

3.3V CMOS OCTAL EDGE-TRIGGERED D-TYPE FLIPFLOP WITH 3-STATE OUTPUTS AND 5 VOLT TOLERANT I/O

IDT74LVC374A

FEATURES:

- 0.5 MICRON CMOS Technology
- ESD > 2000V per MIL-STD-883, Method 3015; > 200V using machine model (C = 200pF, R = 0)
- Vcc = 3.3V ± 0.3V, Normal Range
- Vcc = 2.7V to 3.6V, Extended Range
- CMOS power levels (0.4

 W typ. static)
- · Rail-to-rail output swing for increased noise margin
- All inputs, outputs, and I/O are 5V tolerant
- · Supports hot insertion
- Available in SOIC, SSOP, QSOP, and TSSOP packages

DRIVE FEATURES:

- · High Output Drivers: ±24mA
- · Reduced system switching noise

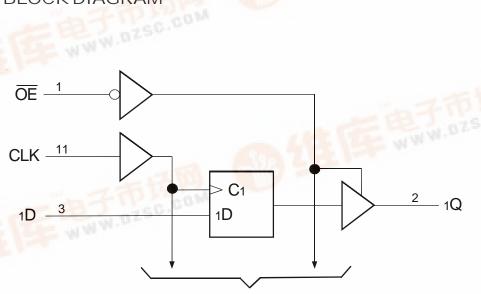
APPLICATIONS:

- 5V and 3.3V mixed voltage systems
- Data communication and telecommunication systems

DESCRIPTION:

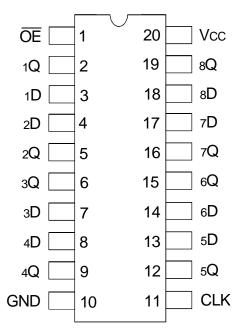
The LVC374A octal edge triggered D-type flip-flop is built using advanced dual metal CMOS technology. This device features 3-state outputs designed specifically for driving highly capacitive or relatively low-impedance loads. The LVC374A device is particularly suitable for implementing buffer registers, input-output (I/O) ports, bidirectional bus drivers, and working registers.

On the positive transition of the clock (CLK) input, the Q outputs are set to the logic levels set up at the data (D) inputs.


A buffered output-enable (\overline{OE}) input can be used to place the eight outputs in either a normal logic state (high or low logic levels) or a high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and increased drive provide the capability to drive bus lines without interface or pullup components. \overline{OE} does not affect internal operations of the latch. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.

The LVC374A has been designed with a ± 24 mA output driver. This driver is capable of driving a moderate to heavy load while maintaining speed performance.

To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to Vcc through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.


Inputs can be driven from either 3.3V or 5V devices. This feature allows the use of this device as a translator in a mixed 3.3V/5V system environment.

FUNCTIONAL BLOCK DIAGRAM

TO SEVEN OTHER CHANNELS

PIN CONFIGURATION

SOIC/ SSOP/ QSOP/ TSSOP TOP VIEW

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Description	Max	Unit
VTERM	Terminal Voltage with Respect to GND	-0.5 to +6.5	V
Tstg	Storage Temperature	-65 to +150	°C
lout	DC Output Current	-50 to +50	mA
lik lok	Continuous Clamp Current, VI < 0 or Vo < 0	- 50	mA
lcc Iss	Continuous Current through each Vcc or GND	±100	mA

NOTE:

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

CAPACITANCE (TA = +25°C, F = 1.0MHz)

Symbol	Parameter ⁽¹⁾	Conditions	Тур.	Max.	Unit
CIN	Input Capacitance	VIN = 0V	4.5	6	pF
Соит	Output Capacitance	Vout = 0V	5.5	8	pF
CI/O	I/O Port Capacitance	VIN = 0V	6.5	8	pF

NOTE:

1. As applicable to the device type.

PIN DESCRIPTION

Pin Names	Description	
ŌĒ	Output Enable Input (Active LOW)	
CLK	Clock Input	
хD	Data Inputs	
хО	Data Outputs	

FUNCTION TABLE (EACH FLIP-FLOP)(1)

	Inputs				
хD	CLK	ŌĒ	χQ		
Н	↑	L	Н		
L	↑	L	L		
X	H or L	L	Q ⁽²⁾		
X	Х	Н	Z		

NOTES:

- 1. H = HIGH Voltage Level
 - X = Don't Care
 - L = LOW Voltage Level
 - Z = High-Impedance
- ↑ = LOW-to-HIGH Transition
 2. Output level before the indicated steady-state input conditions were established.

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified:

Operating Condition: $TA = -40^{\circ}C$ to $+85^{\circ}C$

Symbol	Parameter	Tes	st Conditions	Min.	Typ. ⁽¹⁾	Max.	Unit
VIH	Input HIGH Voltage Level	Vcc = 2.3V to 2.7V		1.7	_	_	V
		Vcc = 2.7V to 3.6V		2	_	_	
VIL	Input LOW Voltage Level	Vcc = 2.3V to 2.7V		_	_	0.7	V
		Vcc = 2.7V to 3.6V		_	_	0.8	1
Іін	Input Leakage Current	Vcc = 3.6V	VI = 0 to 5.5V	_	_	±5	μA
lıl							
lozh	High Impedance Output Current	Vcc = 3.6V	Vo = 0 to 5.5V	_	_	±10	μA
lozl	(3-State Output pins)						
loff	Input/Output Power Off Leakage	$VCC = 0V$, $VIN or Vo \le 5.$	5V	_	_	±50	μA
Vik	Clamp Diode Voltage	VCC = 2.3V, IIN = -18mA		_	-0.7	-1.2	V
VH	Input Hysteresis	Vcc = 3.3V		_	100	_	mV
ICCL	Quiescent Power Supply Current	Vcc = 3.6V	VIN = GND or VCC	_	_	10	μA
Iссн Iссz			$3.6 \le VIN \le 5.5V^{(2)}$	+	 _	10	
Δlcc	Quiescent Power Supply Current Variation	One input at Vcc - 0.6V, other inputs at Vcc or GND		_	_	500	μΑ

NOTES:

- 1. Typical values are at Vcc = 3.3V, +25°C ambient.
- 2. This applies in the disabled state only.

OUTPUT DRIVE CHARACTERISTICS

Symbol	Parameter	Test Conditions ⁽¹⁾		Min.	Max.	Unit
Voн	Output HIGH Voltage	Vcc = 2.3V to 3.6V	IOH = - 0.1mA	Vcc-0.2	_	V
		Vcc = 2.3V	IOH = -6mA	2	_	
		Vcc = 2.3V	Iон = - 12mA	1.7	_	
		Vcc = 2.7V		2.2	_	
		Vcc = 3V		2.4	_	
		Vcc = 3V	IOH = - 24mA	2.2	_	
Vol	Output LOW Voltage	Vcc = 2.3V to 3.6V	IoL = 0.1mA	_	0.2	V
		Vcc = 2.3V	IoL = 6mA	_	0.4	
			IoL = 12mA	_	0.7	
		Vcc = 2.7V	IoL = 12mA	_	0.4	
		VCC = 3V	Iol = 24mA	_	0.55	

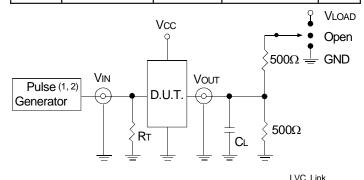
NOTE:

^{1.} VIH and VIL must be within the min. or max. range shown in the DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE table for the appropriate Vcc range. TA = - 40°C to + 85°C.

OPERATING CHARACTERISTICS, Vcc = 3.3V ± 0.3V, Ta = 25°C

Symbol	Parameter	Test Conditions	Typical	Unit
CPD	Power Dissipation Capacitance per Flip-Flop Outputs enabled	CL = 0pF, f = 10Mhz	54.5	pF
CPD	Power Dissipation Capacitance per Flip-Flop Outputs disabled		13.5	

SWITCHING CHARACTERISTICS(1)


		Vcc =	: 2.7V	Vcc = 3.3	V ± 0.3V	
Symbol	Parameter	Min.	Max.	Min.	Max.	Unit
fMAX		80	_	100	_	MHz
tplH	Propagation Delay	_	8.1	1.5	7	ns
tphL tphL	CLK to xQ					
tpzh	Output Enable Time	_	8.5	1.5	7.5	ns
tpzL	OE to xQ					
tphz	Output Disable Time	_	7.1	1.5	6.5	ns
tplz	OE to xQ					
tw	Pulse Duration, CLK HIGH or LOW	3.3	_	3.3	_	ns
tsu	Set-up Time, data before CLK↑	2	_	2	_	ns
tH	Hold Time, data after CLK↑	1.5	_	1.5	_	ns
tsk(o)	Output Skew ⁽²⁾	_	_	_	1	ns

NOTES:

See TEST CIRCUITS AND WAVEFORMS. TA = - 40°C to + 85°C.
 Skew between any two outputs of the same package and switching in the same direction.

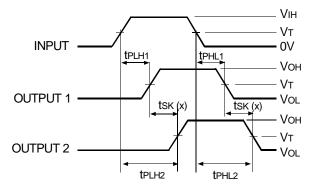
TEST CIRCUITS AND WAVEFORMS TEST CONDITIONS

Symbol	$Vcc^{(1)} = 3.3V \pm 0.3V$	Vcc ⁽¹⁾ = 2.7V	Vcc ⁽²⁾ =2.5V±0.2V	Unit
VLOAD	6	6	2 x Vcc	V
ViH	2.7	2.7	Vcc	V
VT	1.5	1.5	Vcc / 2	V
VLZ	300	300	150	mV
VHZ	300	300	150	mV
CL	50	50	30	pF

Test Circuit for All Outputs

DEFINITIONS:

CL = Load capacitance: includes jig and probe capacitance.


RT = Termination resistance: should be equal to Zout of the Pulse Generator.

NOTES:

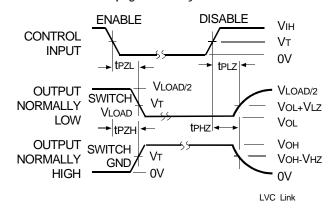
- 1. Pulse Generator for All Pulses: Rate \leq 10MHz; tF \leq 2.5ns; tR \leq 2.5ns.
- 2. Pulse Generator for All Pulses: Rate \leq 10MHz; tF \leq 2ns; tR \leq 2ns.

SWITCH POSITION

Test	Switch
Open Drain Disable Low Enable Low	Vload
Disable High Enable High	GND
All Other Tests	Open

tSK(x) = |tPLH2 - tPLH1| or |tPHL2 - tPHL1|

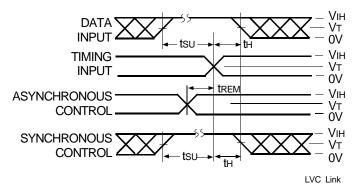
Output Skew - tsk(x)

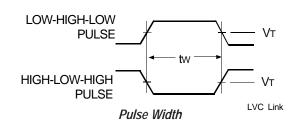

LVC Link

NOTES:

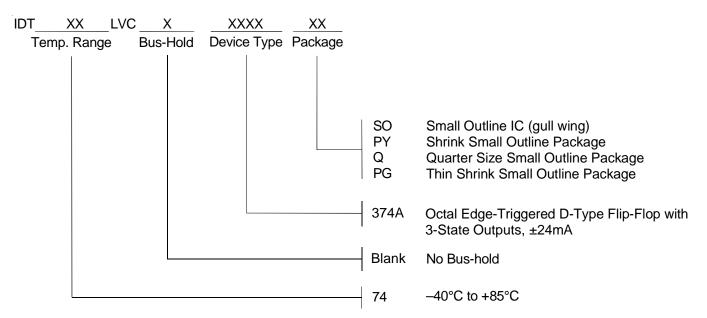
- . For tsκ(o) OUTPUT1 and OUTPUT2 are any two outputs.
- For tsk(b) OUTPUT1 and OUTPUT2 are in the same bank.

VIH SAME PHASE VT INPUT TRANSITION 0V **t**PLH **t**PHL VOH OUTPUT VT VOL **t**PLH **t**PHL VIH OPPOSITE PHASE VT INPUT TRANSITION 0V LVC Link


Propagation Delay


Enable and Disable Times

NOTE:


1. Diagram shown for input Control Enable-LOW and input Control Disable-HIGH.

Set-up, Hold, and Release Times

ORDERING INFORMATION

