DATA SHEET

74ABT534A

Octal D-type flip-flop, inverting (3-State)

Product specification

1997 Feb 03

IC23 Data Handbook

Octal D-type flip-flop, inverting (3-State)

74ABT534A

FEATURES

- 8-bit positive edge triggered register
- 3-State output buffers
- Output capability: +64mA/–32mA
- Latch-up protection exceeds 500mA per Jedec JC40.2 Std 17
- ESD protection exceeds 2000 V per MIL STD 883 Method 3015 and 200 V per Machine Model
- Power-up 3-State

DESCRIPTION

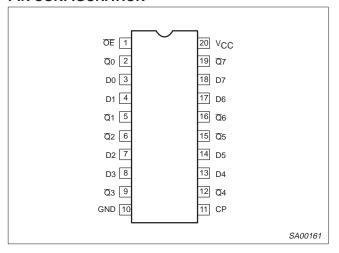
The 74ABT534A high-performance BiCMOS device combines low static and dynamic power dissipation with high speed and high output drive.

The 74ABT534A is an 8-bit, edge triggered register coupled to eight 3-State output buffers. The two sections of the device are controlled independently by the clock (CP) and Output Enable ($\overline{\text{OE}}$) control gates.

The register is fully edge triggered. The state of each D input, one set-up time before the Low-to-High clock transition, is transferred to the corresponding flip-flop's output.

The 3-State output buffers are designed to drive heavily loaded 3-State buses, MOS memories, or MOS microprocessors. The active-Low Output Enable ($\overline{\text{OE}}$) controls all eight 3-State buffers independent of the clock operation.

When $\overline{\text{OE}}$ is Low, the stored data appears at the outputs. When $\overline{\text{OE}}$ is High, the outputs are in the High-impedance "OFF" state, which means they will neither drive nor load the bus.

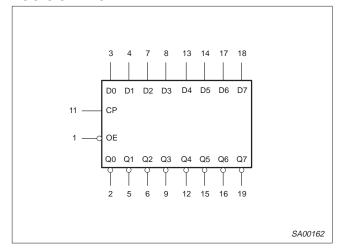

QUICK REFERENCE DATA

SYMBOL	PARAMETER	CONDITIONS T _{amb} = 25°C; GND = 0V	TYPICAL	UNIT
t _{PLH} t _{PHL}	Propagation delay CP to Qn	$C_L = 50pF; V_{CC} = 5V$	3.3 3.6	ns
C _{IN}	Input capacitance	$V_I = 0V$ or V_{CC}	3.5	pF
C _{OUT}	Output capacitance	Outputs disabled; V _O = 0V or V _{CC}	6.5	pF
I _{CCZ}	Total supply current	Outputs disabled; V _{CC} =5.5V	100	μΑ

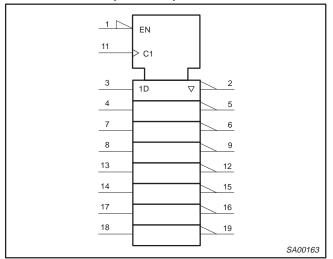
ORDERING INFORMATION

ONDERNING IN ORMATION				
PACKAGES	TEMPERATURE RANGE	OUTSIDE NORTH AMERICA	NORTH AMERICA	DWG NUMBER
20-Pin Plastic DIP	-40°C to +85°C	74ABT534A N	74ABT534A N	SOT146-1
20-Pin plastic SO	-40°C to +85°C	74ABT534A D	74ABT534A D	SOT163-1
20-Pin Plastic SSOP Type II	-40°C to +85°C	74ABT534A DB	74ABT534A DB	SOT339-1
20-Pin Plastic TSSOP Type I	-40°C to +85°C	74ABT534A PW	74ABT534APW DH	SOT360-1

PIN CONFIGURATION


PIN DESCRIPTION

PIN NUMBER	SYMBOL	FUNCTION
1	ŌĒ	Output enable input (active-Low)
3, 4, 7, 8, 13, 14, 17, 18	D0-D7	Data inputs
2, 5, 6, 9, 12, 15, 16, 19	<u>Q</u> 0- <u>Q</u> 7	Inverting 3-State outputs
11	СР	Clock pulse input (active rising edge)
10	GND	Ground (0V)
20	V _{CC}	Positive supply voltage


Octal D-type flip-flop, inverting (3-State)

74ABT534A

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

FUNCTION TABLE

	NPUT	6	INTERNAL	OUTPUTS	OPERATING MODE
OE	СР	Dn	REGISTER	<u>Q</u> 0 − <u>Q</u> 7	
L L	\uparrow	l h	L H	H	Latch and read register
L	1	Х	NC	NC	Hold
H H	↑	X Dn	NC Dn	Z Z	Disable outputs

H = High voltage level

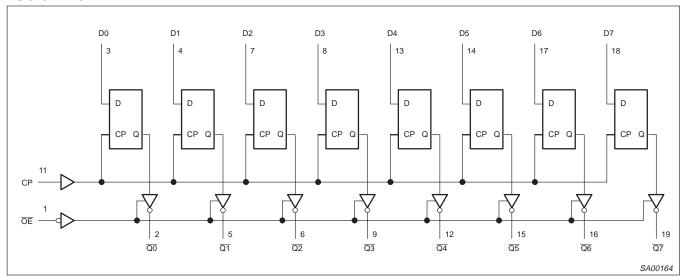
h = High voltage level one set-up time prior to the Low-to-High

clock transition

L = Low voltage level

I = Low voltage level one set-up time prior to the Low-to-High

clock transition


NC= No change X = Don't care

Z = High impedance "off" state

= Low-to-High clock transition

↑ = not a Low-to-High clock transition

LOGIC DIAGRAM

Octal D-type flip-flop, inverting (3-State)

74ABT534A

ABSOLUTE MAXIMUM RATINGS^{1, 2}

SYMBOL	PARAMETER	CONDITIONS	RATING	UNIT
V _{CC}	DC supply voltage		-0.5 to +7.0	V
I _{IK}	DC input diode current	V _I < 0	-18	mA
VI	DC input voltage ³		-1.2 to +7.0	V
lok	DC output diode current	V _O < 0	-50	mA
V _{OUT}	DC output voltage ³	output in Off or High state	-0.5 to +5.5	V
lout	DC output current	output in Low state	128	mA
T _{stg}	Storage temperature range		-65 to 150	°C

NOTES:

RECOMMENDED OPERATING CONDITIONS

SYMBOL	DC supply voltage Input voltage High-level input voltage Low-level Input voltage High-level output current	LIM	ITS	UNIT
STWIBUL	PARAMETER	Min	Max	UNIT
V _{CC}	DC supply voltage	4.5	5.5	V
VI	Input voltage	0	V _{CC}	V
V _{IH}	High-level input voltage	2.0		V
V _{IL}	Low-level Input voltage		0.8	V
I _{OH}	High-level output current		-32	mA
I _{OL}	Low-level output current		64	mA
Δt/Δν	Input transition rise or fall rate	0	5	ns/V
T _{amb}	Operating free-air temperature range	-40	+85	°C

^{1.} Stresses beyond those listed may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

^{2.} The performance capability of a high-performance integrated circuit in conjunction with its thermal environment can create junction temperatures which are detrimental to reliability. The maximum junction temperature of this integrated circuit should not exceed 150°C.

^{3.} The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

Octal D-type flip-flop, inverting (3-State)

74ABT534A

DC ELECTRICAL CHARACTERISTICS

					LIMITS			
SYMBOL	PARAMETER	TEST CONDITIONS	Tai	$T_{amb} = +25^{\circ}C$ $T_{amb} = -4$ to +85°			-40°C 85°C	UNIT
			Min	Тур	Max	Min	Max	
V _{IK}	Input clamp voltage	V _{CC} = 4.5V; I _{IK} = -18mA		-0.9	-1.2		-1.2	V
		$V_{CC} = 4.5V$; $I_{OH} = -3mA$; $V_I = V_{IL}$ or V_{IH}	2.5	2.9		2.5		V
V _{OH}	High-level output voltage	$V_{CC} = 5.0V$; $I_{OH} = -3mA$; $V_I = V_{IL}$ or V_{IH}	3.0	3.4		3.0		V
		$V_{CC} = 4.5V$; $I_{OH} = -32mA$; $V_I = V_{IL}$ or V_{IH}	2.0	2.4		2.0		V
V _{OL}	Low-level output voltage	V_{CC} = 4.5V; I_{OL} = 64mA; V_I = V_{IL} or V_{IH}		0.42	0.55		0.55	V
I _I	Input leakage current	V _{CC} = 5.5V; V _I = GND or 5.5V		±0.01	±1.0		±1.0	μΑ
I _{OFF}	Power-off leakage current	$V_{CC} = 0.0V; V_{I} \text{ or } V_{O} \le 4.5V$		±5.0	±100		±100	μΑ
I _{PU} /I _{PD}	Power-up/down 3-State output current ³	$V_{\underline{CC}}$ = 2.0V; V_{O} = 0.5V; V_{I} = GND or V_{CC} ; V_{OE} = V_{CC}		±5.0	±50		±50	μΑ
I _{OZH}	3-State output High current	$V_{CC} = 5.5V; V_O = 2.7V; V_I = V_{IL} \text{ or } V_{IH}$		0.1	10		10	μΑ
l _{OZL}	3-State output Low current	$V_{CC} = 5.5V; V_{O} = 0.5V; V_{I} = V_{IL} \text{ or } V_{IH}$		-0.1	-10		-10	μΑ
I _{CEX}	Output High leakage current	$V_{CC} = 5.5V; V_{O} = 5.5V; V_{I} = GND \text{ or } V_{CC}$		0.1	50		50	μΑ
I _O	Output current ¹	$V_{CC} = 5.5V; V_{O} = 2.5V$	-50	-100	-180	-50	-180	mA
I _{CCH}		V_{CC} = 5.5V; Outputs High, V_{I} = GND or V_{CC}		100	250		250	μΑ
I _{CCL}	Quiescent supply current	V_{CC} = 5.5V; Outputs Low, V_I = GND or V_{CC}		24	30		30	mA
I _{CCZ}		V_{CC} = 5.5V; Outputs 3-State; V_{I} = GND or V_{CC}		100	250		250	μА
Δl _{CC}	Additional supply current per input pin ²	V_{CC} = 5.5V; one input at 3.4V, other inputs at V_{CC} or GND		0.5	1.5		1.5	mA

NOTES:

1. Not more than one output should be tested at a time, and the duration of the test should not exceed one second.

2. This is the increase in supply current for each input at 3.4V.

AC CHARACTERISTICS

GND = 0V, t_R = t_F = 2.5ns, C_L = 50pF, R_L = 500 Ω

					LIMITS			
SYMBOL	PARAMETER	WAVEFORM	1	Γ _{amb} = +25° V _{CC} = +5.0\	C /	+8	= -40 to 5°C .0V ±0.5V	UNIT
			Min	Тур	Max	Min	Max	
f _{MAX}	Maximum clock frequency	1	125	350		125		ns
t _{PLH} t _{PHL}	Propagation delay CP to Qn	1	2.0 ¹ 2.4 ¹	3.3 3.6	4.2 ¹ 4.7 ¹	2.0 2.4	5.0 ¹ 5.1 ¹	ns
t _{PZH} t _{PZL}	Output enable time to High and Low level	3 4	1.0 2.6	3.1 3.9	4.2 4.9 ¹	1.0 2.6	5.0 5.5 ¹	ns
t _{PHZ} t _{PLZ}	Output disable time from High and Low level	3 4	1.8 ¹ 1.6 ¹	3.3 2.8	4.3 ¹ 3.6 ¹	1.8 ¹ 1.6 ¹	4.6 ¹ 4.1 ¹	ns

NOTE:

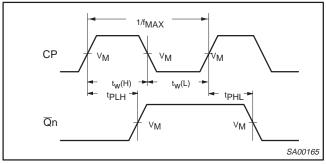
1. This datasheet limit may vary among suppliers.

³ This parameter is valid for any V_{CC} between 0V and 2.1V with a transition time of up to 10msec. For V_{CC} = 2.1V to V_{CC} = 5V \pm 10%, a transition time of up to 100 μ sec is permitted.

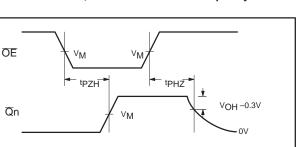
Octal D-type flip-flop, inverting (3-State)

74ABT534A

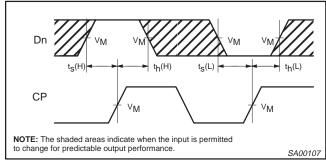
AC SETUP REQUIREMENTS

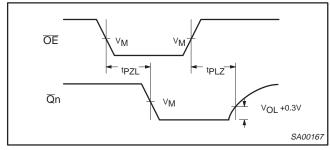

GND = 0V, $t_R = t_F$ = 2.5ns, C_L = 50pF, R_L = 500 $\!\Omega$

				LIMIT	rs	
SYMBOL	DL PARAMETER WAVEFO		T _{amb} =	: +25°C : +5.0V	T _{amb} = -40 to +85°C V _{CC} = +5.0V ±0.5V	UNIT
			Min	Тур	Min	
$t_{s}(H)$ $t_{s}(L)$	Setup time, High or Low Dn to CP	2	1.0 ¹ 1.0 ¹	0.4 0.3	1.0 ¹ 1.0 ¹	ns
t _h (H) t _h (L)	Hold time, High or Low Dn to CP	2	0.5 0.5	-0.3 -0.4	0.5 0.5	ns
t _w (H) t _w (L)	CP pulse width High or Low	1	1.5 ¹ 2.0 ¹	0.8 1.0	1.5 ¹ 2.0 ¹	ns


NOTE:

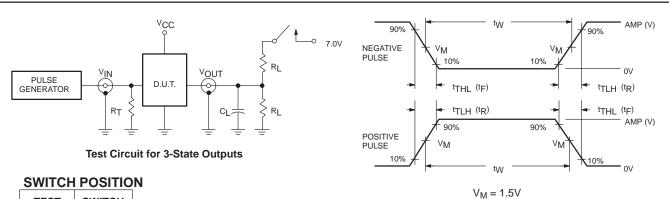
AC WAVEFORMS


 $V_{M} = 1.5V_{,} V_{IN} = GND \text{ to } 3.0V$


Waveform 1. Propagation Delay, Clock Input to Output, Clock Pulse Width, and Maximum Clock Frequency

Waveform 3. 3-State Output Enable Time to High Level and Output Disable Time from High Level

Waveform 2. Data Setup and Hold Times


Waveform 4. 3-State Output Enable Time to Low Level and Output Disable Time from Low Level

^{1.} This datasheet limit may vary among suppliers.

Octal D-type flip-flop, inverting (3-State)

74ABT534A

TEST CIRCUIT AND WAVEFORM

TEST	SWITCH
t _{PLZ}	closed
t _{PZL}	closed
All other	open

DEFINITIONS

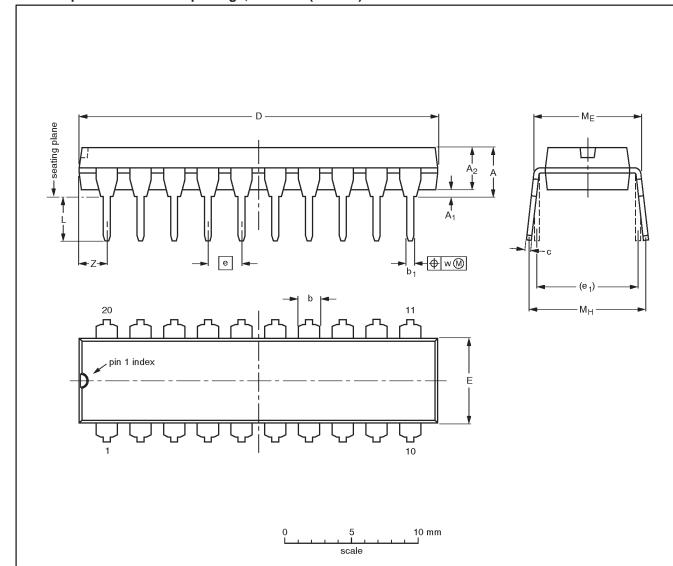
 R_L = Load resistor; see AC CHARACTERISTICS for value.

 $\begin{aligned} C_L = & \text{Load capacitance includes jig and probe capacitance;} \\ & \text{see AC CHARACTERISTICS for value.} \end{aligned}$

 $R_T = Termination resistance should be equal to <math>Z_{OUT}$ of pulse generators.

EA MILV	FAMILY Amplitude Rep. Rate 74ABT 3.0V 1MHz	EQUIRE							
FAMILI	Amplitude Rep. Rate t _W t _R t _F								
74ABT	3.0V	1MHz	500ns	2.5ns	2.5ns				

Input Pulse Definition


SA00012

Octal D-type flip-flop, inverting (3-State)

74ABT534A

DIP20: plastic dual in-line package; 20 leads (300 mil)

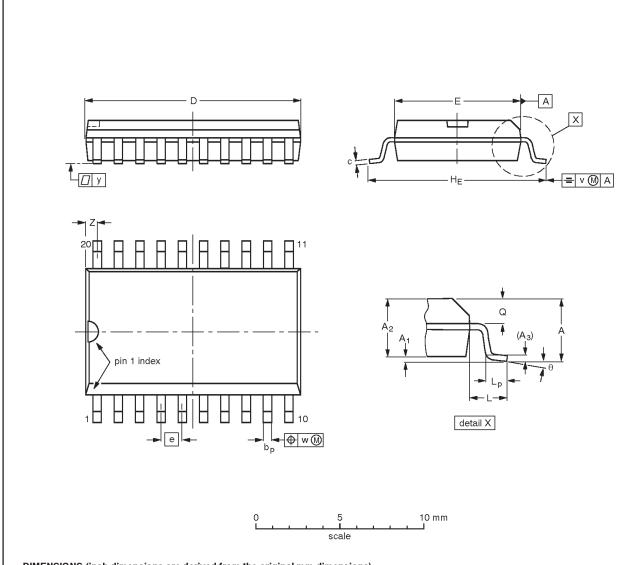
SOT146-1

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	A max.	A ₁ min.	A ₂ max.	b	b ₁	С	D ⁽¹⁾	E ⁽¹⁾	е	e ₁	L	ME	Мн	w	Z ⁽¹⁾ max.
mm	4.2	0.51	3.2	1.73 1.30	0.53 0.38	0.36 0.23	26.92 26.54	6.40 6.22	2.54	7.62	3.60 3.05	8.25 7.80	10.0 8.3	0.254	2.0
inches	0.17	0.020	0.13	0.068 0.051	0.021 0.015	0.014 0.009	1.060 1.045	0.25 0.24	0.10	0.30	0.14 0.12	0.32 0.31	0.39 0.33	0.01	0.078

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.


OUTLINE		EUROPEAN	ICCUE DATE				
VERSION	IEC	JEDEC	EIAJ		PROJECTION	ISSUE DATE	
SOT146-1			SC603			-92-11-17 95-05-24	

Octal D-type flip-flop, inverting (3-State)

74ABT534A

SO20: plastic small outline package; 20 leads; body width 7.5 mm

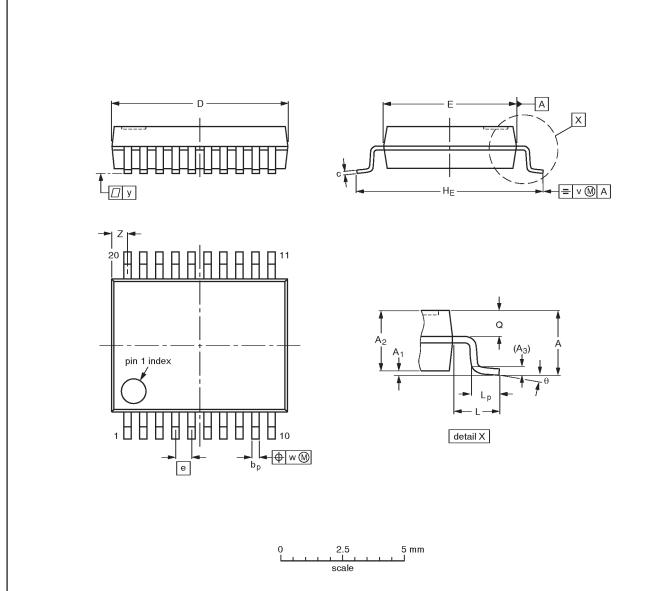
SOT163-1

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	A max.	Α1	A ₂	A ₃	bp	С	D ⁽¹⁾	E ⁽¹⁾	е	HE	L	Lp	Q	v	w	у	z ⁽¹⁾	θ
mm	2.65	0.30 0.10	2.45 2.25	0.25	0.49 0.36	0.32 0.23	13.0 12.6	7.6 7.4	1.27	10.65 10.00	1.4	1.1 0.4	1.1 1.0	0.25	0.25	0.1	0.9 0.4	8°
inches	0.10	0.012 0.004	0.096 0.089	0.01	0.019 0.014	0.013 0.009	0.51 0.49	0.30 0.29	0.050	0.42 0.39	0.055	0.043 0.016		0.01	0.01	0.004	0.035 0.016	0°

Note

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.


OUTLINE		EUROPEAN	ISSUE DATE			
VERSION	IEC	JEDEC	EIAJ	PROJECTION	ISSUE DATE	
SOT163-1	075E04	MS-013AC			-92-11-17 95-01-24	

Octal D-type flip-flop, inverting (3-State)

74ABT534A

SSOP20: plastic shrink small outline package; 20 leads; body width 5.3 mm

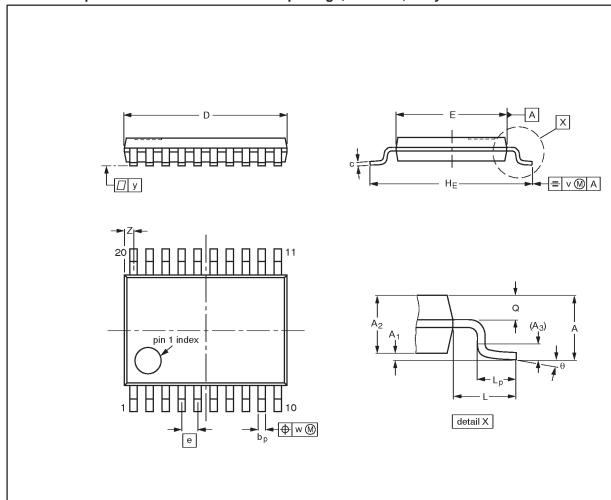
SOT339-1

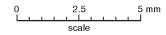
DIMENSIONS (mm are the original dimensions)

UNIT	A max.	Α1	A ₂	A ₃	bр	С	D ⁽¹⁾	E ⁽¹⁾	е	HE	L	Lp	Q	v	w	у	Z ⁽¹⁾	θ
mm	2.0	0.21 0.05	1.80 1.65	0.25	0.38 0.25	0.20 0.09	7.4 7.0	5.4 5.2	0.65	7.9 7.6	1.25	1.03 0.63	0.9 0.7	0.2	0.13	0.1	0.9 0.5	8° 0°

Note

1. Plastic or metal protrusions of 0.20 mm maximum per side are not included.


OUTLINE		EUROPEAN	ISSUE DATE			
VERSION	IEC	JEDEC	EIAJ	PROJECTION	ISSUE DATE	
SOT339-1		MO-150AE			93-09-08 95-02-04	


Octal D-type flip-flop, inverting (3-State)

74ABT534A

TSSOP20: plastic thin shrink small outline package; 20 leads; body width 4.4 mm

SOT360-1

DIMENSIONS (mm are the original dimensions)

UNIT	A max.	Α1	A ₂	A ₃	bр	С	D ⁽¹⁾	E ⁽²⁾	е	HE	L	Lp	Q	v	w	у	Z ⁽¹⁾	θ
mm	1.10	0.15 0.05	0.95 0.80	0.25	0.30 0.19	0.2 0.1	6.6 6.4	4.5 4.3	0.65	6.6 6.2	1.0	0.75 0.50	0.4 0.3	0.2	0.13	0.1	0.5 0.2	8° 0°

Notes

- 1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
- 2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.

OUTLINE		EUROPEAN	ICCUE DATE				
VERSION	IEC	JEDEC	EIAJ		PROJECTION	ISSUE DATE	
SOT360-1		MO-153AC				-93-06-16 95-02-04	

Octal D-type flip-flop, inverting (3-State)

74ABT534A

	DEFINITIONS								
Data Sheet Identification	Product Status	Definition							
Objective Specification	Formative or in Design	This data sheet contains the design target or goal specifications for product development. Specifications may change in any manner without notice.							
Preliminary Specification	Preproduction Product	This data sheet contains preliminary data, and supplementary data will be published at a later date. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.							
Product Specification	Full Production	This data sheet contains Final Specifications. Philips Semiconductors reserves the right to make changes at any time without notice, in order to improve design and supply the best possible product.							

Philips Semiconductors and Philips Electronics North America Corporation reserve the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified. Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

LIFE SUPPORT APPLICATIONS

Philips Semiconductors and Philips Electronics North America Corporation Products are not designed for use in life support appliances, devices, or systems where malfunction of a Philips Semiconductors and Philips Electronics North America Corporation Product can reasonably be expected to result in a personal injury. Philips Semiconductors and Philips Electronics North America Corporation customers using or selling Philips Semiconductors and Philips Electronics North America Corporation Products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors and Philips Electronics North America Corporation for any damages resulting from such improper use or sale.

Philips Semiconductors 811 East Arques Avenue P.O. Box 3409 Sunnyvale, California 94088–3409 Telephone 800-234-7381 © Copyright Philips Electronics North America Corporation 1997 All rights reserved. Printed in U.S.A.

Let's make things better.

