查询CY74FCT2543TQCT供应商

专业PCB打样工厂,24小时加急入保4FCT2543T 8-BIT LATCHED TRANSCEIVER WITH 3-STATE OUTPUTS SCCS042C - SEPTEMBER 1994 - REVISED NOVEMBER 2001

Q OR SO PACKAGE

(TOP VIEW)

LEBA

OEBA

 A_0 3

A₁

A3 6

A₄

 A_5

A₇ 10

CEAB

GND [

4 A2L

5

8 A₆L 9

11

12

23

22 B₀

21 B1

20 B₂

19 B₃

16 B₆

15 B7

18

13

∏ B₄

B₅ 17

14 LEAB

WWW.DZSC.CO

OEAB

Vcc

CEBA

- Function and Pinout Compatible With FCT and F Logic
- 25-Ω Output Series Resistors to Reduce **Transmission-Line Reflection Noise**
- Reduced V_{OH} (Typically = 3.3 V) Versions of Equivalent FCT Functions
- **Edge-Rate Control Circuitry for** Significantly Improved Noise **Characteristics**
- Ioff Supports Partial-Power-Down Mode Operation
- Matched Rise and Fall Times
- Fully Compatible With TTL Input and Output Logic Levels
- 12-mA Output Sink Current **15-mA Output Source Current**
- Separation Controls for Data Flow in Each Direction
- Back-to-Back Latches for Storage
- ESD Protection Exceeds JESD 22
 - 2000-V Human-Body Model (A114-A) 200-V Machine Model (A115-A)
 - 1000-V Charged-Device Model (C101)
- **3-State Outputs**

description

The CY74FCT2543T octal latched transceiver contains two sets of eight D-type latches. Separate latch enable (LEAB, LEBA) and output enable (OEAB, OEBA) inputs permit each latch set to have independent control of inputting and outputting in either direction of data flow. For example, for data flow from A to B, the A-to-B enable (CEAB) input must be low to enter data from A or to take data from B, as indicated in the function table. With CEAB low, a low signal on the A-to-B latch enable (LEAB) input makes the A-to-B latches transparent; a subsequent low-to-high transition of LEAB puts the A latches in the storage mode and their outputs no longer change with the A inputs. With CEAB and OEAB both low, the 3-state B output buffers are active and reflect data present at the output of the A latches. Control of data from B to A is similar, but uses CEAB, LEAB, and OEAB inputs. On-chip termination resistors at the outputs reduce system noise caused by reflections. The CY74FCT2543T can replace the CY74FCT543T to reduce noise in an existing design.

This device is fully specified for partial-power-down applications using loff. The loff circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

CY74FCT2543T **8-BIT LATCHED TRANSCEIVER** WITH 3-STATE OUTPUTS SCCS042C - SEPTEMBER 1994 - REVISED NOVEMBER 2001

PIN DESCRIPTION

NAME	DESCRIPTION
OEAB	A-to-B output-enable input (active low)
OEBA	B-to-A output-enable input (active low)
CEAB	A-to-B enable input (active low)
CEBA	B-to-A enable input (active low)
LEAB	A-to-B latch-enable input (active low)
LEBA	B-to-A latch-enable input (active low)
А	A-to-B data inputs or B-to-A 3-state outputs
В	B-to-A data inputs or A-to-B 3-state outputs

ORDERING INFORMATION

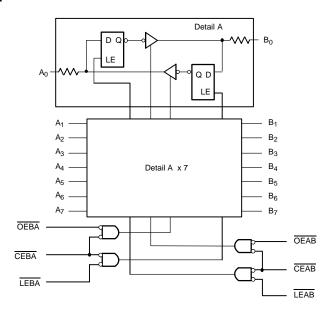
TA	PACKAGE [†]		SPEED (ns)	ORDERABLE PART NUMBER	TOP-SIDE MARKING
–40°C to 85°C	QSOP – Q	Tape and reel	5.3	CY74FCT2543CTQCT	FCT2543C
	SOIC – SO	Tube	5.3	CY74FCT2543CTSOC	FCT2543C
		Tape and reel	5.3	CY74FCT2543CTSOCT	FC12543C
	QSOP – Q	Tape and reel	6.5	CY74FCT2543ATQCT	FCT2543A
	SOIC – SO	Tube	6.5	CY74FCT2543ATSOC	FCT2543A
		Tape and reel	6.5	CY74FCT2543ATSOCT	FC12545A
	QSOP – Q	Tape and reel	8.5	CY74FCT2543TQCT	FCT2543

[†]Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

FUNCTION TABLE

	INPUTS LATCH			OUTPUT
CEAB	LEAB	OEAB	А-ТО-В‡	В
н	Х	Х	Storing	Z
х	н	Х	Storing	Х
х	Х	Н	х	Z
L	L	L	Transparent	Current A inputs
L	Н	L	Storing	Previous A inputs

[‡]Before LEAB low-to-high transition


H = High logic level, L = Low logic level, X = Don't care,

Z = High-impedance state

A-to-B data flow shown; B-to-A is the same, except using CEBA, LEBA, and OEBA.

functional block diagram

absolute maximum rating over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range to ground potential	–0.5 V to 7 V
DC input voltage range	–0.5 V to 7 V
DC output voltage range	–0.5 V to 7 V
DC output current (maximum sink current/pin)	120 mA
Package thermal impedance, θ_{JA} (see Note 1): Q package	61°C/W
SO package	46°C/W
Ambient temperature range with power applied, T _A	–65°C to 135°C
Storage temperature range, T _{stg}	–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: The package thermal impedance is calculated in accordance with JESD 51-7.

recommended operating conditions (see Note 2)

		MIN	NOM	MAX	UNIT
Vcc	Supply voltage	4.75	5	5.25	V
VIH	High-level input voltage	2			V
VIL	Low-level input voltage			0.8	V
ЮН	High-level output current			-15	mA
IOL	Low-level output current			12	mA
Т _А	Operating free-air temperature	-40		85	°C

NOTE 2: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation.

CY74FCT2543T 8-BIT LATCHED TRANSCEIVER WITH 3-STATE OUTPUTS

SCCS042C - SEPTEMBER 1994 - REVISED NOVEMBER 2001

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		MIN	түр†	MAX	UNIT		
VIK	V _{CC} = 4.75 V,	I _{IN} = -18 mA				-1.2	V
VOH	V _{CC} = 4.75 V,	I _{OH} = –15 mA			3.3		V
VOL	V _{CC} = 4.75 V,	I _{OL} = 12 mA			0.3	0.55	V
Rout	V _{CC} = 4.75 V,	I _{OL} = 12 mA		20	25	40	Ω
V _{hys}	All inputs				0.2		V
Чн	V _{CC} = 5.25 V	$V_{IN} = V_{CC}$ $V_{IN} = 2.7 V$			5 ±1	μA	
ΙL	V _{CC} = 5.25 V,	V _{IN} = 0.5 V				±1	μA
IOZH	V _{CC} = 5.25 V,	V _{OUT} = 2.7 V				15	μA
IOZL	V _{CC} = 5.25 V,	Vout = 0.5 V			-15	μΑ	
los‡	V _{CC} = 5.25 V,	V _{OUT} = 0 V	-60	-120	-225	mA	
l _{off}	$V_{CC} = 0 V,$	V _{OUT} = 4.5 V			±1	μA	
ICC	V _{CC} = 5.25 V,	$V_{IN} \leq 0.2V$,		0.1	0.2	mA	
ΔICC	V _{CC} = 5.25 V, V _{IN} = 3.4 V§, f		0.5	2	mA		
ICCD [¶]	$\frac{V_{CC}}{CEAB} = 5.25 \text{ V}, \text{ One input switc}}$ $\frac{V_{CC}}{CEAB} = 100 \text{ , CEB}$ $V_{IN} \le 0.2 \text{ V or } V_{IN} \ge V_{CC} - 0$	BA = HIGH,	utputs open,		0.06	1.2	mA/ MHz
	V _{CC} = 5.25 V, f ₀ = 10 MHz,	One bit switching at f ₁ = 5 MHz	$\begin{array}{l} V_{IN} \leq 0.2 \ V \ or \\ V_{IN} \geq V_{CC} - 0.2 \ V \end{array}$		0.7	1.4	
IC#	Outputs open, CEAB and OEAB = LOW,	at 50% duty cycle	$V_{IN} = 3.4 \text{ V or GND}$		1.2	3.4	mA
IC"	$\frac{\text{CEAB}}{\text{CEBA}} = \text{HIGH},$ $f_0 = \text{LEAB} = 10 \text{ MHz}$	Eight bits switching at f ₁ = 5 MHz	$ \begin{array}{l} V_{IN} \leq 0.2 \ V \ or \\ V_{IN} \geq V_{CC} - 0.2 \ V \end{array} $		2.8	5.6ll	ША
		at 50% duty cycle	$V_{IN} = 3.4 \text{ V or GND}$		5.1	14.6	
Ci					5	10	pF
Co					9	12	pF

[†] Typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

* Not more than one output should be shorted at a time. Duration of short should not exceed one second. The use of high-speed test apparatus and/or sample-and-hold techniques are preferable to minimize internal chip heating and more accurately reflect operational values. Otherwise, prolonged shorting of a high output can raise the chip temperature well above normal and cause invalid readings in other parametric tests. In any sequence of parameter tests, IOS tests should be performed last.

§ Per TTL-driven input (V_{IN} = 3.4 V); all other inputs at V_{CC} or GND

 \P This parameter is derived for use in total power-supply calculations.

$${}^{\#}I_{C} = I_{CC} + \Delta I_{CC} \times D_{H} \times N_{T} + I_{CCD} (f_{0}/2 + f_{1} \times N_{1})$$

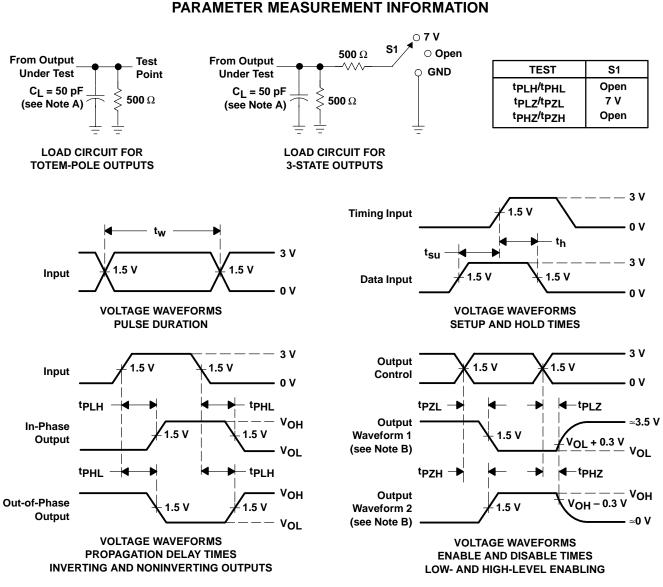
- Where:
- IC = Total supply current
- ICC = Power-supply current with CMOS input levels
- ΔI_{CC} = Power-supply current for a TTL high input (VIN = 3.4 V)
- D_H = Duty cycle for TTL inputs high
- N_T = Number of TTL inputs at D_H
- I_{CCD} = Dynamic current caused by an input transition pair (HLH or LHL)
- f_0 = Clock frequency for registered devices, otherwise zero
- f₁ = Input signal frequency
- N_1 = Number of inputs changing at f_1

All currents are in milliamperes and all frequencies are in megahertz.

 \parallel Values for these conditions are examples of the I_{CC} formula.

timing requirements over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)

	PARAMETER			T2543T	CY74FCT	2543AT	CY74FCT	2543CT	UNIT
			MIN	MAX	MIN	MAX	MIN	MAX	UNIT
tw	tw Pulse duration, LEBA or LEAB low		5		5		5		ns
t _{su}	U Setup time, high or low A or B before $\overline{\text{LEBA}}\downarrow$ or $\overline{\text{LEAB}}\downarrow$		2		2		2		ns
th	Hold time, high or low	A or B after $\overline{\text{LEBA}}\downarrow$ or $\overline{\text{LEAB}}\downarrow$	2		2		2		ns


switching characteristics over operating free-air temperature range (see Figure 1)

PARAMETER	FROM (INPUT)	то	CY74FC	T2543T	CY74FCT	2543AT	CY74FCT	2543CT	UNIT
PARAMETER		(OUTPUT)	MIN	MAX	MIN	MAX	MIN	MAX	UNIT
^t PLH	A or B	B or A	2.5	8.5	2.5	6.5	2.5	5.5	ns
^t PHL	AUB	BOIA	2.5	0.5	2.5	0.5	2.0	5.5	115
^t PLH	LEBA or LEAB	A or B	2.5	12.5	2.5	8	2.5	7	ns
^t PHL		AUD	2.5	12.5	2.5	0	2.0	'	115
^t PZH		A or B	2	12	2	9	2	8	ns
^t PZL		AUD	2	12	2	9	2	8	115
^t PZH	0554	A or B	2	12	2	9	2	8	20
^t PZL	CEBA or CEAB	AOIB	2	12	2	9	2	8	ns
^t PHZ		A or B	2	9	2	7.5	2	6.5	ns
^t PLZ	OEBA or OEAB	AUD	2	9	2	7.5	2	6.5	115
^t PHZ	0504	A or B	2	9	2	7.5	2	6.5	ns
^t PLZ	CEBA or CEAB	7010	2	9	2	7.5	2	6.5	115

CY74FCT2543T 8-BIT LATCHED TRANSCEIVER WITH 3-STATE OUTPUTS

SCCS042C - SEPTEMBER 1994 - REVISED NOVEMBER 2001

NOTES: A. C₁ includes probe and jig capacitance.

B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control. C. The outputs are measured one at a time with one input transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third–party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Mailing Address:

Texas Instruments Post Office Box 655303 Dallas, Texas 75265

Copyright © 2001, Texas Instruments Incorporated