

PRELIMINARY

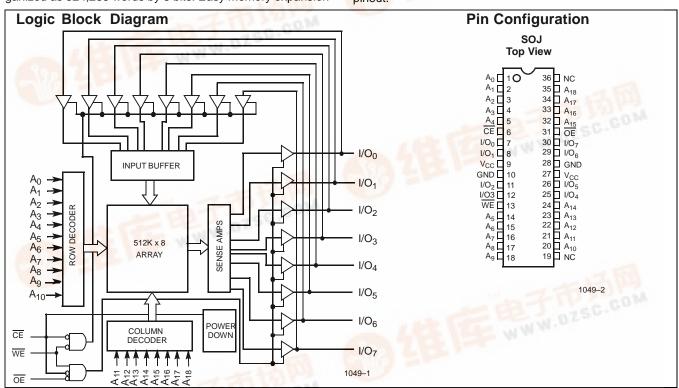
CY7C1049

512K x 8 Static RAM

Features

- · High speed
 - $-t_{AA} = 15 \text{ ns}$
- Low active power
 - -1210 mW (max.)
- Low CMOS standby power (Commercial L version)
 2.75 mW (max.)
- 2.0V Data Retention (400 μW at 2.0V retention)
- Automatic power-down when deselected
- TTL-compatible inputs and outputs
- Easy memory expansion with CE and OE features

Functional Description


The CY7C1049 is a high-performance CMOS static RAM organized as 524,288 words by 8 bits. Easy memory expansion

is provided by an active LOW chip enable (\overline{CE}) , an active LOW output enable (\overline{OE}) , and three-state drivers. Writing to the device is accomplished by taking chip enable (\overline{CE}) and write enable (\overline{WE}) inputs LOW. Data on the eight I/O pins $(I/O_0$ through I/O_7) is then written into the location specified on the address pins $(A_0$ through $A_{18})$.

Reading from the device is accomplished by taking chip enable $(\overline{\text{CE}})$ and output enable $(\overline{\text{OE}})$ LOW while forcing write enable $(\overline{\text{WE}})$ HIGH. Under these conditions, the contents of the memory location specified by the address pins will appear on the I/O pins.

The eight input/output pins (I/O $_0$ through I/O $_7$) are placed in a high-impedance state when the device is deselected ($\overline{\text{CE}}$ HIGH), the outputs are disabled ($\overline{\text{OE}}$ HIGH), or during a write operation ($\overline{\text{CE}}$ LOW, and $\overline{\text{WE}}$ LOW).

The CY7C1049 is available in a standard 400-mil-wide 36-pin SOJ package with center power and ground (revolutionary) pinout.

Selection Guide

f.dzsc.com

AND STREET	M. As .	7C1049-12	7C1049-15	7C1049-17	7C1049-20	7C1049-25
Maximum Access Time (ns)		12	15	17	20	25
Maximum Operating Current (mA)		240	220	195	185	180
Maximum CMOS Standby Current (mA)	Com'l	8	8	8	8	8
	Com'l L	0.5	0.5	0.5	0.5	0.5
	Ind'l	9	9	9	9	9
	Military				10	10
Shaded areas contain advance information	n.					

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.) Storage Temperature-65°C to +150°C Ambient Temperature with Power Applied......55°C to +125°C Supply Voltage on V_{CC} to Relative $GND^{[1]}$ -0.5V to +7.0VDC Voltage Applied to Outputs in High Z State $^{[1]}$ -0.5V to V CC + 0.5V DC Input Voltage^[1]-0.5V to V_{CC} + 0.5V Current into Outputs (LOW)......20 mA

Static Discharge Voltage	>2001V
(per MIL-STD-883, Method 3015)	
Latch-Up Current	>200 mA

Operating Range

Range	Ambient Temperature ^[2]	v _{cc}
Commercial	0°C to +70°C	4.5V-5.5V
Industrial	-40°C to +85°C	
Military	−55°C to +125°C	

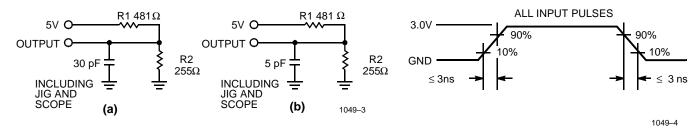
Electrical Characteristics Over the Operating Range

Parameter	Description	Test Conditi	ions	7C10)49-12	7C10	049-15	7C10	049-17	
				Min.	Max.	Min.	Max.	Min.	Max.	Unit
V _{OH}	Output HIGH Voltage	$V_{CC} = Min., I_{OH} = -4$	V _{CC} = Min., I _{OH} = -4.0 mA			2.4		2.4		V
V _{OL}	Output LOW Voltage	$V_{CC} = Min., I_{OL} = 8.0$) mA		0.4		0.4		0.4	V
V _{IH}	Input HIGH Voltage		2.2	V _{CC} + 0.3	2.2	V _{CC} + 0.3	2.2	V _{CC} + 0.3	V	
V _{IL}	Input LOW Voltage[1]		-0.3	0.8	-0.3	0.8	-0.3	0.3	V	
I _{IX}	Input Load Current	$GND \le V_I \le V_{CC}$	-1	+1	-1	+1	-1	+1	μА	
I _{OZ}	Output Leakage Current	$\begin{aligned} GND &\leq V_{OUT} \leq V_{CC}, \\ Output Disabled \end{aligned}$		-1	+1	-1	+1	-1	+1	μА
I _{CC}	V _{CC} Operating Supply Current	$V_{CC} = Max.$ $f = f_{MAX} = 1/t_{RC}$			240		220		195	mA
I _{SB1}	Automatic CE Power-Down Current —TTL Inputs		$V_{IN} \ge V_{IH}$ or		40		40		40	mA
I _{SB2}	Automatic CE	Max. V _{CC} ,	Com'l		8		8		8	mA
	Power-Down Current —CMOS Inputs	$CE \ge V_{CC} - 0.3V$, $V_{IN} \ge V_{CC} - 0.3V$,	Com'l L		0.5		0.5		0.5	mA
	F	or $V{IN} \le 0.3V$, f=0	Ind'l		9		9		9	mA
			Military		10		10		10	mA

Shaded areas contain advance information.

^{1.} V_{IL} (min.) = -2.0V for pulse durations of less than 20 ns. 2. T_A is the "instant on" case temperature.

Electrical Characteristics Over the Operating Range (continued)


		Test Conditions		7C1	049-20	7C1		
Parameter	Description			Min.	Max.	Min.	Max.	Unit
V _{OH}	Output HIGH Voltage	$V_{CC} = Min., I_{OH} = -4.0$) mA	2.4		2.4		V
V _{OL}	Output LOW Voltage	$V_{CC} = Min., I_{OL} = 8.0$	mA		0.4		0.4	V
V _{IH}	Input HIGH Voltage		2.2	V _{CC} + 0.3	2.2	V _{CC} + 0.3	V	
V _{IL}	Input LOW Voltage[1]		-0.3	0.8	-0.3	0.8	V	
I _{IX}	Input Load Current	$GND \le V_I \le V_{CC}$	-1	+1	-1	+1	μΑ	
I _{OZ}	Output Leakage Current	$\begin{aligned} &\text{GND} \leq \text{V}_{\text{OUT}} \leq \text{V}_{\text{CC}}, \\ &\text{Output Disabled} \end{aligned}$	-1	+1	-1	+1	μА	
Icc	V _{CC} Operating Supply Current	$V_{CC} = Max.$ $f = f_{MAX} = 1/t_{RC}$	$V_{CC} = Max.$ $f = f_{MAX} = 1/t_{RC}$				180	mA
I _{SB1}	Automatic CE Power-Down Current —TTL Inputs	$\begin{aligned} &\text{Max. } V_{\text{CC}}, \overline{\text{CE}} \geq V_{\text{IH}} \\ &V_{\text{IN}} \geq V_{\text{IH}} \text{ or} \\ &V_{\text{IN}} \leq V_{\text{IL}}, f = f_{\text{MAX}} \end{aligned}$	$V_{IN} \ge V_{IH}$ or		40		40	mA
I _{SB2}	Automatic CE	Max. V _{CC} ,	Com'l		8		8	mA
	Power-Down Current —CMOS Inputs	$CE \ge V_{CC} - 0.3V$, $V_{IN} \ge V_{CC} - 0.3V$,	Com'l L		0.5		0.5	mA
	O.WOO IIIputo	or $V_{IN} \le 0.3V$, f=0	Ind'I		9		9	mA
			Military		10		10	mA

Capacitance^[3]

Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$T_A = 25^{\circ}C, f = 1 \text{ MHz},$	8	pF
C _{OUT}	I/O Capacitance	$V_{CC} = 5.0V$	8	pF

Note:

AC Test Loads and Waveforms

Equivalent to: THÉVENIN EQUIVALENT

OUTPUT O 1.73\

Document #: 38-05063 Rev **

^{3.} Tested initially and after any design or process changes that may affect these parameters.

Switching Characteristics^[4] Over the Operating Range

		7C10	49-12	7C1049-15		7C1049-17		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Unit
READ CYC	LE	,	•		•		•	
t _{RC}	Read Cycle Time			15		17		ns
t _{AA}	Address to Data Valid		12		15		17	ns
t _{OHA}	Data Hold from Address Change	3		3		3		ns
t _{ACE}	CE LOW to Data Valid		12		15		17	ns
t _{DOE}	OE LOW to Data Valid		6		7		8	ns
t _{LZOE}	OE LOW to Low Z ^[6]	0		0		0		ns
t _{HZOE}	OE HIGH to High Z ^[5, 6]		6		7		7	ns
t _{LZCE}	CE LOW to Low Z ^[6]	3		3		3		ns
t _{HZCE}	CE HIGH to High Z ^[5, 6]		6		7		7	ns
t _{PU}	CE LOW to Power-Up	0		0		0		ns
t _{PD}	CE HIGH to Power-Down		12		15		17	ns
WRITE CYC	CLE ^[7,8]							
t _{WC}	Write Cycle Time	12		15		17		ns
t _{SCE}	CE LOW to Write End	10		12		12		ns
t _{AW}	Address Set-Up to Write End	10		12		12		ns
t _{HA}	Address Hold from Write End	0		0		0		ns
t _{SA}	Address Set-Up to Write Start	0		0		0		ns
t _{PWE}	WE Pulse Width	10		12		12		ns
t _{SD}	Data Set-Up to Write End	7		8		8		ns
t _{HD}	Data Hold from Write End	0		0		0		ns
t _{LZWE}	WE HIGH to Low Z ^[6]	3		3		3		ns
t _{HZWE}	WE LOW to High Z ^[5, 6]		6		7		8	ns

Shaded areas contain advance information.

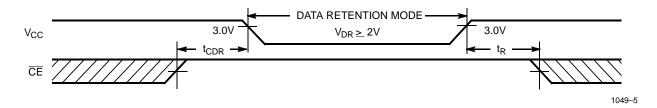
Notes:

- Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V, and output loading of the specified $I_{OL}I_{OH}$ and 30-pF load capacitance.
- the properties of the write. The input data set-up and hold timing should be referenced to the leading edge of the signal that terminates the write. The minimum write cycle time for Write Cycle no. 3 (WE controlled, OE LOW) is the sum of the xem of xem of

Switching Characteristics^[4] Over the Operating Range (continued)

		7C10	149-20	7C10	49-25	
Parameter	Description	Min.	Max.	Min.	Max.	Unit
READ CYCLI	E			•		1
t _{RC}	Read Cycle Time	20		25		ns
t _{AA}	Address to Data Valid		20		25	ns
t _{OHA}	Data Hold from Address Change	3		5		ns
t _{ACE}	CE LOW to Data Valid		20		25	ns
t _{DOE}	OE LOW to Data Valid		8		10	ns
t _{LZOE}	OE LOW to Low Z ^[6]	0		0		ns
t _{HZOE}	OE HIGH to High Z ^[5, 6]		8		10	ns
t _{LZCE}	CE LOW to Low Z ^[6]	3		5		ns
t _{HZCE}	CE HIGH to High Z ^[5, 6]		8		10	ns
t _{PU}	CE LOW to Power-Up	0		0		ns
t _{PD}	CE HIGH to Power-Down		20		25	ns
WRITE CYCL	$\mathbf{E}^{[7]}$	•				
t _{WC}	Write Cycle Time	20		25		ns
t _{SCE}	CE LOW to Write End	13		15		ns
t _{AW}	Address Set-Up to Write End	13		15		ns
t _{HA}	Address Hold from Write End	0		0		ns
t _{SA}	Address Set-Up to Write Start	0		0		ns
t _{PWE}	WE Pulse Width	13		15		ns
t _{SD}	Data Set-Up to Write End	9		10		ns
t _{HD}	Data Hold from Write End	0		0		ns
t _{LZWE}	WE HIGH to Low Z ^[6]	3		5		ns
t _{HZWE}	WE LOW to High Z ^[5, 6]		8		10	ns

Data Retention Characteristics Over the Operating Range

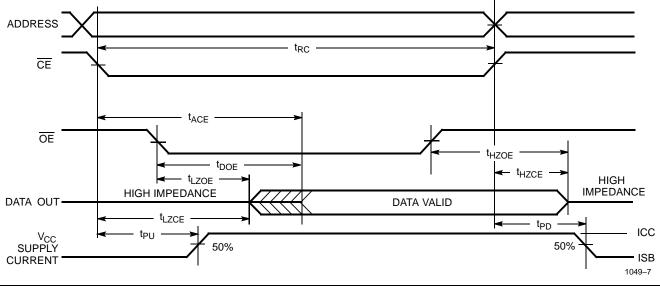

Parameter	Description			Conditions ^[10]	Min.	Max	Unit
V_{DR}	V _{CC} for Data Retention				2.0		V
I _{CCDR}	Data Retention Current	Com'l I		$\underline{V_{CC}} = V_{DR} = 3.0V,$		200	μΑ
		Ind'I		$CE \ge V_{CC} - 0.3V$ $V_{IN} \ge V_{CC} - 0.3V$ or $V_{IN} \le 0.3V$		1	mA
		Military				2	mA
t _{CDR} ^[3]	Chip Deselect to Data Retention Time				0		ns
t _R ^[9]	Operation Recovery Time				t _{RC}		ns

Document #: 38-05063 Rev. **

^{9.} $t_r \le 3$ ns for the -12 and -15 speeds. $t_r \le 5$ ns for the -20 ns and slower speeds. 10. No input may exceed V_{CC} + 0.5V.



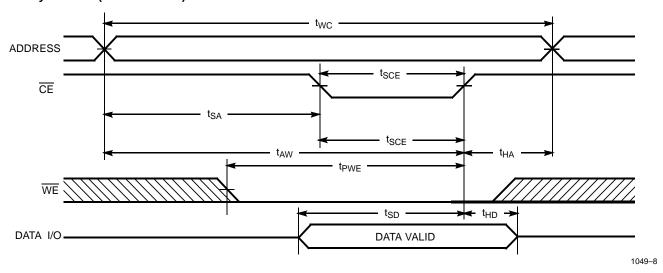
Data Retention Waveform



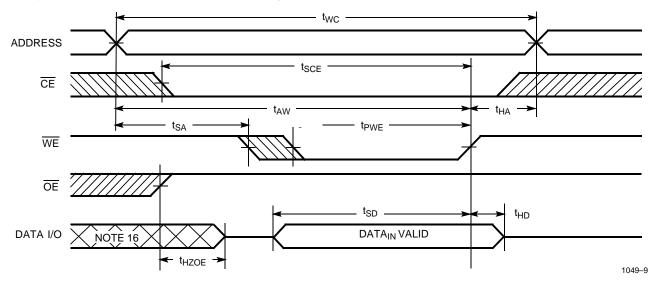
Switching Waveforms

Read Cycle No. 1^[11, 12]

Read Cycle No. 2 (OE Controlled)[12, 13]


Notes:

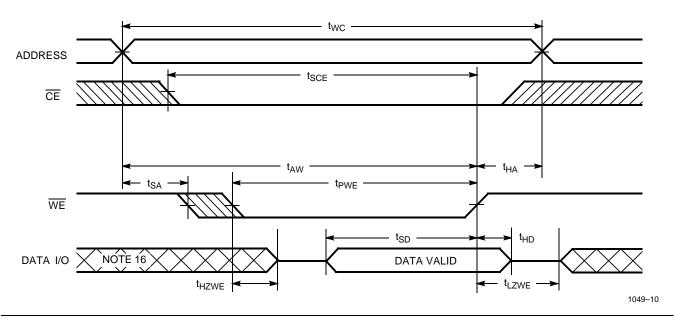
- Device is continuously selected. OE, CE = V_{IL}.
 WE is HIGH for read cycle.
 Address valid prior to or coincident with CE transition LOW.



Switching Waveforms (continued)

Write Cycle No. 1 (CE Controlled)[14, 15]

Write Cycle No. 2 (WE Controlled, OE HIGH During Write)[14, 15]

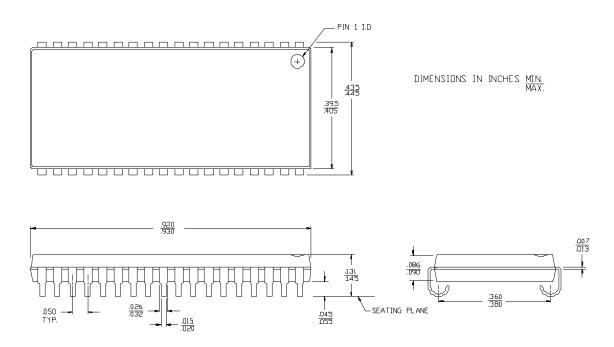

Notes:

14. Data I/O is high impedance if OE = V_{IH}.
 15. If CE goes HIGH simultaneously with WE going HIGH, the output remains in a high-impedance state.
 16. During this period the I/Os are in the output state and input signals should not be applied.

Switching Waveforms (continued)

Write Cycle No. 3 ($\overline{\text{WE}}$ Controlled, $\overline{\text{OE}}$ LOW)[15]

Ordering Information


Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
15	CY7C1049-15VC	V36	36-Lead (400-Mil) Molded SOJ	Commercial
	CY7C1049L-15VC	V36	36-Lead (400-Mil) Molded SOJ	
17	CY7C1049-17VC	V36	36-Lead (400-Mil) Molded SOJ	
	CY7C1049L-17VC	V36	36-Lead (400-Mil) Molded SOJ	
20	CY7C1049-20VC	V36	36-Lead (400-Mil) Molded SOJ	
	CY7C1049L-20VC	V36	36-Lead (400-Mil) Molded SOJ	
	CY7C1049-20VI	V36	36-Lead (400-Mil) Molded SOJ	Industrial
	CY7C1049L-20VI	V36	36-Lead (400-Mil) Molded SOJ	
	CY7C1049-20VM	V36	36-Lead (400-Mil) Molded SOJ	Military
	CY7C1049L-20VM	V36	36-Lead (400-Mil) Molded SOJ	
25	CY7C1049-25VC	V36	36-Lead (400-Mil) Molded SOJ	Commercial
	CY7C1049L-25VC	V36	36-Lead (400-Mil) Molded SOJ	
	CY7C1049-25VI	V36	36-Lead (400-Mil) Molded SOJ	Industrial
	CY7C1049L-25VI	V36	36-Lead (400-Mil) Molded SOJ	
	CY7C1049-25VM	V36	36-Lead (400-Mil) Molded SOJ	Military
	CY7C1049L-25VM	V36	36-Lead (400-Mil) Molded SOJ	

Shaded areas contain advance information.

Package Diagram

36-Lead (400-Mil) Molded SOJ V36

CY7C1049

Document Title: CY7C1049 512K x 8 Static RAM Document Number: 38-05063								
REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change				
**	107256	09/10/01	SZV	Change from Spec number: 38-00563 to 38-05063				