查询LM146供应商

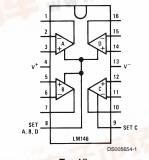
National Semiconductor

LM146/LM346 Programmable Quad Operational Amplifiers

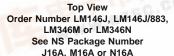
General Description

Connection Diagram

The LM146 series of quad op amps consists of four independent, high gain, internally compensated, low power, programmable amplifiers. Two external resistors (R_{SET}) allow the user to program the gain bandwidth product, slew rate, supply current, input bias current, input offset current and input noise. For example, the user can trade-off supply current for bandwidth or optimize noise figure for a given source resistance. In a similar way, other amplifier characteristics can be tailored to the application. Except for the two programming pins at the end of the package, the LM146 pin-out is the same as the LM124 and LM148.

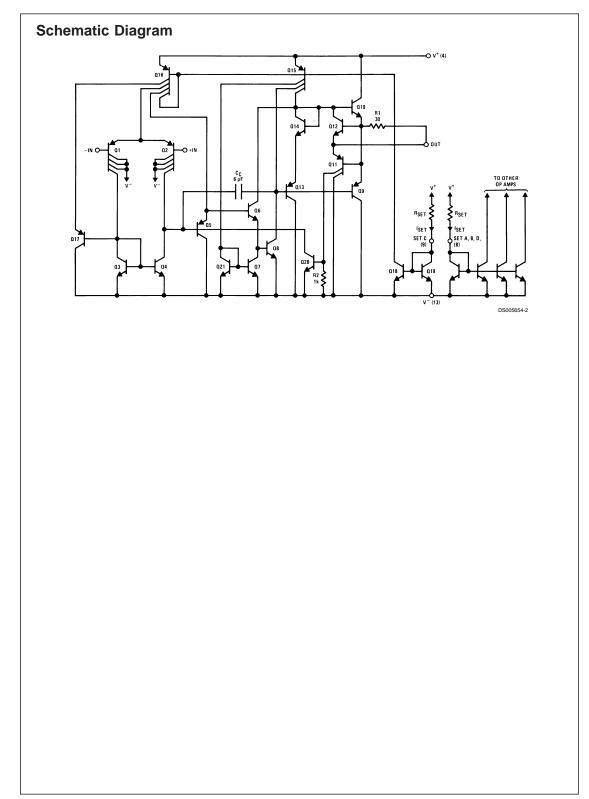

Features (I_{SET}=10 μA)

- Programmable electrical characteristics
- Battery-powered operation
- Low supply current: 350 µA/amplifier
- Guaranteed gain bandwidth product: 0.8 MHz min
- Large DC voltage gain: 120 dB
- Low noise voltage: 28 nV/√Hz
- Wide power supply range: ±1.5V to ±22V
- Class AB output stage-no crossover distortion
- Ideal pin out for Biquad active filters
- Input bias currents are temperature compensated


PROGRAMMING EQUATIONS

Total Supply Current = 1.4 mA ($I_{SET}/10 \mu A$) Gain Bandwidth Product = 1 MHz ($I_{SET}/10 \mu A$) Slew Rate = 0.4V/µs ($I_{SET}/10 \mu A$) Input Bias Current \cong 50 nA ($I_{SET}/10 \mu A$) I_{SET} = Current into pin 8, pin 9 (see schematic-diagram)

> V⁻ - 0.6V R_{SET}


Dual-In-Line Package

May 1999

が サロテ 単年 ー下 pdf.dzsc.com

© 1999 National Semiconductor Corporation DS005654

Absolute Maximum Ratings (Notes 1, 5)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

	LM146	LM346
Supply Voltage	±22V	±18V
Differential Input Voltage (Note 1)	±30V	±30V
CM Input Voltage (Note 1)	±15V	±15V
Power Dissipation (Note 2)	900 mW	500 mW
Dutput Short-Circuit Duration (Note 3)	Continuous	Continuous
Dperating Temperature Range	–55°C to +125°C	0°C to +70°C
Aaximum Junction Temperature	150°C	100°C
Storage Temperature Range	–65°C to +150°C	-65°C to +150°C
ead Temperature (Soldering, 10 seconds)	260°C	260°C
hermal Resistance (θ_{iA}), (Note 2)		
Cavity DIP (J) Pd	900 mW	900 mW
θ _{iA}	100°C/W	100°C/W
Small Outline (M) θ_{iA}		115°C/W
Molded DIP (N) Pd		500 mW
θ _{iA}		90°C/W
Soldering Information		
Dual-In-Line Package		
Soldering (10 seconds)	+260°C	+260°C
Small Outline Package		
Vapor Phase (60 seconds)	+215°C	+215°C
Infrared (15 seconds)	+220°C	+220°C

vices. ESD rating is to be determined.

DC Electrical Characteristics

(V_S=±15V, I_{SET}=10 μA), (Note 4)

Parameter	Conditions	LM146			LM346			Units
		Min	Тур	Max	Min	Тур	Max	
Input Offset Voltage	V _{CM} =0V, R _S ≤50Ω, T _A =25°C		0.5	5		0.5	6	mV
Input Offset Current	V _{CM} =0V, T _A =25°C		2	20		2	100	nA
Input Bias Current	V _{CM} =0V, T _A =25°C		50	100		50	250	nA
Supply Current (4 Op Amps)	T _A =25°C		1.4	2.0		1.4	2.5	mA
Large Signal Voltage Gain	R _L =10 kΩ, ΔV_{OUT} =±10V,	100	1000		50	1000		V/mV
	T _A =25°C							
Input CM Range	T _A =25°C	±13.5	±14		±13.5	±14		V
CM Rejection Ratio	R _S ≤10 kΩ, T _A =25°C	80	100		70	100		dB
Power Supply Rejection Ratio	R _S ≤10 kΩ, T _A =25°C,	80	100		74	100		dB
	$V_{s} = \pm 5$ to $\pm 15V$							
Output Voltage Swing	R _L ≥10 kΩ, T _A =25°C	±12	±14		±12	±14		V
Short-Circuit	T _A =25°C	5	20	35	5	20	35	mA
Gain Bandwidth Product	T _A =25°C	0.8	1.2		0.5	1.2		MHz
Phase Margin	T _A =25°C		60			60		Deg
Slew Rate	T _A =25°C		0.4			0.4		V/µs
Input Noise Voltage	f=1 kHz, T _A =25°C		28			28		nV/√H:
Channel Separation	R _L =10 kΩ, ΔV_{OUT} =0V to		120			120		dB
	±12V, T _A =25°C							
Input Resistance	T _A =25°C		1.0			1.0		MΩ
Input Capacitance	T _A =25°C		2.0			2.0		pF
Input Offset Voltage	V _{CM} =0V, R _S ≤50Ω		0.5	6		0.5	7.5	mV

DC Electrical Characteristics (Continued)

(V_S=±15V, I_{SET}=10 μA), (Note 4)

.

Parameter	Conditions	LM146			LM346			Units
		Min	Тур	Max	Min	Тур	Max	
Input Offset Current	V _{CM} =0V		2	25		2	100	nA
Input Bias Current	V _{CM} =0V		50	100		50	250	nA
Supply Current (4 Op Amps)			1.7	2.2		1.7	2.5	mA
Large Signal Voltage Gain	R _L =10 kΩ, Δ V _{OUT} =±10V	50	1000		25	1000		V/mV
Input CM Range		±13.5	±14		±13.5	±14		V
CM Rejection Ratio	R _S ≤50Ω	70	100		70	100		dB
Power Supply Rejection Ratio	R _S ≤50Ω,	76	100		74	100		dB
	$V_{S} = \pm 5V$ to $\pm 15V$							
Output Voltage Swing	R _L ≥10 kΩ	±12	±14		±12	±14		V

DC Electrical Characteristic

(V_S =±15V, I_{SET} =10 µA)

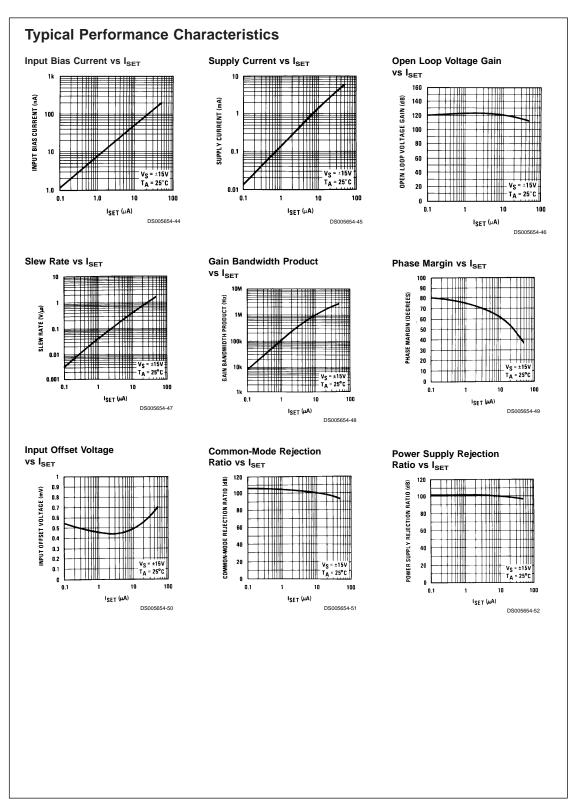
Parameter	Conditions	LM146				Units		
		Min	Тур	Max	Min	Тур	Max	1
Input Offset Voltage	V _{CM} =0V, R _S ≤50Ω,		0.5	5		0.5	7	mV
	T _A =25°C							
Input Bias Current	V _{CM} =0V, T _A =25°C		7.5	20		7.5	100	nA
Supply Current (4 Op Amps)	T _A =25°C		140	250		140	300	μA
Gain Bandwidth Product	T _A =25°C	80	100		50	100		kHz

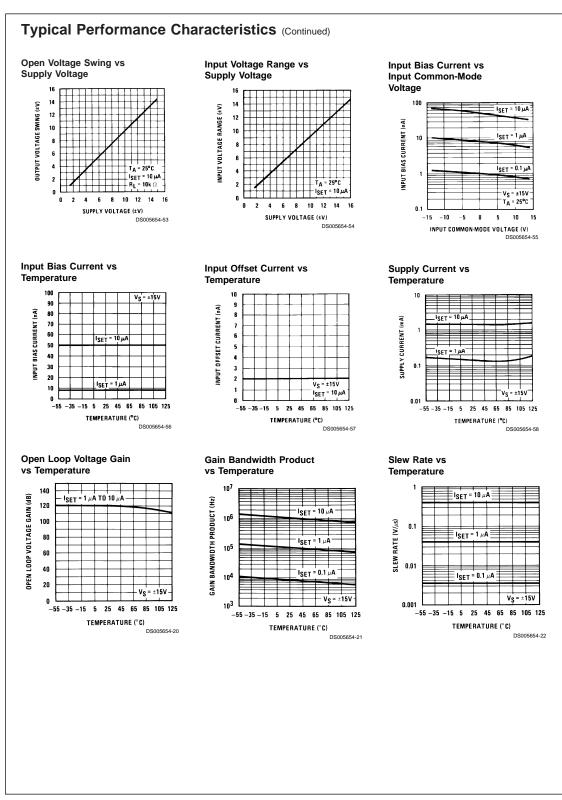
DC Electrical Characteristics

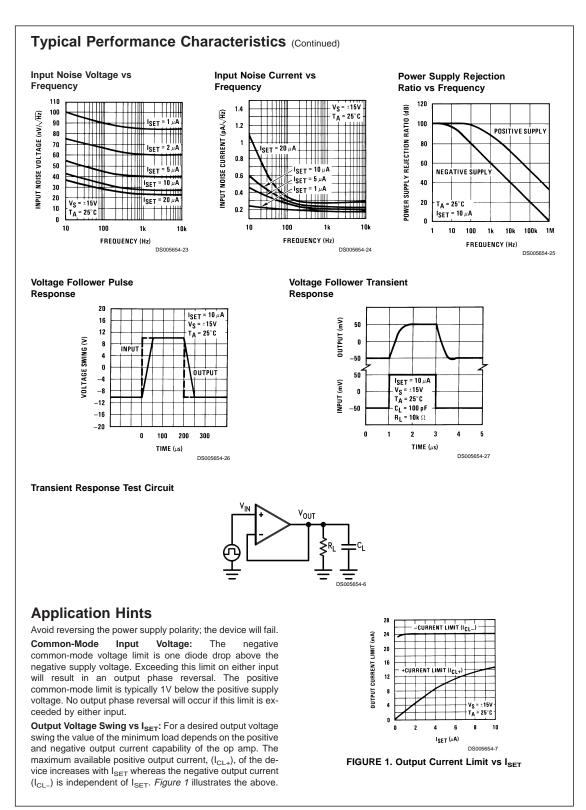
(V_s=±1.5V, I_{SET}=10 $\mu A)$

Parameter	Conditions	LM146				Units		
		Min	Тур	Max	Min	Тур	Max	1
Input Offset Voltage	V _{CM} =0V, R _S ≤50Ω,		0.5	5		0.5	7	mV
	T _A =25°C							
Input CM Range	T _A =25°C	±0.7			±0.7			V
CM Rejection Ratio	R _S ≤50Ω, T _A =25°C		80			80		dB
Output Voltage Swing	R _L ≥10 kΩ, T _A =25°C	±0.6			±0.6			V

Note 1: For supply voltages less than ±15V, the absolute maximum input voltage is equal to the supply voltage.

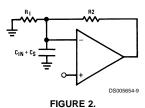

Note 2: The maximum power dissipation for these devices must be derated at elevated temperatures and is dictated by T_{jMAX} , θ_{jA} , and the ambient temperature, T_A . The maximum available power dissipation at any temperature is $P_d=(T_{jMAX} - T_A)/\theta_{jA}$ or the 25°C P_{dMAX} , whichever is less.


Note 3: Any of the amplifier outputs can be shorted to ground indefinitely; however, more than one should not be simultaneously shorted as the maximum junction temperature will be exceeded.


4

Note 4: These specifications apply over the absolute maximum operating temperature range unless otherwise noted.

Note 5: Refer to RETS146X for LM146J military specifications.



Application Hints (Continued)

Input Capacitance: The input capacitance, C_{IN} , of the LM146 is approximately 2 pF; any stray capacitance, C_S , (due to external circuit circuit layout) will add to C_{IN} . When resistive or active feedback is applied, an additional pole is added to the open loop frequency response of the device. For instance with resistive feedback (*Figure 2*), this pole occurs at $\frac{1}{2}\pi$ (R1||R2) ($C_{IN} + C_S$). Make sure that this pole occurs at least 2 octaves beyond the expected –3 dB frequency corner of the closed loop gain of the amplifier; if not, place a lead capacitor in the feedback such that the time constant of this capacitor and the resistance it parallels is equal to the R_I($C_S + C_{IN}$), where R_I is the input resistance of the circuit.

Temperature Effect on the GBW: The GBW (gain bandwidth product), of the LM146 is directly proportional to I_{SET} and inversely proportional to the absolute temperature. When using resistors to set the bias current, I_{SET} , of the device, the GBW product will decrease with increasing temperature. Compensation can be provided by creating an I_{SET} current directly proportional to temperature (see typical applications).

Isolation Between Amplifiers: The LM146 die is isothermally layed out such that crosstalk between *all* 4 amplifiers is in excess of –105 dB (DC). Optimum isolation (better than –110 dB) occurs between amplifiers A and D, B and C; that is, if amplifier A dissipates power on its output stage, amplifier D is the one which will be affected the least, and vice versa. Same argument holds for amplifiers B and C.

LM146 Typical Performance Summary: The LM146 typical behaviour is shown in *Figure 3*. The device is fully predictable. As the set current, I_{SET} , increases, the speed, the bias current, and the supply current increase while the noise

power decreases proportionally and the $\rm V_{OS}remains$ constant. The usable GBW range of the op amp is 10 kHz to 3.5-4 MHz.

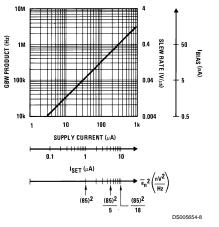
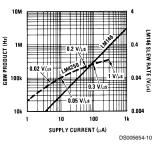
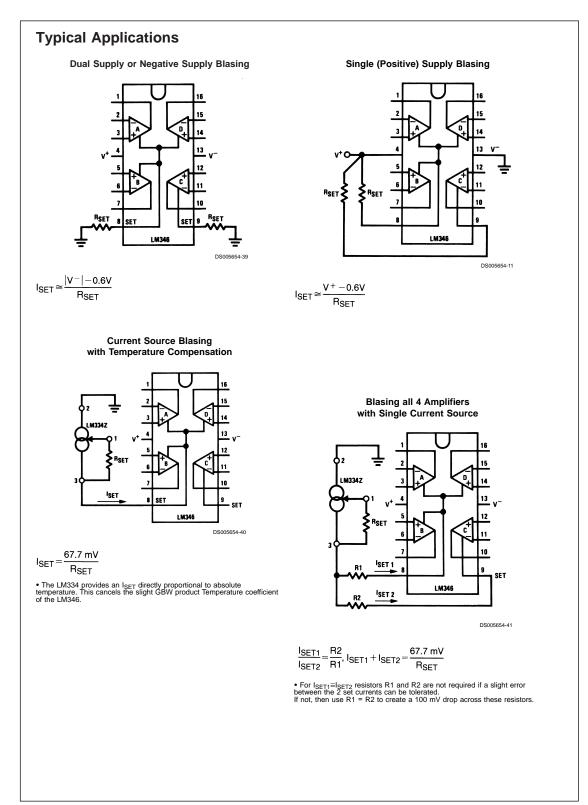
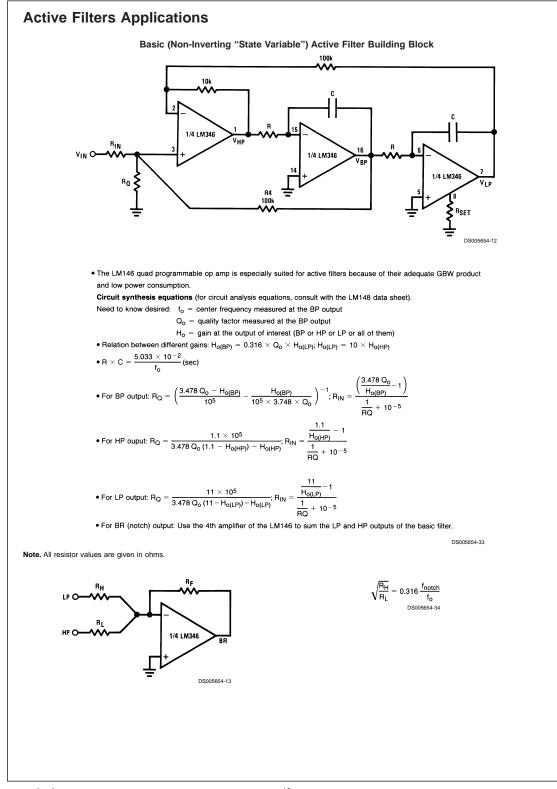
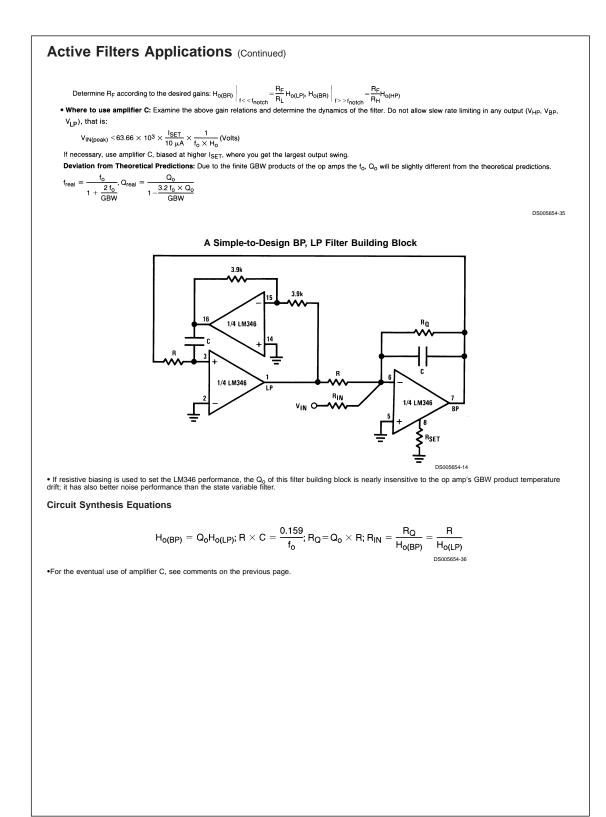
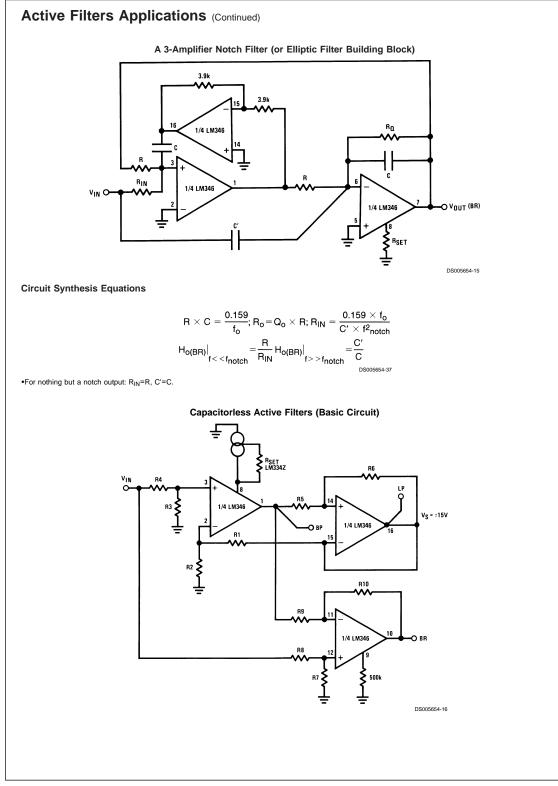


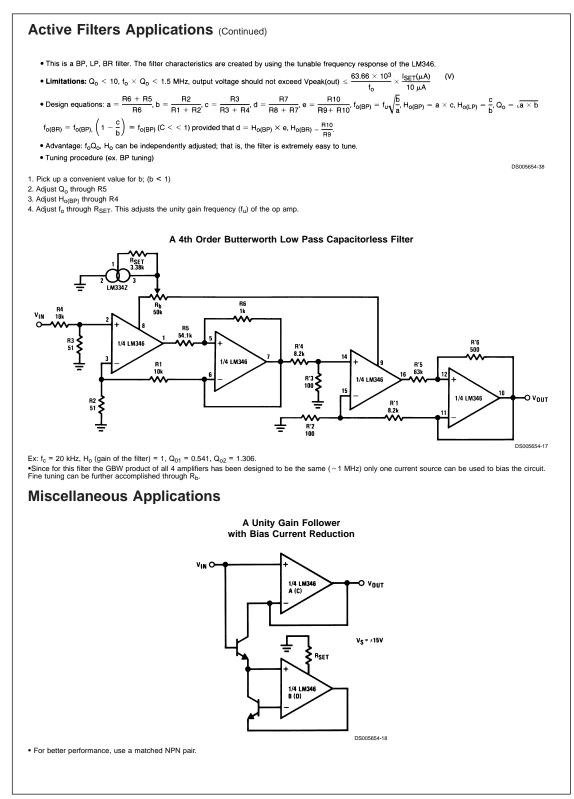
FIGURE 3. LM146 Typical Characteristics

Low Power Supply Operation: The quad op amp operates down to $\pm 1.3V$ supply. Also, since the internal circuitry is biased through programmable current sources, no degradation of the device speed will occur.

Speed vs Power Consumption: LM146 vs LM4250 (single programmable). Through *Figure 4*, we observe that the LM146's power consumption has been optimized for GBW products above 200 kHz, whereas the LM4250 will reach a GBW of no more than 300 kHz. For GBW products below 200 kHz, the LM4250 will consume less power.


FIGURE 4. LM146 vs LM4250


8

