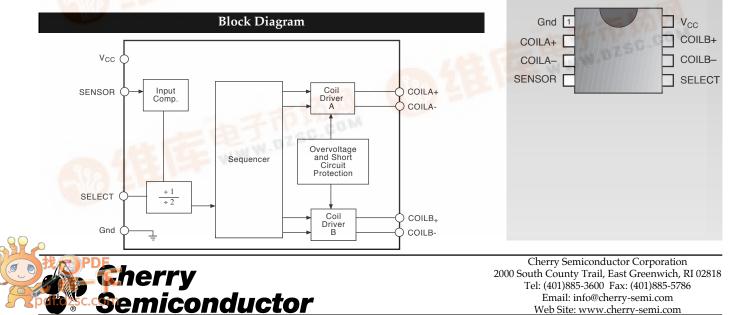
查询CS8441供应商

85mA Dual H-Bridge Odometer Driver with Divide by Select

Description

The CS8441 is a Stepper Motor Driver that implements an H-Bridge design in order to drive two coils in an eight step sequence per revolution in the divide by 1 mode; 16 step sequence in the divide by 2 mode. The H-Bridge is capable of delivering 85mA to the load.


The sequencer insures that the odometer is monotonic. This sequencer is configured such that simultaneous conduction does not occur. Before each successive output sequence the part is taken through a state where both outputs are turned off individually. This tends to minimize the inductive kick back energy that the part must absorb. On chip clamp diodes are across each output to protect the part from the kick back energy that it must absorb.

Additional part protection is provided by two functions. The first being "short circuit protection". This function will protect the part in the case of a shorted or partially shorted load. The second protection function is the "overvoltage function". This function monitors the level of the supply voltage. In transient conditions such as load dump, the part will shut down, protecting itself.

Absolute Maximum Ratings

Supply Voltage (V _{CC}) (continuous) -40°C to +105°C	–0.5 to 24V
(100ms pulse transient) -40°C to +105°C	–0.5 to 60V
Input Voltage (V _{IN})	–0.3 to V _{CC} +0.3V
Storage Temperature Range (T _{STG})	65°C to 150°C
Junction Temperature Range	–40°C to 150°C
ESD (Human Body Model)	
Lead Temperature Soldering	

Wave Solder(through hole styles only).....10 sec. max, 260°C peak

Features

- No Cross-conduction in either H-bridge
- Divide by 1 and Divide by 2 Mode
- Guaranteed Monotonic
- **On Chip Flyback Diodes**
 - Fault Protection Overvoltage Load Dump Protection to 60V

CS8441

Electrical Characteristics: Unless otherwise stated, these specifications apply for $-40^{\circ}C \le T_A \le 105^{\circ}C$, $6.5V \le V_{CC} \le 15.5V$. All voltage shall be referenced to Gnd unless otherwise noted. Overvoltage shutdown of coils occurs when $V_{CC} > 16V$.

	TEST CONDITIONS	MIN	ТҮР	MAX	UNIT
Supply, V _{cc}					
Supply Voltage Range	$\begin{array}{l} -40^{\circ}\text{C} \leq \text{T}_{\text{A}} \leq 105^{\circ}\text{C} \\ -40^{\circ}\text{C} \leq \text{T}_{\text{A}} \leq 25^{\circ}\text{C} \\ \text{Transient Pulse, } 100\text{ms} \end{array}$	6.5 6.5		15.5 24.0 35.0	VDC VDC VDC
Supply Current	V _{CC} = 15.5 VDC Outputs not loaded		24	35	mA
Overvoltage Shutdown		16		23	V
Speed Sensor Input, SENSO	R				
Input Frequency Range			0.2	1.0	kHz
Switching Threshold		1.2		2.4	VDO
Hysteresis		300	500		mV
Input Bias Current	$0.8VDC \le V_{IN} \le V_{CC}$		0.1	±1.0	μA
Input Voltage Range		0		V _{CC}	VDO
Operating Input Voltage	10kΩ Resistor in Series			-15 to V _{CC}	VDO
Input Clamp Current	I Clamp at $V_{IN} = 0$ VDC		-0.4	-5.0	mA
Logic 0 Input Voltage Logic 1 Input Voltage		3.0		100	mVI
0 1 0		3.0			
Logic I input vonage					VDC
Logic 0 Input Current	$0V \le V_{IN} \le 100 mV$		-1	-100	νDo μA
° . °	$0V \le V_{IN} \le 100 \text{mV}$ $3V \le V_{IN} \le 15.5 \text{ VDC}$		-1 0.75	-100 2.00	
Logic 0 Input Current					μΑ
Logic 0 Input Current Logic 1 Input Current		198			μΑ
Logic 0 Input Current Logic 1 Input Current Coil Output Drivers	$3V \le V_{IN} \le 15.5 \text{ VDC}$	198	0.75	2.00	μA mA
Logic 0 Input Current Logic 1 Input Current Coil Output Drivers Coil Load Coil Inductance Coil Resistance Temperature	$3V \le V_{IN} \le 15.5 \text{ VDC}$	198	0.75	2.00	μA mA Ω mH
Logic 0 Input Current Logic 1 Input Current Coil Output Drivers Coil Load Coil Inductance	3V≤V _{IN} ≤15.5 VDC +25°C Coefficient	198 V _{CC} -1.5V V _{CC} -1.6V V _{CC} -1.75V V _{CC} -2.0V	0.75	2.00	mA
Logic 0 Input Current Logic 1 Input Current Coil Output Drivers Coil Load Coil Inductance Coil Resistance Temperature * Energized Coil Voltage	$3V \le V_{IN} \le 15.5 \text{ VDC}$ +25°C Coefficient $V_{CC} = 6.5 \text{ VDC}$ $V_{CC} = 10.0 \text{ VDC}$ $V_{CC} = 15.5 \text{ VDC} - 20^{\circ}\text{C} \le T_{A} \le 105^{\circ}\text{C}$	V _{CC} -1.5V V _{CC} -1.6V V _{CC} -1.75V	0.75 210 80 V _{CC} -0.9V V _{CC} -1.0V V _{CC} -1.1V	2.00	μA mA Ω mH %/° VD0 VD0 VD0
Logic 0 Input Current Logic 1 Input Current Coil Output Drivers Coil Load Coil Inductance Coil Resistance Temperature * Energized Coil Voltage (Both Polarities) A and B	$3V \le V_{IN} \le 15.5 \text{ VDC}$ +25°C Coefficient $V_{CC} = 6.5 \text{ VDC}$ $V_{CC} = 10.0 \text{ VDC}$ $V_{CC} = 15.5 \text{ VDC} - 20^{\circ}\text{C} \le T_{A} \le 105^{\circ}\text{C}$	V _{CC} -1.5V V _{CC} -1.6V V _{CC} -1.75V	0.75 210 80 V _{CC} -0.9V V _{CC} -1.0V V _{CC} -1.1V	2.00 222 0.35	μA mA Ω mH %/° VD0 VD0 VD0 VD0
Logic 0 Input Current Logic 1 Input Current Coil Output Drivers Coil Load Coil Inductance Coil Resistance Temperature * Energized Coil Voltage (Both Polarities) A and B De-Energized Coil Leakage Current	$3V \le V_{IN} \le 15.5 \text{ VDC}$ +25°C Coefficient $V_{CC} = 6.5 \text{ VDC}$ $V_{CC} = 10.0 \text{ VDC}$ $V_{CC} = 15.5 \text{ VDC} - 20^{\circ}\text{C} \le T_{A} \le 105^{\circ}\text{C}$	V _{CC} -1.5V V _{CC} -1.6V V _{CC} -1.75V	0.75 210 80 V _{CC} -0.9V V _{CC} -1.0V V _{CC} -1.1V	2.00 222 0.35	μΑ mA Ω mH %/s VD0 VD0 VD0 VD0

* Voltage across the coils shall be measured at the specific voltages, but shall also be within linearly interpolated limits.

Package Pin Description			CS8
PACKAGE PIN #	PIN SYMBOL	FUNCTION	441
8L PDIP			
1	Gnd	Ground connection.	
2	COILA+	Output stage, when active, this pin supplies current to COIL A.	
3	COILA-	Output stage, when active, this pin supplies current to COIL A.	
4	SENSOR	Input signal from wheel speed or engine rpm.	
5	SELECT	Selects divide by 1 or divide by 2 mode.	
6	COILB-	Output stage, when active, this pin supplies current to COIL B.	
7	COILB+	Output stage, when active, this pin supplies current to COIL B.	
8	V _{CC}	Supply Voltage.	

Circuit Operation

Speed Sensor Input

SENSOR is a PNP comparator input which accepts a sine wave input or a square wave input. This input is protected from excursions above V_{CC} as well as any below ground, as long as the current is limited to 1.5mA. It has an active clamp set to zero volts to prevent negative input voltages from disrupting normal operation. The sensor input can withstand $150V_{DC}$ as long as the input current is limited to 1.5mA max using a series resistor of $100k\Omega$.

Coil Driver Outputs

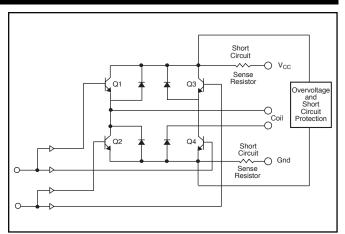
Simultaneously energizing the source and sink on either leg is not permitted. i.e. Q1 & Q2 or Q3 & Q4 cannot be energized simultaneously.

Circuit function is not affected by inductive transients due to coil loads as specified in Transition States section.

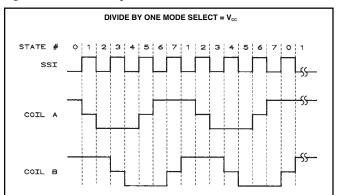
The transition states occur as indicated in Table 1 without any intermediate states permitted.

Table 1: Transition States

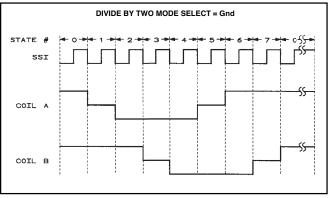
Output State Table		
State	Coil A	Coil B
0	+	+
1	OFF	+
2	-	+
3	-	OFF
4	-	-
5	OFF	-
6	+	-
7	+	OFF


The polarity definition for the coil driver outputs is as follows:

	Connect	Connect
Polarity	Coil +	Coil -
Positive (+)	V _{CC}	Gnd
Negative (-)	Gnd	V _{CC}


Divider Select Input

The speed sensor input frequency is divided by one or divided by two by connecting the divider select input, (Pin 5) as follows:


Logic 0 = divide by 2 Logic 1 = divide by 1

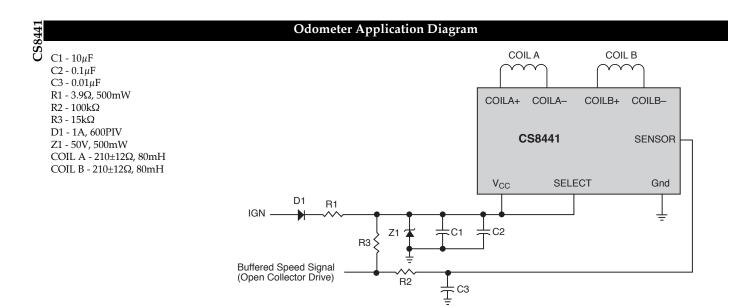
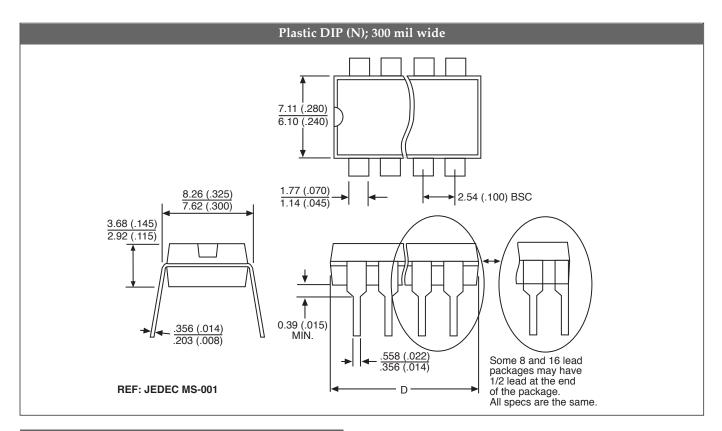

Figure 1: Coil Driver Output

Figure 2: Divide by 1 SELECT Mode


Package Specification

PACKAGE DIMENSIONS IN mm (INCHES)

PACKAGE THERMAL DATA

		D		
Lead Count	Me	tric	En	glish
	Max	Min	Max	Min
8L PDIP	10.16	9.02	.400	.355

Therma	l Data	8 Lead PDIP	
$R_{\Theta JC}$	typ	52	°C/W
$R_{\Theta JA}$	typ	100	°C/W

Ordering Information		
Part Number	Description	
CS8441XN8 8 Lead PDIP		

Cherry Semiconductor Corporation reserves the right to make changes to the specifications without notice. Please contact Cherry Semiconductor Corporation for the latest available information.