

FAIRCHILD

SEMICONDUCTOR

July 1999 Revised August 1999

74LVT244 •74LVTH244

Low Voltage Octal Buffer/Line Driver with 3-STATE Outputs

General Description

The LVT244 and LVTH244 are octal buffers and line drivers designed to be employed as memory address drivers, clock drivers and bus oriented transmitters or receivers which provide improved PC board density.

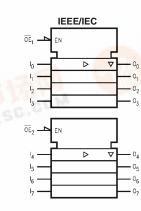
The LVTH244 data inputs include bushold, eliminating the need for external pull-up resistors to hold unused inputs.

These octal buffers and line drivers are designed for low-voltage (3.3V) V_{CC} applications, but with the capability to provide a TTL interface to a 5V environment. The LVT244 and LVTH244 are fabricated with an advanced BiCMOS technology to achieve high speed operation similar to 5V ABT while maintaining low power dissipation.

Features

- \blacksquare Input and output interface capability to systems at 5V V_{CC}
- Bushold data inputs eliminate the need for external pull-up resistors to hold unused inputs (74LVTH244), also available without bushold feature (74LVT244)
- Live insertion/extraction permitted
- Power Up/Down high impedance provides glitch-free bus loading

4LVT244 •74LVTH244 Low Voltage Octal Buffer/Line Driver with 3-STATE Outputs


- Outputs source/sink –32 mA/+64 mA
- Functionally compatible with the 74 series 244
- Latch-up performance exceeds 500 mA

Ordering Code:

Order Number	Package Number	Package Description
74LVT244WM	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300 Wide
74LVT244SJ	M20D	20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
74LVT244MSA	MSA20	20-Lead Shrink Small Outline Package (SSOP), EIAJ TYPE II, 5.3mm Wide
74LVT244MTC	MTC20	20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
74LVTH244WM	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300 Wide
74LVTH244SJ	M20D	20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
74LVTH244MSA	MSA20	20-Lead Shrink Small Outline Package (SSOP), EIAJ TYPE II, 5.3mm Wide
74LVTH244MTC	MTC20	20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide

Device also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering code

Logic Symbol

Connection Diagram								
$ \overline{OE}_{1} = \frac{1}{2} $ $ I_{0} = \frac{3}{3} $ $ O_{4} = \frac{4}{4} $ $ I_{1} = \frac{5}{5} $ $ O_{5} = \frac{6}{1} $ $ I_{2} = \frac{7}{7} $ $ O_{6} = \frac{8}{1} $ $ O_{7} = \frac{10}{10} $ $ GND = \frac{1}{10} $		$\begin{array}{c c} 20 & V_{CC} \\ \hline 19 & \overline{OE}_2 \\ \hline 18 & \overline{OE}_2 \\ \hline 17 & O_0 \\ \hline 17 & O_1 \\ \hline 15 & O_1 \\ \hline 15 & I_5 \\ \hline 14 & O_2 \\ \hline 13 & I_6 \\ \hline 12 & O_3 \\ \hline 11 & I_7 \end{array}$						

Pin Descriptions

Pin Names	Description
$\overline{OE}_1, \overline{OE}_2$	3-STATE Output
	Enable Inputs
I ₀ —I ₇	Inputs
O ₀ –O ₇	Output

Truth Tables

	Inp	uts	Outputs
	OE ₁	I _n	(Pins 12, 14, 16, 18)
	L	L	L
	L	н	н
	н	Х	Z
	Inp	uts	Outputs
F	Inp OE ₂	uts I _n	Outputs (Pins 3, 5, 7, 9)
			-
	OE ₂	I _n	-

H = HIGH Voltage LevelL = LOW Voltage LevelX = ImmaterialZ = High Impedance

Absolute Maximum Ratings(Note 1)

Symbol	Parameter	Value	Conditions	Units
V _{CC}	Supply Voltage	-0.5 to +4.6		V
VI	DC Input Voltage	-0.5 to +7.0		V
Vo	DC Output Voltage	-0.5 to +7.0	Output in 3-STATE	V
		-0.5 to +7.0	Output in HIGH or LOW State (Note 2)	V
I _{IK}	DC Input Diode Current	-50	V _I < GND	mA
I _{OK}	DC Output Diode Current	-50	V _O < GND	mA
I _O	DC Output Current	64	V _O > V _{CC} Output at HIGH State	A
		128	V _O > V _{CC} Output at LOW State	mA
I _{CC}	DC Supply Current per Supply Pin	±64		mA
I _{GND}	DC Ground Current per Ground Pin	±128		mA
T _{STG}	Storage Temperature	-65 to +150		°C

Recommended Operating Conditions

Symbol	Symbol Parameter		Max	Units
V _{CC}	Supply Voltage	2.7	3.6	V
VI	Input Voltage	0	5.5	V
I _{OH}	HIGH-Level Output Current		-32	mA
I _{OL}	LOW-Level Output Current		64	
T _A	Free-Air Operating Temperature	-40	85	°C
Δt/ΔV	Input Edge Rate, V _{IN} = 0.8V–2.0V, V _{CC} = 3.0V	0	10	ns/V

Note 1: Absolute Maximum continuous ratings are those values beyond which damage to the device may occur. Exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation under absolute maximum rated conditions is not implied.

Note 2: I_{O} Absolute Maximum Rating must be observed.

]	V _{cc}	T _A =-40°C to +85°C						
Symbol	Parame	Parameter		Min	Typ (Note 3)	Мах	Units	Conditions	
V _{IK}	Input Clamp Diode Volta	ge	2.7			-1.2	V	I _I = -18 mA	
V _{IH}	Input HIGH Voltage		2.7–3.6	2.0			v	$V_0 \le 0.1V$ or	
V _{IL}	Input LOW Voltage		2.7–3.6			0.8	v	$V_O \ge V_{CC} - 0.1V$	
V _{OH}	Output HIGH Voltage		2.7–3.6	V _{CC} -0.2			V	I _{OH} = -100 μA	
			2.7	2.4			V	I _{OH} = -8 mA	
			3.0	2.0			V	I _{OH} = -32 mA	
V _{OL}	Output LOW Voltage		2.7			0.2	V	I _{OL} = 100 μA	
			2.7			0.5	V	I _{OL} = 24 mA	
			3.0			0.4	V	I _{OL} = 16 mA	
			3.0			0.5	V	I _{OL} = 32 mA	
			3.0			0.55	V	I _{OL} = 64 mA	
I _{I(HOLD)}	Bushold Input Minimum Drive		3.0	75			μA	$V_{I} = 0.8V$	
(Note 4)				-75			μA	$V_{I} = 2.0V$	
I _{I(OD)}	Bushold Input Over-Driv		3.0	500			μΑ	(Note 5)	
(Note 4)	Current to Change State			-500			μΑ	(Note 6)	
I _I	Input Current		3.6			10	μΑ	$V_{I} = 5.5V$	
		Control Pins	3.6			±1	μA	$V_I = 0V \text{ or } V_{CC}$	
		Data Pins	3.6			-5	μΑ	$V_I = 0V$	
						1	μΑ	$V_I = V_{CC}$	
I _{OFF}	Power Off Leakage Curr	ent	0			±100	μA	$0V \le V_1 \text{ or } V_0 \le 5.5V$	
I _{PU/PD}	Power up/down 3-STAT		0–1.5V			±100	μA	V _O = 0.5V to 3.0V	
	Output Current		0-1.50			100	μΑ	$V_I = GND \text{ or } V_{CC}$	
I _{OZL}	3-STATE Output Leakag	e Current	3.6			-5	μA	$V_0 = 0.5V$	
I _{OZH}	3-STATE Output Leakag	e Current	3.6			5	μΑ	V _O = 3.0V	
I _{OZH} +	3-STATE Output Leakag	e Current	3.6			10	μΑ	$V_{CC} < V_O \le 5.5V$	
I _{CCH}	Power Supply Current		3.6			0.19	mA	Outputs HIGH	
I _{CCL}	Power Supply Current		3.6			5	mA	Outputs LOW	
I _{CCZ}	Power Supply Current		3.6		1	0.19	mA	Outputs Disabled	
I _{CCZ} +	Power Supply Current		3.6			0.19	mA	$V_{CC} \le V_O \le 5.5V$,	
	1				1			Outputs Disabled	

Note 3: All typical values are at V_{CC} = 3.3 V, T_A = 25 ^{\circ}C.

Note 4: Applies to bushold versions only (74LVTH244).

Note 5: An external driver must source at least the specified current to switch from LOW-to-HIGH.

Note 6: An external driver must sink at least the specified current to switch from HIGH-to-LOW.

Note 7: This is the increase in supply current for each input that is at the specified voltage level rather than V_{CC} or GND.

Dynamic Switching Characteristics (Note 8)

Symbol	Parameter	V _{cc}	$T_A = 25^{\circ}C$			Units	Conditions	
Cymbol		(V)	Min	Тур	Max	01110	$\mathbf{C}_{\mathbf{L}} = 50 \ \mathbf{pF}, \ \mathbf{R}_{\mathbf{L}} = 500 \Omega$	
V _{OLP}	Quiet Output Maximum Dynamic V _{OL}	3.3		0.8		V	(Note 9)	
V _{OLV}	Quiet Output Minimum Dynamic V _{OL}	3.3		-0.8		V	(Note 9)	

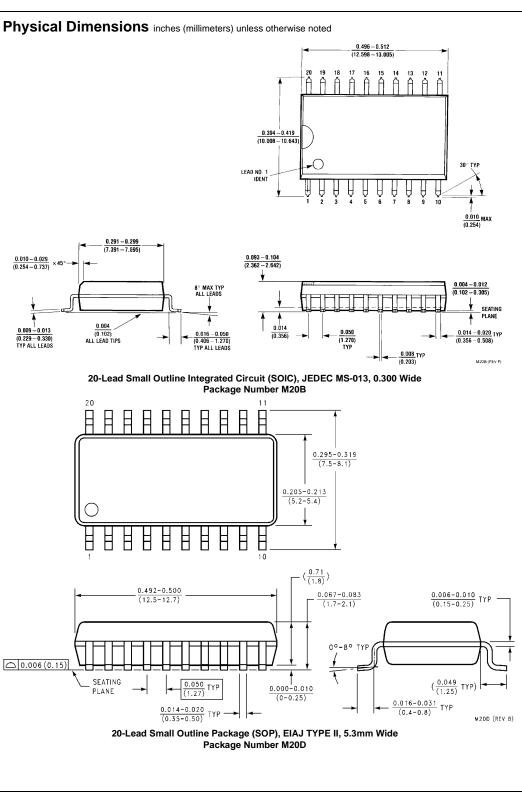
Note 8: Characterized in SOIC package. Guaranteed parameter, but not tested.

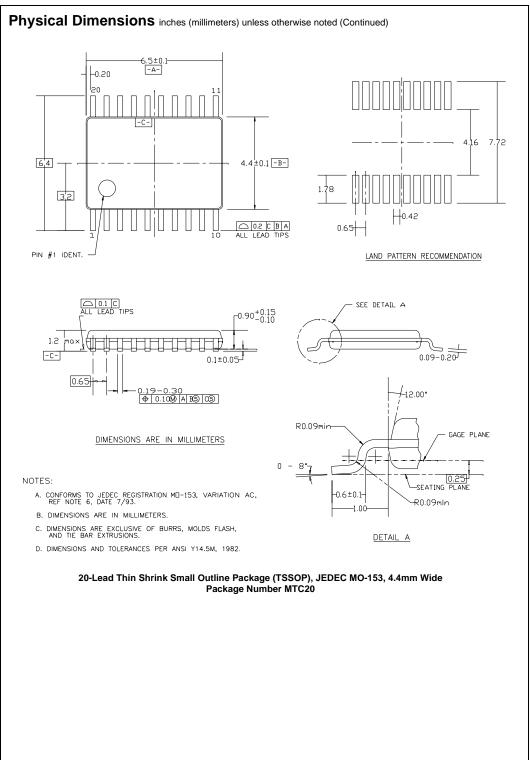
Note 9: Max number of outputs defined as (n). n-1 data inputs are driven 0V to 3V. Output under test held LOW.

AC Electrical Characteristics

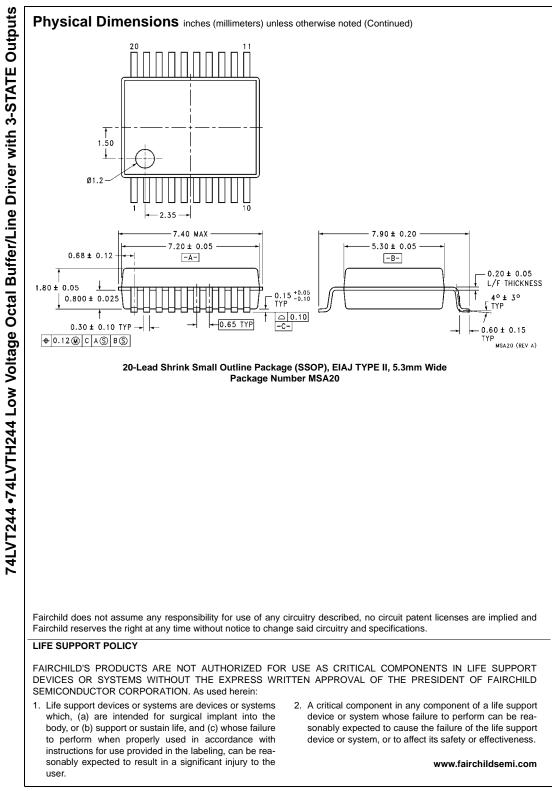
		$T_{A} = -40^{\circ}C \text{ to } +85^{\circ}C$ $C_{L} = 50 \text{ pF, } R_{L} = 500\Omega$					
Symbol	Parameter	v	V _{CC} = 2.7V		Units		
-		Min	Тур	Мах	Min	Max	1
			(Note 10)				
t _{PLH}	Propagation Delay Data to Output	1.1		3.8	1.1	4.0	
t _{PHL}		1.3		3.9	1.3	4.2	ns
t _{PZH}	Output Enable Time	1.1		4.5	1.1	5.3	ns
t _{PZL}		1.4		4.4	1.4	5.0	115
t _{PHZ}	Output Disable Time	1.9		4.9	1.9	5.1	ns
t _{PLZ}		1.8		4.4	1.8	4.4	115
t _{OSHL}	Output to Output Skew			1.0		1.0	ns
t _{OSLH}	(Note 11)			1.0		1.0	115

74LVT244 •74LVTH244


Note 10: All typical values are at V_{CC} = 3.3V, T_A = 25^{\circ}C.


Note 11: Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (t_{OSHL}) or LOW-to-HIGH (t_{OSLH}). Parameter guaranteed by design.

Capacitance (Note 12)


Symbol	Parameter	Conditions	Typical	Units
C _{IN}	Input Capacitance	$V_{CC} = 0V$, $V_I = 0V$ or V_{CC}	3	pF
C _{OUT}	Output Capacitance	$V_{CC} = 3.0V$, $V_O = 0V$ or V_{CC}	6	pF
Nata 12. Consoiton	a is measured of frequency f 1 MUz no	MIL CTD 002 Method 2012		

Note 12: Capacitance is measured at frequency f = 1 MHz, per MIL-STD-883, Method 3012.

74LVT244 •74LVTH244

