

October 1988

Revised March 1999

FAIRCHIL

SEMICONDUCTOR

74F2244 **Octal Buffer/Line Driver** with 25 Ω Series Resistors in Outputs

General Description

The F2244 is an octal buffer/line driver designed to drive the capacitive inputs of MOS memory drivers, address drivers, clock drivers and bus-oriented transmitters/receivers. The 25Ω series resistors in the outputs reduce ringing and eliminate the need for external resistors.

Features

- 3-STATE outputs drive bus lines or buffer memory address registers
- 12 mA source current
- **\blacksquare** 25 Ω series resistors in outputs eliminate the need for external resistors.
- Designed to drive the capacitive inputs of MOS devices
- Guaranteed 4000V minimum ESD protection

Ordering Code:

Order Number	Package Number	Package Description
74F2244SC	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300 Wide
74F2244MSA	MSA20	20-Lead Shrink Small Outline Package (SSOP), EIAJ TYPE II, 5.3mm Wide
74F2244PC	N20A	20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

4F2244 Octal Buffer/Line Driver with 25Ω Series Resistors in Outputs **Connection Diagram** Logic Symbol IEEE/IEC 20 0Ē₁ OE₁ Vcc EN 19 OE2 18 -0_{a0} 0_{a0} ⊳ a0 ⁰ьо 17 0_{a1} I_{b0} l_a l_{a1} 16 0_{a2} 0_{a1} l_{a2} Obl 15 0_{a3} I_{b1} l_{a3} laź 14 0_{a2} 0_{b2} 13 8 · I_{b2} l_{a3} 12 OE₂ 9 •0_{a3} 0₆₃ 11 10 GND ЬЗ ⊳ Δ 060 Ih0 0_{b1} l_{b1} 0_{b2} lb2 063 Ib3

dzsc.com

74F2244

Unit Loading/Fan Out

Pin Names	Description	U.L.	Input I _{IH} /I _{IL} Output I _{OH} /I _{OL}	
Fininames	Description	HIGH/LOW		
$\overline{OE}_1, \overline{OE}_2$	3-STATE Output Enable Input (Active LOW)	1.0/1.667	20 µA/–1 mA	
OE ₂	3-STATE Output Enable Input (Active HIGH)	1.0/1.667	20 µA/–1 mA	
I _{an} , I _{bn}	Inputs	1.0/2.667 (Note 1)	20 µA/-1.6 mA	
O _{an} ,O _{bn}	Outputs	750/20	–15 mA/12 mA	

Note 1: Worst-case F2244 disabled

Truth Table

OE ₁	l _{an}	O _{an}	OE ₂	I _{bn}	O _{bn}
н	х	Z	н	х	Z
L	н	н	L	н	н
L	L	L	L	L	L

H = HIGH Voltage Level L = LOW Voltage Level X = Immaterial Z = High Impedance

Absolute Maximum Ratings(Note 2)

Storage Temperature	-65°C to +150°C
Ambient Temperature under Bias	$-55^{\circ}C$ to $+125^{\circ}C$
Junction Temperature under Bias	-55°C to +150°C
V _{CC} Pin Potential to Ground Pin	-0.5V to +7.0V
Input Voltage (Note 3)	-0.5V to +7.0V
Input Current (Note 3)	-30 mA to +5.0 mA
Voltage Applied to Output	
in HIGH State (with $V_{CC} = 0V$)	
Standard Output	–0.5V to V _{CC}
3-STATE Output	-0.5V to +5.5V
Current Applied to Output	
in LOW State (Max)	twice the rated I _{OL} (mA)
ESD Last Passing Voltage (Min)	4000V

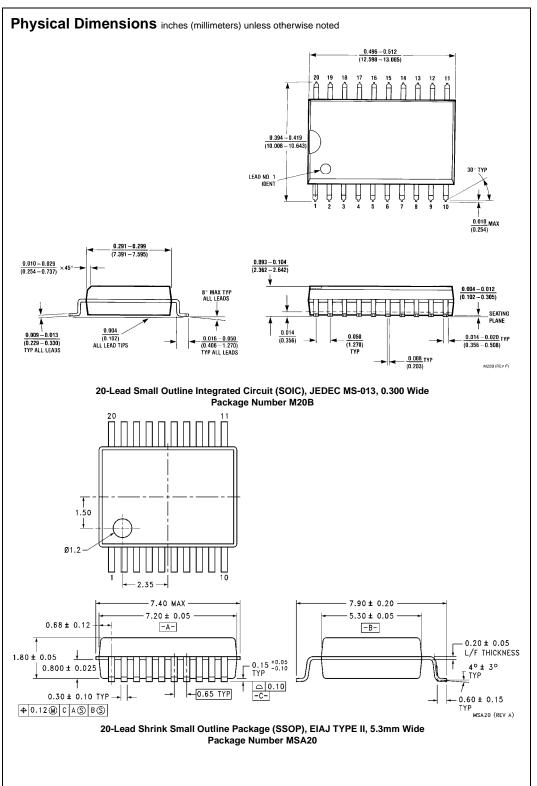
Recommended Operating Conditions

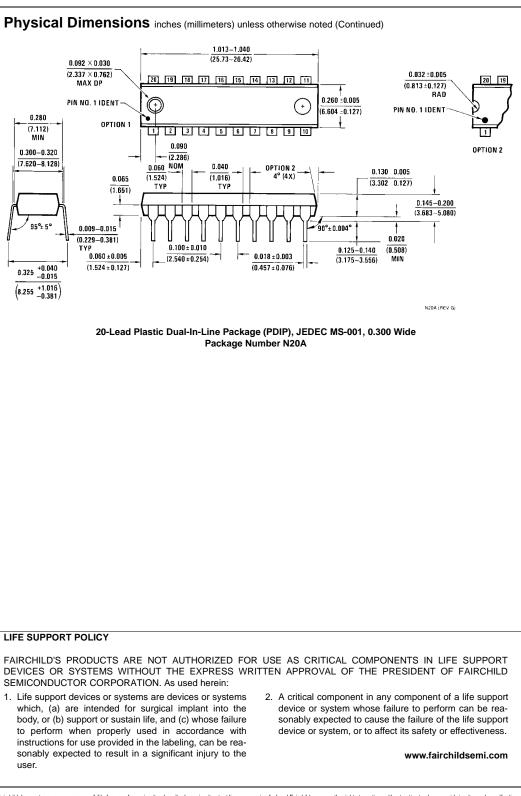
Free Air Ambient Temperature	
Supply Voltage	

74F2244

0°C to +70°C +4.5V to +5.5V

Note 2: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.


Note 3: Either voltage limit or current limit is sufficient to protect inputs.


DC Electrical Characteristics

Symbol	Parameter		Min	Тур	Max	Units	v _{cc}	Conditions
V _{IH}	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal
V _{IL}	Input LOW Voltage				0.8	V		Recognized as a LOW Signal
V _{CD}	Input Clamp Diode Voltage				-1.2	V	Min	I _{IN} = -18 mA
V _{OH}	Output HIGH Voltage	10% V _{CC}	2.4			V	Min	I _{OH} = -3 mA
		10% V _{CC}	2.0					$I_{OH} = -15 \text{ mA}$
		5% V_{CC}	2.7					$I_{OH} = -3 \text{ mA}$
V _{OL}	Output LOW Voltage				0.50	V	Min	I _{OL} = 1 mA
					0.75			$I_{OL} = 12 \text{ mA}$
IIH	Input HIGH Current				5.0	μΑ	Max	V _{IN} = 2.7V
I _{BVI}	Input HIGH Current Breakdow	vn Test			7.0	μΑ	Max	V _{IN} = 7.0V
I _{CEX}	Output HIGH Leakage Currer	nt			50	μΑ	Max	$V_{OUT} = V_{CC}$
V _{ID}	Input Leakage		4.75			V	0.0	I _{ID} = 1.9 μA
	Test							All other pins grounded
I _{OD}	Output Leakage				3.75	μΑ	0.0	V _{IOD} = 150 mV
	Circuit Current							All other pins grounded
IIL	Input LOW Current				-1.0	mA	Max	$V_{IN} = 0.5V (\overline{OE}_1, \overline{OE}_2, OE_2)$
					-1.6			$V_{IN} = 0.5V (I_n)$
I _{OZH}	Output Leakage Current				50	μΑ	Max	V _{OUT} = 2.7V
I _{OZL}	Output Leakage Current				-50	μΑ	Max	$V_{OUT} = 0.5V$
I _{OS}	Output Short-Circuit Current		-100		-225	mA	Max	$V_{OUT} = 0V$
I _{CCH}	Power Supply Current			40	60	mA	Max	V _O = HIGH
I _{CCL}	Power Supply Current			60	90	mA	Max	V _O = LOW
I _{CCZ}	Power Supply Current			60	90	mA	Max	V _O = HIGH Z

Symbol	Parameter	$T_A = +25^{\circ}C$ $V_{CC} = +5.0V$			$T_A = -55^{\circ}C$ to +125°C $C_L = 50 \text{ pF}$		T _A = 0°C to +70°C C _L = 50 pF		Units
			$C_L = 50 \text{ pF}$						
		Min	Тур	Max	Min	Мах	Min	Max	
t _{PLH}	Propagation Delay	1.5		7.0	2.0	6.5	1.5	7.0	ns
t _{PHL}	Data to Output	2.5		8.0	2.0	7.0	2.0	8.0	
t _{PZH}	Output Enable Time	1.5		9.0	2.0	7.0	1.0	9.5	
t _{PZL}		2.5		11.5	2.0	8.5	2.5	12.0	ns
t _{PHZ}	Output Disable Time	1.5		9.0	2.0	7.0	1.0	9.5	
t _{PLZ}		1.5		8.5	2.0	7.5	1.5	9.5	

www.fairchildsemi.com

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.