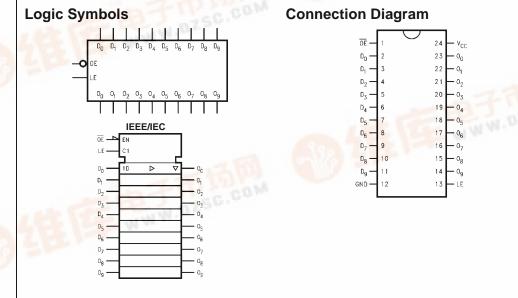


October 1995 Revised March 2001

74LCX841 Low Voltage 10-Bit Transparent Latch with 5V Tolerant Inputs and Outputs

General Description

The LCX841 consists of ten latches with 3-STATE outputs for bus organized system applications. The device is designed for low voltage (2.5V or 3.3V) V_{CC} applications with capability of interfacing to a 5V signal environment. The LCX841 is fabricated with an advanced CMOS technology to achieve high speed operation while maintaining CMOS low power dissipation.


Features

- 5V tolerant inputs and outputs
- 2.3V 3.6V V_{CC} specifications provided
- 8.0 ns t_{PD} max (V_{CC} = 3.3V), 10 μA I_{CC} max
- Power-down high impedance inputs and outputs
- Supports live insertion/withdrawal (Note 1)
- ± 24 mA output drive (V_{CC} = 3.0V)
- Implements patented noise/EMI reduction circuitry
- Latch-up performance exceeds 500 mA
- ESD performance:
 - Human Body Model > 2000V Machine Model > 200V

Note 1: To ensure the high-impedance state during power up or down, $\overline{\text{OE}}$ should be tied to V_{CC} through a pull-up resistor: the minimum value or the resistor is determined by the current-sourcing capability of the driver.

Ordering Code:

Order Number	Package Number	Package Description				
74LCX841WM	M24B	24-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300 Wide				
74LCX841MSA	MSA24	24-Lead Shrink Small Outline Package (SSOP), EIAJ TYPE II, 5.3mm Wide				
74LCX841MTC	MTC24	24-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide				
Devices also available	Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.					

© 2001 年一下 Opdf.dzsc.com

74LCX841

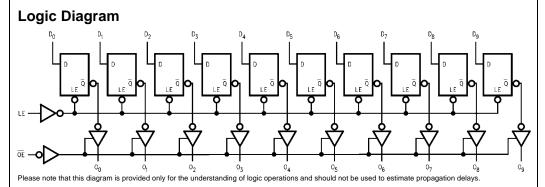
Pin Descriptions

Pin Names	Description
D ₀ –D ₉	Data Inputs
LE	Latch Enable Input
OE	Output Enable Input
O ₀ –O ₉	3-STATE Latch Outputs

Truth Table

	Inputs	;	Internal	Output	Function	
OE	LE	D	Q	0	Function	
Х	Х	Х	Х	Z	High Z	
н	н	L	L	Z	High Z	
н	н	н	н	Z	High Z	
н	L	х	NC	Z	Latched	
L	н	L	L	L	Transparent	
L	н	н	н	н	Transparent	
L	L	х	NC	NC	Latched	

H = HIGH Voltage Level L = LOW Voltage Level


X = Immaterial Z = High Impendance

NC = No Change

Functional Description

The LCX841 consists of ten D-type latches with 3-STATE outputs. The flip-flops appear transparent to the data when Latch Enable (LE) is HIGH. This allows asynchronous operation, as the output transition follows the data in transition.

On the LE HIGH-to-LOW transition, the data that meets the setup and hold time is latched. Data appears on the bus when the Output Enable (\overline{OE}) is LOW. When \overline{OE} is HIGH the bus output is in the high impedance state.

Absolute Maximum Ratings(Note 2)

2
<u>4</u>
\mathbf{O}
\mathbf{x}
ço
4
_

Symbol	Parameter	Value	Conditions	Units
V _{CC}	Supply Voltage	-0.5 to +7.0		V
VI	DC Input Voltage	-0.5 to +7.0		V
Vo	DC Output Voltage	-0.5 to +7.0	Output in 3-STATE	V
		–0.5 to V_{CC} + 0.5	Output in HIGH or LOW State (Note 3)	v
I _{IK}	DC Input Diode Current	-50	V _I < GND	mA
I _{OK}	DC Output Diode Current	-50	V _O < GND	mA
		+50	$V_{O} > V_{CC}$	IIIA
I _O	DC Output Source/Sink Current	±50		mA
I _{CC}	DC Supply Current per Supply Pin	±100		mA
I _{GND}	DC Ground Current per Ground Pin	±100		mA
T _{STG}	Storage Temperature	-65 to +150		°C

Recommended Operating Conditions (Note 4)

Symbol	Parameter			Max	Units	
V _{CC}	Supply Voltage	Operating	2.0	3.6	V	
		Data Retention	1.5	3.6	v	
VI	Input Voltage		0	5.5	V	
Vo	Output Voltage	HIGH or LOW State	0	V _{CC}	V	
		3-STATE	0	5.5	v	
I _{OH} /I _{OL}	Output Current	$V_{CC} = 3.0V - 3.6V$		±24		
		$V_{CC} = 2.7V - 3.0V$		±12	mA	
		$V_{CC} = 2.3V - 2.7V$		±8		
T _A	Free-Air Operating Temperature		-40	85	°C	
$\Delta t / \Delta V$	Input Edge Rate, $V_{IN} = 0.8V - 2.0V$, $V_{CC} = 3.0V$		0	10	ns/V	

Note 2: The Absolute Maximum Ratings are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the Absolute Maximum Ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 3: I_O Absolute Maximum Rating must be observed.

Note 4: Unused inputs must be held HIGH or LOW. They may not float.

DC Electrical Characteristics

Symbol	Parameter	Conditions	v _{cc}	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		Units
Symbol	Farameter	conditions	(V)	Min	Max	Onits
/ _{IH}	HIGH Level Input Voltage		2.3 – 2.7	1.7		v
			2.7 - 3.6	2.0		v
/ _{IL}	LOW Level Input Voltage		2.3 – 2.7		0.7	v
			2.7 - 3.6		0.8	· V
/ _{ОН}	HIGH Level Output Voltage	$I_{OH} = -100 \ \mu A$	2.3 - 3.6	V _{CC} - 0.2		
		I _{OH} = -8 mA	2.3	1.8		
		I _{OH} = -12 mA	2.7	2.2		V
		I _{OH} = -18 mA	3.0	2.4		
		I _{OH} = -24 mA	3.0	2.2		
V _{OL}	LOW Level Output Voltage	I _{OH} = 100 μA	2.3 - 3.6		0.2	
		I _{OH} = 8 mA	2.3		0.6	
		I _{OL} = 12 mA	2.7		0.4	V
		I _{OL} = 16 mA	3.0		0.4	
		I _{OL} = 24 mA	3.0		0.55	
l	Input Leakage Current	$0 \le V_I \le 5.5V$	2.3 - 3.6		±5.0	μA
oz	3-STATE Output Leakage	$0 \le V_O \le 5.5V$	2.3 - 3.6		±5.0	μA
		$V_I = V_{IH} \text{ or } V_{IL}$	2.3 - 3.0		± 3 .0	μΑ
OFF	Power-Off Leakage Current	$V_1 \text{ or } V_0 = 5.5 \text{ V}$	0	1	10	μA

•
4
œ
Ŷ
\sim
C
Ц
T
r

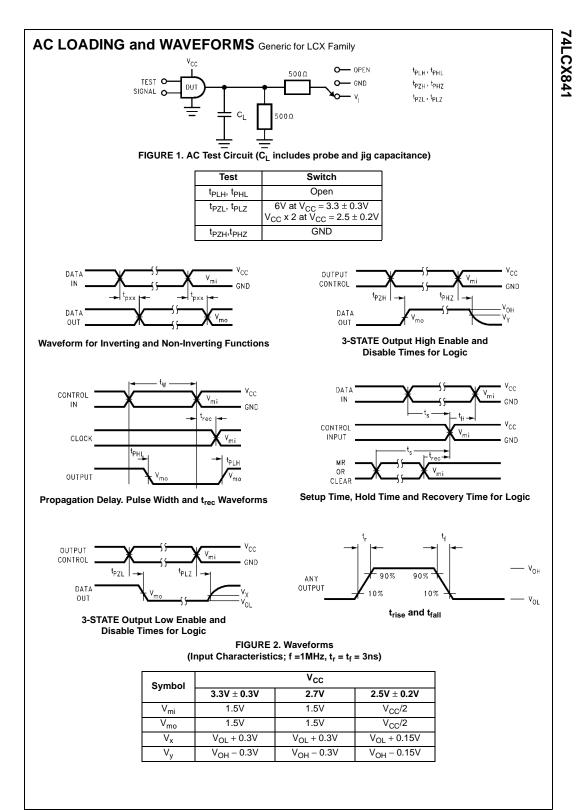
DC Electrical Characteristics (Continued)

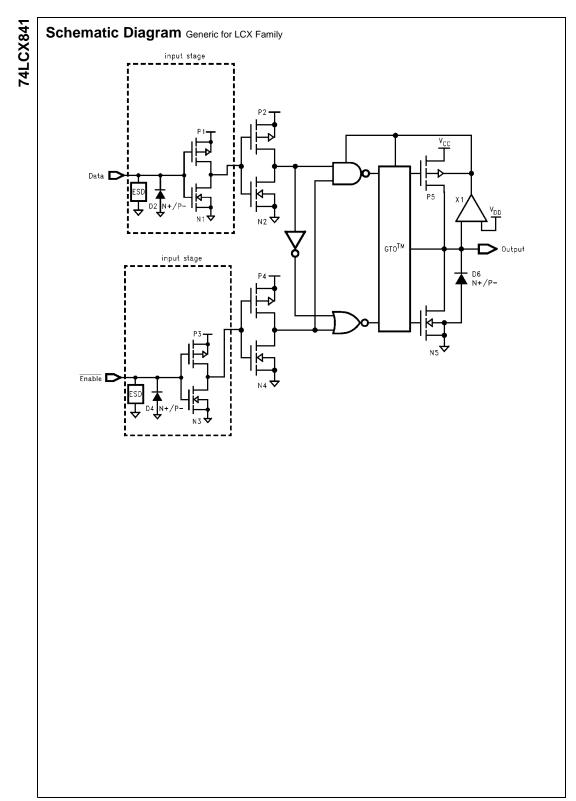
Symbol	Parameter	Conditions	V _{CC}	$T_{A} = -40^{\circ}$	C to +85°C	Units
Gymbol	i arameter	Conditions	(V)	Min	Max	Onits
I _{CC}	Quiescent Supply Current	$V_I = V_{CC}$ or GND	2.3 - 3.6		10	μA
		$3.6V \le V_I, V_O \le 5.5V$ (Note 5)	2.3 - 3.6		±10	μΑ
Δl _{CC}	Increase in I _{CC} per Input	$V_{IH} = V_{CC} - 0.6V$	2.3 - 3.6		500	μΑ

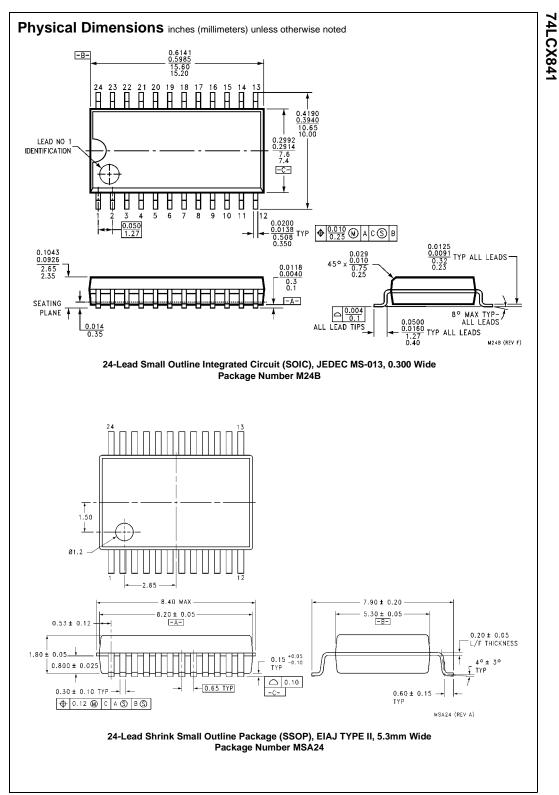
Note 5: Outputs disabled or 3-STATE only.

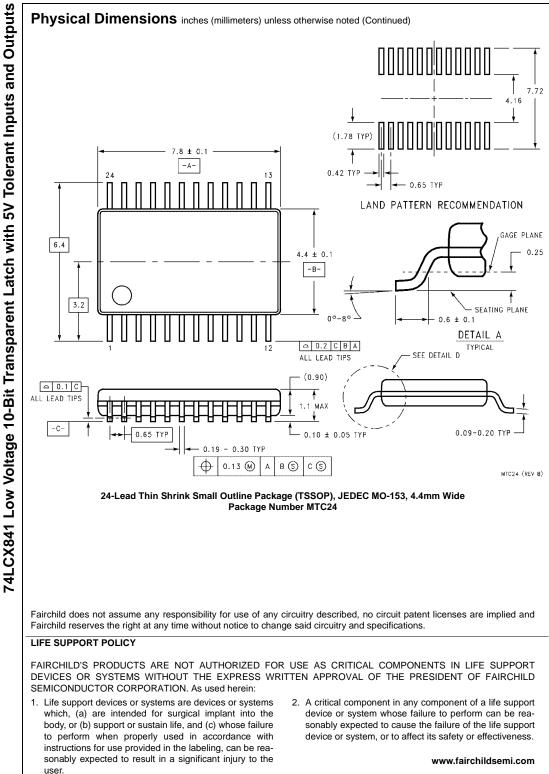
AC Electrical Characteristics

			T _A	= -40°C to +	85°C, R _L = 5	00 Ω		
Symbol	Parameter	V _{CC} = 3.	$3V \pm 0.3V$	V _{CC}	= 2.7V	V _{CC} = 2.	$5V \pm 0.2V$	Units
Symbol		C _L =	C _L = 50 pF		C _L = 50 pF		C _L = 30 pF	
		Min	Max	Min	Max	Min	Max	
t _{PHL}	Propagation Delay	1.5	7.0	1.5	7.5	1.5	8.4	ns
t _{PLH}	D _n to O _n	1.5	7.0	1.5	7.5	1.5	8.4	115
t _{PHL}	Propagation Delay	1.5	7.0	1.5	7.5	1.5	8.4	ns
t _{PLH}	LE to O _n	1.5	7.0	1.5	7.5	1.5	8.4	115
t _{PZL}	Output Enable Time	1.5	8.0	1.5	8.5	1.5	9.6	
t _{PZH}		1.5	8.0	1.5	8.5	1.5	9.6	ns
t _{PLZ}	Output Disable Time	1.5	6.5	1.5	7.0	1.5	7.8	ns
t _{PHZ}		1.5	6.5	1.5	7.0	1.5	7.8	115
t _{OSHL}	Output to Output Skew		1.0					ns
t _{OSLH}	(Note 6)		1.0					115
t _S	Setup Time D _n to LE	2.5		2.5		4.0	1	ns
t _H	Hold Time D _n to LE	1.5		1.5		2.0	1	ns
t _W	LE Pulse Width	3.3		3.3		4.0	1	ns


Note 6: Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (t_{OSHL}) or LOW-to-HIGH (t_{OSLH}).


Dynamic Switching Characteristics


Symbol	Parameter	Conditions	V _{CC}	$T_A = 25^{\circ}C$	Units
Gymbol	T arameter	Conditions	(V)	Typical	onita
V _{OLP}	Quiet Output Dynamic Peak V _{OL}	$C_L = 50 \text{ pF}, \text{ V}_{IH} = 3.3 \text{ V}, \text{ V}_{IL} = 0 \text{ V}$	3.3	0.8	V
		$C_L = 30 \text{ pF}, \text{ V}_{IH} = 2.5 \text{ V}, \text{ V}_{IL} = 0 \text{ V}$	2.5	0.6	v
V _{OLV}	Quiet Output Dynamic Valley V _{OL}	$C_L = 50 \text{ pF}, V_{IH} = 3.3 \text{V}, V_{IL} = 0 \text{V}$	3.3	-0.8	V
		$C_L = 30 \text{ pF}, \text{ V}_{IH} = 2.5 \text{V}, \text{ V}_{IL} = 0 \text{V}$	2.5	-0.6	v


Capacitance

Symbol	Parameter	Conditions	Typical	Units
CIN	Input Capacitance	$V_{CC} = Open, V_I = 0V \text{ or } V_{CC}$	7	pF
CO	Output Capacitance	$V_{CC} = 3.3V$, $V_I = 0V$ or V_{CC}	8	pF
C _{PD}	Power Dissipation Capacitance	$V_{CC} = 3.3V$, $V_I = 0V$ or V_{CC} , $f = 10$ MHz	20	pF

