Voltage, V ₁	0 to V _{CC}
DC Output Voltage, VO	0 to ≤ V _{CC}
Input Rise and Fall Slew Rate, dt/dv	0 to 10ns/V

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTE:

2. θ_{JA} is measured with the component mounted on an evaluation PC board in free air.

Electrical Specifications Commercial Temperature Range 0°C to 70°C, V_{CC} Max = 5.25V, V_{CC} Min = 4.75V

					AME	BIENT TEMI	PERATURE	E (T _A)	
		TEST CO	NDITIONS		25	o°C	0°C T	O 70°C	1
PARAMETER	SYMBOL	V _I (V)	I _O (mA)	V _{CC} (V)	MIN	MAX	MIN	MAX	UNITS
High Level Input Voltage	V _{IH}			4.75 to 5.25	2	-	2	-	٧
Low Level Input Voltage	V _{IL}			4.75 to 5.25	-	0.8	-	0.8	٧
High Level Output Voltage	V _{OH}	$V_{ m IH}$ or $V_{ m IL}$	-15	Min	2.4	-	2.4	-	٧
Low Level Output Voltage	V_{OL}	V_{IH} or V_{IL}	64	Min	-	0.55	-	0.55	٧
High Level Input Current	lін	V _{CC}		Max	-	0.1	-	1	μА
Low Level Input Current	I _{IL}	GND		Max	-	-0.1	-	-1	μΑ
Three-State Leakage Current	lozh	V _{CC}		Max	-	0.5	-	10	μА
	lozL	GND		Max	-	-0.5	-	-10	μА
Input Clamp Voltage	V _{IK}	V _{CC} or GND	-18	Min	=	-1.2	-	-1.2	٧
Short Circuit Output Current (Note 3)	los	V _O = 0 V _{CC} or GND		Max	-60	-	-60	-	mA
Quiescent Supply Current, MSI	lcc	V _{CC} or GND	0	Max	-	8	-	80	μА
Additional Quiescent Supply Current per Input Pin TTL Inputs High, 1 Unit Load	Δl _{CC}	3.4V (Note 4)		Max	-	1.6	-	1.6	mA

NOTES:

- 3. Not more than one output should be shorted at one time. Test duration should not exceed 100ms.
- 4. Inputs that are not measured are at V_{CC} or GND.
- 5. FCT Input Loading: All inputs are 1 unit load. Unit load is ΔI_{CC} limit specified in Electrical Specifications table, e.g., 1.6mA Max. at 70°C.

Switching Specifications Over Operating Range FCT Series t_r , t_f = 2.5ns, C_L = 50pF, R_L (Figure 4)

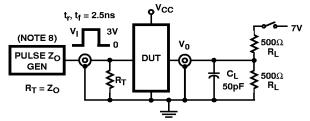
			25°C	0°C TO 70°C			
PARAMETER	SYMBOL	V _{CC} (V)	TYP	MIN	TYP	MAX	UNITS
Propagation Delays							
$An \leftrightarrow Bn$	t _{PLH} , t _{PHL}	5	6.4	2.5	-	8.5	ns
LEBA to An or LEAB to Bn	t _{PLH} , t _{PHL}	5	9.4	2.5	-	12.5	ns
CEBA or CEAB to An or Bn	t _{PLZ} , t _{PHZ}	5	6.8	2	-	9	ns
	t _{PZL} , t _{PZH}	5	9	2	-	12	ns
Power Dissipation Capacitance	C _{PD} (Note 6)	-	49	-	49	-	pF
Minimum (Valley) V _{OHV} During Switching of Other Outputs (Output Under Test Not Switching)	V _{OHV}	5	0.5	-	-	-	V
Maximum (Peak) V _{OLP} During Switching of Other Outputs (Output Under Test Not Switching)	V _{OLP}	5	1	-	-	-	٧
Input Capacitance	Cl	-	-	-	-	10	pF
Input/Output Capacitance	C _{I/O}	-	-	-	-	15	pF
1077	•	•		•	-	-	•

NOTE:

6. C_{PD} , measured per flip-flop, is used to determine the dynamic power consumption. P_D (per package) = $V_{CC} I_{CC} + \Sigma (V_{CC}^2 f_I C_{PD} + V_O^2 f_O C_L + V_{CC} \Delta I_{CC} D)$ where: V_{CC} = supply voltage

 ΔI_{CC} = supply voltage ΔI_{CC} = flow through current x unit load C_L = output load capacitance D = duty cycle of input high

f_O = output frequency f_I = input frequency


Prerequisite for Switching

			25°C	0°C T	O 70°C	
PARAMETER	SYMBOL	V _{CC} (V)	TYP	MIN	MAX	UNITS
Data to Latch Enable Setup Time	t _{SU}	5 (Note 7)	-	3	-	ns
Data to Latch Enable Hold Time	t _H	5	-	2	-	ns
Latch Enable Pulse Width	t _W	5	-	9	-	ns

NOTE:

7. 5V: Minimum is at 4.75V for 0°C to 70°C, Typical is at 5V.

Test Circuits and Waveforms

NOTE:

8. Pulse Generator for All Pulses: Rate \leq 1.0MHz; $Z_{OUT} \leq$ 50 Ω ; $t_f, t_r \le 2.5 ns.$

FIGURE 1. TEST CIRCUIT

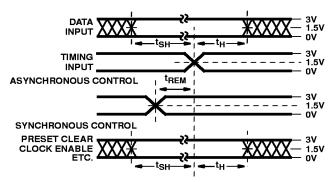
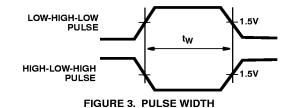


FIGURE 2. SETUP, HOLD, AND RELEASE TIMING

SWITCH POSITION

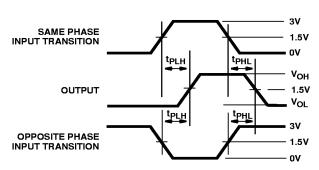
TEST	SWITCH
t _{PLZ} , t _{PZL} , Open Drain	Closed
t _{PHZ} , t _{PZH} , t _{PLH} , t _{PHL}	Open

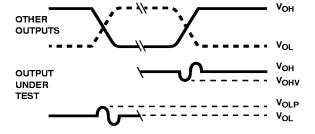

DEFINITIONS:

C_L = Load capacitance, includes jig and probe capacitance.

 R_T = Termination resistance, should be equal to Z_{OLIT} of the Pulse Generator.

 $V_{IN} = 0V \text{ to } 3V.$


Input: $t_r = t_f = 2.5$ ns (10% to 90%), unless otherwise specified


DISABLE **ENABLE** 3V **CONTROL INPUT** 1.5V nν t_{PLZ} tpzl 3.5V OUTPUT NORMALLY LOW SWITCH 0.3V V_{OL} t_{PHZ}|• ^tPZH V_{OH} 0.3V OUTPUT NORMALLY HIGH SWITCH

OPEN

FIGURE 5. PROPAGATION DELAY

NOTES:

- 9. V_{OLP} is measured with respect to a ground reference near the output under test. V_{OHV} is measured with respect to V_{OH}.
- 10. Input pulses have the following characteristics: $P_{RR} \le 1MHz$, $t_r = 2.5ns$, $t_f = 2.5ns$, skew 1ns.
- 11. R.F. fixture with 700MHz design rules required. IC should be soldered into test board and bypassed with 0.1µF capacitor. Scope and probes require 700MHz bandwidth.

FIGURE 6. SIMULTANEOUS SWITCHING TRANSIENT WAVEFORMS