

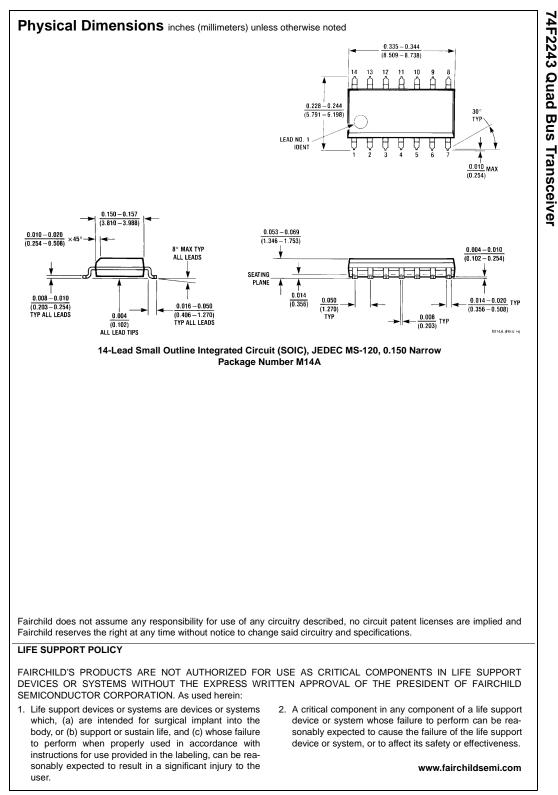
Absolute Maximum Ratings(Note 1)

Storage Temperature	$-65^{\circ}C$ to $+150^{\circ}C$
Ambient Temperature under Bias	$-55^{\circ}C$ to $+125^{\circ}C$
Junction Temperature under Bias	-55°C to +150C
V _{CC} Pin Potential to Ground Pin	-0.5V to +7.0V
Input Voltage (Note 2)	-0.5V to +7.0V
Input Current (Note 2)	-30 mA to +5.0 mA
Voltage Applied to Output	
in HIGH State (with $V_{CC} = 0V$)	
Standard Output	-0.5V to V _{CC}
3-STATE Output	-0.5V to +5.5V
Current Applied to Output	
in LOW State (Max)	twice the rated I _{OL} (mA)
ESD Last Passing Voltage (Min)	4000V

Recommended Operating Conditions

Free Air Ambient Temperature	$0^{\circ}C$ to $+70^{\circ}C$
Supply Voltage	+4.5V to +5.5V

Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.


Note 2: Either voltage limit or current limit is sufficient to protect inputs.

DC Electrical Characteristics

Symbol	Parameter	Min	Тур	Max	Units	V _{cc}	Conditions
V _{IH}	Input HIGH Voltage	2.0			V		Recognized as a HIGH Signal
V _{IL}	Input LOW Voltage			0.8	V		Recognized as a LOW Signal
V _{CD}	Input Clamp Diode Voltage			-1.2	V	Min	I _{IN} = -18 mA
V _{OH}	Output HIGH 10% V _{CC}	2.4					$I_{OH} = -3 \text{ mA} (A_n, B_n)$
	Voltage 10% V _{CC}	2.0			V	Min	$I_{OH} = -15 \text{ mA} (A_n, B_n)$
	5% V _{CC}	2.7					$I_{OH} = -3 \text{ mA} (A_n, B_n)$
V _{OL}	Output LOW			0.50	v	Min	$I_{OL} = 1 \text{ mA} (A_n, B_n)$
	Voltage			0.75		Min	$I_{OL} = 12 \text{ mA} (A_n, B_n)$
I _{IH}	Input HIGH Current			20	μΑ	Max	$V_{IN} = 2.7V (\overline{E}_1, \overline{E}_2)$
I _{BVI}	Input HIGH Current						
	Breakdown Test	down Test	100	μA	Max	$V_{IN} = 7.0V (\overline{E}_1, E_2)$	
I _{BVIT}	Input HIGH Current	4.0		Maria			
	Breakdown Test (I/O)			1.0	MA	mA Max	$V_{IN} = 5.5V (A_n, B_n)$
IIL	Input LOW Current			-1.0	mA	Max	$V_{IN} = 0.5V (\overline{E}_1, E_2)$
I _{IH} + I _{OZH}	Output Leakage Current			70	μA	Max	$V_{OUT} = 2.7V (A_n, B_n)$
I _{IL} + I _{OZL}	Output Leakage Current			-1.6	mA	Max	$V_{OUT} = 0.5V (A_n, B_n)$
I _{OS}	Output Short-Circuit Current	-100		-225	mA	Max	$V_{OUT} = 0V (A_n, B_n)$
I _{CEX}	Output HIGH Leakage Current			250	μΑ	Max	$V_{OUT} = V_{CC}$
I _{CCH}	Power Supply Current		64	80	mA	Max	V _O = HIGH
I _{CCL}	Power Supply Current		64	90	mA	Max	$V_0 = LOW$
I _{CCZ}	Power Supply Current		71	90	mA	Max	V _O = HIGH Z

AC Electrical Characteristics

Symbol	Parameter		$T_A = +25^{\circ}C$ $V_{CC} = +5.0V$ $C_L = 50 \text{ pF}$,	$T_{A} = 0^{\circ}C \text{ to } +70^{\circ}C$ $V_{CC} = +5.0V$ $C_{L} = 50 \text{ pF}$		Units
		Min	Тур	Max	Min	Max	
t _{PLH}	Propagation Delay	1.5		7.0	1.5	7.0	ns
t _{PHL}	A _n to B _n , B _n to A _n	2.5		8.0	2.0	8.0	
t _{PZH}	Output Enable Time	1.5		9.0	1.0	9.5	
t _{PZL}	\overline{E}_1 to B_n , E_2 to A_n	2.5		11.5	2.5	12.0	ns
t _{PHZ}	Output Disable Time	1.5		9.0	1.0	9.5	
t _{PLZ}	\overline{E}_1 to B_n , E_2 to A_n	1.5		8.5	1.5	9.5	

