查询OPA4243供应商

捷多邦,专业PCB打样工厂,24小时加急出货

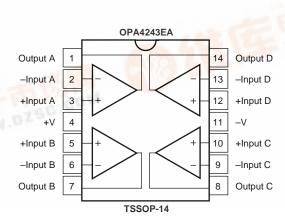
OPA4243

For most current data sheet and other product information, visit www.burr-brown.com

Quad OPERATIONAL AMPLIFIER MicroPOWER, Single-Supply

FEATURES

- MICRO-SIZE, TSSOP PACKAGE
- SINGLE-SUPPLY OPERATION
- WIDE SUPPLY RANGE: 2.2V to 36V
- LOW QUIESCENT CURRENT: 45µA/chan
- WIDE BANDWIDTH: 430kHz
- WIDE INPUT/OUTPUT SWING


APPLICATIONS

- LCD DISPLAY DRIVERS
- BATTERY POWERED SYSTEMS
- PORTABLE EQUIPMENT
- PCMCIA CARDS
- BATTERY PACKS AND POWER SUPPLIES
- CONSUMER PRODUCTS

DESCRIPTION

The OPA4243 is a four-channel op amp specifically designed for high density, space-limited applications, such as LCD bias drivers, PCMCIA cards, batterypacks and portable instruments. In addition to small size, this part features wide output swing, very low quiescent current, and low bias current. Other features include unity gain stability and the best speed power ratio available. Power supplies in the range of 2.2V to $36V (\pm 1.1V \text{ to } \pm 18V)$ can be used.

Each channel uses completely independent circuitry for lowest crosstalk and freedom from interaction, even when overloaded. In addition, the amplifier is free from output inversion when the inputs are driven to the rail. The OPA4243EA is supplied in the miniature TSSOP-14 surface mount package. Specifications apply from -40° C to $+85^{\circ}$ C. However, as the extensive typical performance curves indicate, the OPA4243 can be used over the full -55° C to $+125^{\circ}$ C range. A SPICE macromodel is available for design analysis.

International Airport Industrial Park • Mailing Address: PO Box 11400, Tucson, AZ 85734 • Street Address: 6730 S. Tucson Blvd., Tucson, AZ 85706 • Tel: (520) 746-1111 Twx: 910-952-1111 • Internet: http://www.burr-brown.com/ • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132

SPECIFICATIONS: $V_S = +2.6V$ to +36V

Boldface limits apply over the specified temperature range, $T_A = -40^{\circ}C$ to $+85^{\circ}C$

At T_A = +25°C, R_L = 20k\Omega connected to ground, unless otherwise noted.

			OPA4243EA			UNITS
PARAMETER		CONDITIONS	MIN	TYP ⁽¹⁾ MAX		
OFFSET VOLTAGE Input Offset Voltage Over Temperature vs Temperature vs Power Supply Over Temperature Channel Separation	V _{OS} dV _{OS} /dT PSRR	$V_{S} = \pm 7.5 V, V_{CM} = 0$ $T_{A} = -40^{\circ}C \text{ to } +85^{\circ}C$ $V_{S} = +2.6 V \text{ to } +36 V$ $V_{S} = +2.6 V \text{ to } +36 V$		±2 ± 2.5 2.5 140	±5 ± 6 100 100	mV mV μV/°C μV/V μV/V dB
INPUT BIAS CURRENT Input Bias Current Input Offset Current	I _R I _{OS}	$V_{CM} = V_S/2$ $V_{CM} = V_S/2$		-10 ±1	-25 ±10	nA nA
NOISE Input Noise Voltage, $f = 0.1$ to 10Hz Input Noise Voltage Density, $f = 1$ kHz Current Noise Density, $f = 1$ kHz	e _n i _n			0.4 22 40		μVp-p nV/√Hz fA/√Hz
INPUT VOLTAGE RANGE Common-Mode Voltage Range Common-Mode Rejection Over Temperature	V _{CM} CMRR	$\begin{array}{l} V_{S}=\pm 18V, \; V_{CM}=-18V \; to \; +17.1V \\ V_{S}=\pm 18V, \; V_{CM}=-18V \; to \; +17.1V \end{array}$	0 82 82	104	(V+) – 0.9	V dB dB
INPUT IMPEDANCE Differential Common-Mode				10 ⁶ 2 10 ⁹ 2		Ω pF Ω pF
OPEN-LOOP GAIN Open-Loop Voltage Gain Over Temperature	A _{OL}	$V_{O} = 0.5V$ to (V+) - 0.9 $V_{O} = 0.5V$ to (V+) - 0.9	86 86	104		dB dB
FREQUENCY RESPONSE Gain-Bandwidth Product Slew Rate Setting Time, 0.01% Overload Recovery Time	GBW SR	G = 1 10V Step V _{IN} ∙ Gain = V _S		430 -0.1, ±0.16 150 8		kHz V/μs μs μs
OUTPUT Voltage Output, Positive Over Temperature Voltage Output, Negative Over Temperature Voltage Output, Positive Over Temperature Voltage Output, Negative Over Temperature Short-Circuit Current Capacitive Load Drive	V _O I _{SC} C _{LOAD}	$\begin{array}{l} A_{OL\geq} 80dB, \ R_L = 20k\Omega \ to \ V_S/2 \\ A_{OL\geq} 80dB, \ R_L = 20k\Omega \ to \ V_S/2 \\ A_{OL\geq} 80dB, \ R_L = 20k\Omega \ to \ V_S/2 \\ A_{OL\geq} 80dB, \ R_L = 20k\Omega \ to \ V_S/2 \\ A_{OL\geq} 80dB, \ R_L = 20k\Omega \ to \ Ground \ to \ Ground \\ A_{OL\geq} 80dB, \ R_L = 20k\Omega \ to \ Ground \ to \ to \ Ground \ to \ Ground \ to \ $	(V+) - 0.9 (V+) - 0.9 0.5 0.5 0.5	(V+) - 0.75 (V+) - 0.75 0.2 0.2 (V+) - 0.75 (V+) - 0.75 0.1 -25, +12 Siee Typical Curv	/e	V V V V V V V MA
POWER SUPPLY Specified Voltage Range Minimum Operating Voltage Quiescent Current Over Temperature	V _s I _O	Over Temperature $I_{O} = 0$ $I_{O} = 0$	+2.6	+2.2 45	+36 60 70	V V μΑ μΑ
TEMPERATURE RANGE Specified Range Operating Range Storage Range			-40 -55 -65		85 125 150	သို့ သို့ သို့
Thermal Resistance TSSOP-14 Surface Mount	$ heta_{JA}$			100		°C/W

NOTE: (1) V_S = +15V.

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

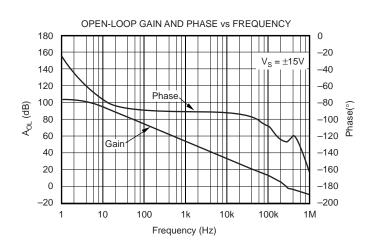
Supply Voltage, V+ to V	
Input Voltage Range ⁽²⁾	(V–) – 0.3V to (V+) + 0.3V
Input Current ⁽²⁾	10mA
Output Short-Circuit ⁽³⁾	Continuous
Operating Temperature	55°C to +125°C
Storage Temperature	65°C to +150°C
Junction Temperature	150°C
Lead Temperature (soldering, 10s)	300°C
ESD Capability	

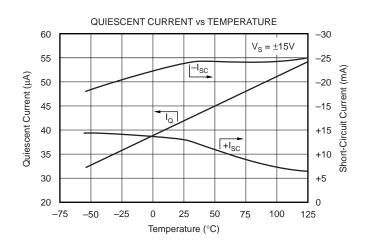
NOTES: (1) Stresses above these ratings may cause permanent damage. Exposure to absolute maximum conditions for extended periods may degrade device reliability. (2) Inputs are diode-clamped to the supply rails and should be current-limited to 10mA or less if input voltages can exceed rails by more than 0.3V. (3) Short-circuit to ground, one amplifier per package.

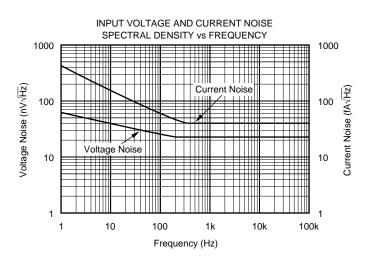
ELECTROSTATIC DISCHARGE SENSITIVITY

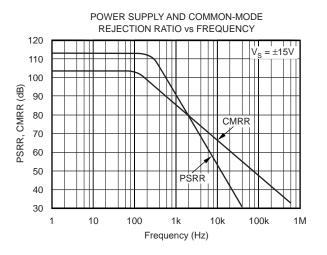
This integrated circuit can be damaged by ESD. Burr-Brown recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

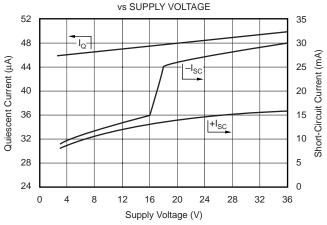

PACKAGE/ORDERING INFORMATION

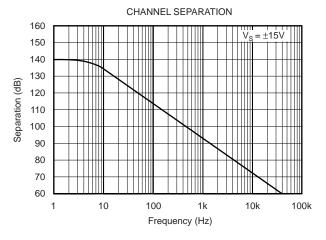

PR	ODUCT	PACKAGE	PACKAGE DRAWING NUMBER	SPECIFIED TEMPERATURE RANGE	PACKAGE MARKING	ORDERING NUMBER ⁽¹⁾	TRANSPORT MEDIA
OP	PA4243EA	TSSOP-14	357	−40°C to +85°C	OPA4243EA	OPA4243EA/250	Tape and Reel
	"	"	"	"	"	OPA4243EA/2K5	Tape and Reel

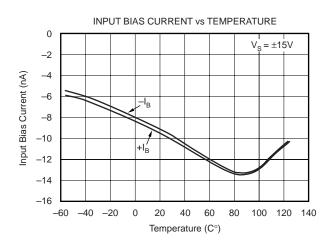

NOTE: (1) Models with a slash (/) are available only in Tape and Reel in the quantities indicated (e.g., /2K5 indicates 2500 devices per reel). Ordering 2500 pieces of "OPA4243EA" will get a single 2500-piece Tape and Reel.

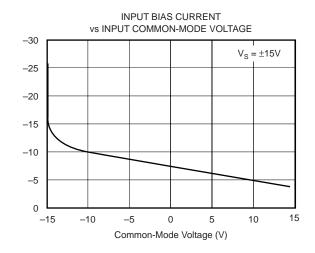

TYPICAL PERFORMANCE CURVES

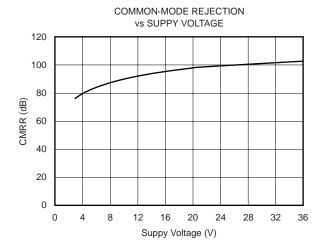
At $T_{A} = +25^{\circ}C$, $R_{L} = 20k\Omega$ connected to ground, unless otherwise noted.

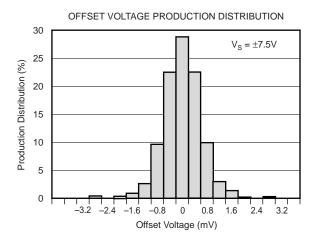




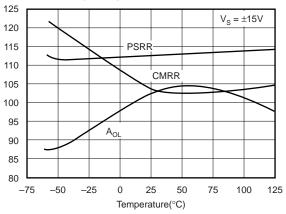

QUIESCENT CURRENT AND SHORT-CIRCUIT

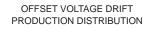


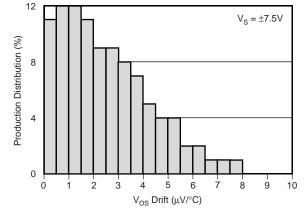



TYPICAL PERFORMANCE CURVES (Cont.)

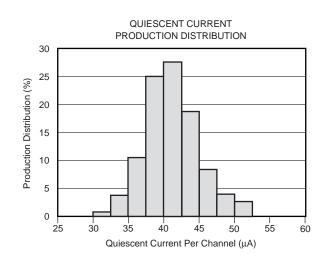
At T_A = +25°C, R_L = 20k Ω connected to ground, unless otherwise noted.

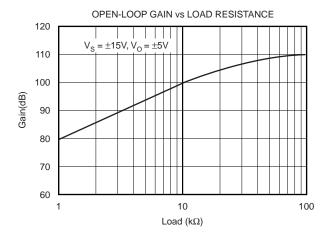


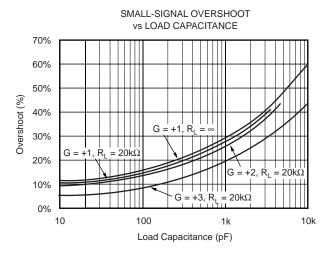


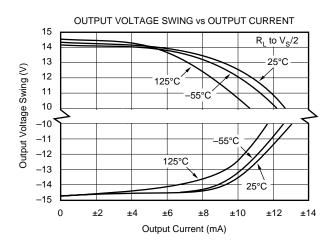


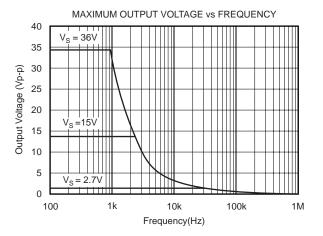
AOL, CMRR, PSRR vs TEMPERATURE

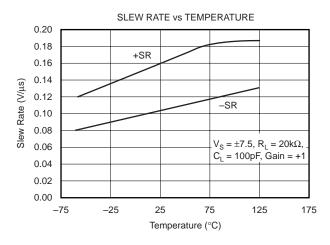


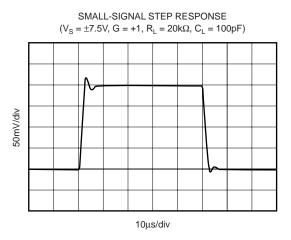


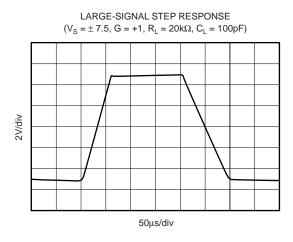



TYPICAL PERFORMANCE CURVES (Cont.)


At $T_A = +25^{\circ}C$, $R_L = 20k\Omega$ connected to ground, unless otherwise noted.







TYPICAL PERFORMANCE CURVES (Cont.)

At T_A = + 25°C, R_L = 20k\Omega connected to ground, unless otherwise noted.

APPLICATION INFORMATION

The OPA4243 is unity-gain stable and suitable for a wide range of general-purpose applications. The power supply pins should be bypassed with 0.01μ F ceramic capacitors.

OPERATING VOLTAGE

The OPA4243 can operate from single supply (2.2V to 36V) or dual supplies $(\pm 1.1V \text{ to } \pm 18V)$ with excellent performance. Unlike most op amps which are specified at only one supply voltage, the OPA4243 is specified for real world applications; a single set of specifications applies throughout the 2.6V to 36V supply range. This allows the designer to have the same assured performance at any supply voltage within this range.

In addition, many key parameters are guaranteed over the specified temperature range, -40°C to +85°C. Most behaviors remain unchanged throughout the full operating voltage range. Parameters, which vary significantly with operating voltage or temperature, are shown in the typical performance curves.

PRINTED CIRCUIT BOARD LAYOUT

See Burr-Brown Application Note AB-132 for specific PC board layout recommendations.

INPUT PROTECTION

Rail-to-rail input signals will not cause damage or invert the output of the OPA4243. To protect against ESD and excessive input voltage (beyond the supply rails) the OPA4243 includes diodes from the input terminals to the power supply rails. Normally, these diodes are reversed biased and have negligible effect on circuit operation. However, if the input voltage is allowed to exceed the supply voltages by enough to forward bias these diodes (generally, 0.3V to 0.6V) excessive input current could flow. If this condition could occur (for example, if an input signal is applied when the op amp supply voltage is zero), care should be taken to limit the input current to less than 10mA to avoid damage. An input signal beyond the supplies, with power applied, can cause an unexpected output inversion.