FUJITSU SEMICONDUCTOR DATA SHEET

DS07-13701-7E

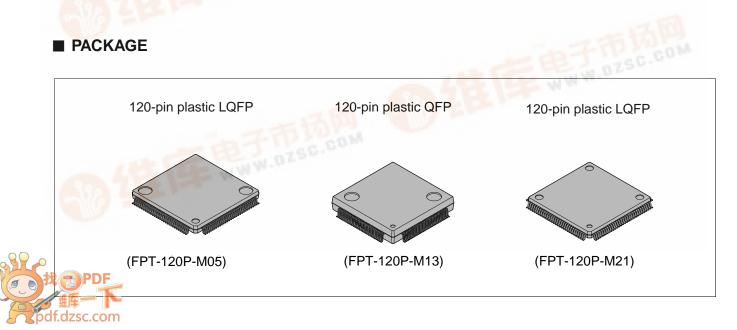
邦,专业PCB打样工厂,24小时加急出货

16-bit Proprietary Microcontroller

CMOS

F²MC-16LX MB90570 Series

MB90573/574/574C/F574/F574A/V570/V570A


DESCRIPTION

The MB90570 series is a general-purpose 16-bit microcontroller developed and designed by Fujitsu for process control applications in consumer products that require high-speed real time processing. It contains an I²C^{*2} bus interface that allows inter-equipment communication to be implemented readily. This product is well adapted to car audio equipment, VTR systems, and other equipment and systems.

The instruction set of F²MC-16LX CPU core inherits AT architecture of F²MC^{*1} family with additional instruction sets for high-level languages, extended addressing mode, enhanced multiplication/division instructions, and enhanced bit manipulation instructions. The microcontroller has a 32-bit accumulator for processing long word data.

The MB90570 series has peripheral resources of an 8/10-bit A/D converter, an 8-bit D/A converter, UART (SCI), an extended I/O serial interface, an 8/16-bit up/down counter/timer, an 8/16-bit PPG timer, I/O timer (a 16-bit free run timer, an input capture (ICU), an output compare (OCU)).

- *1: F²MC stands for FUJITSU Flexible Microcontroller.
- *2: Purchase of Fujitsu I²C components conveys a license under the Philips I²C Patent Rights to use these components in an I²C system, provided that the system conforms to the I²C Standard Specification as defined by Philips.

■ FEATURES

Clock

Embedded PLL clock multiplication circuit
Operating clock (PLL clock) can be selected from 1/2 to 4× oscillation (at oscillation of 4 MHz, 4 MHz to 16 MHz).
Minimum instruction execution time: 62.5 ns (at oscillation of 4 MHz, 4× PLL clock, operation at Vcc of 5.0 V)
Maximum memory space
16 Mbytes

- Instruction set optimized for controller applications
 Rich data types (bit, byte, word, long word)
 Rich addressing mode (23 types)
 Enhanced signed multiplication/division instruction and RETI instruction functions
 Enhanced precision calculation realized by the 32-bit accumulator
- Instruction set designed for high level language (C) and multi-task operations Adoption of system stack pointer Enhanced pointer indirect instructions Barrel shift instructions
- Program patch function (for two address pointers)
- Enhanced execution speed 4-byte instruction queue
- Enhanced interrupt function 8 levels, 34 factors
- Automatic data transmission function independent of CPU operation Extended intelligent I/O service function (EI²OS): Up to 16 channels
- Embedded ROM size and types Mask ROM: 128 kbytes/256 kbytes Flash ROM: 256 kbytes Embedded RAM size: 6 kbytes/10 kbytes (mask ROM) 10 kbytes (flash memory)
 - 10 kbytes (evaluation device)
- Low-power consumption (standby) mode
 Sleep mode (mode in which CPU operating clock is stopped)
 Stop mode (mode in which oscillation is stopped)
 CPU intermittent operation mode
 Hardware standby mode
- Process
 - CMOS technology
- I/O port

General-purpose I/O ports (CMOS): 63 ports General-purpose I/O ports (with pull-up resistors): 24 ports General-purpose I/O ports (open-drain): 10 ports Total: 97 ports

 (Continued) Timer Timebase timer/watchdog timer: 1 channel 8/16-bit PPG timer: 8-bit × 2 channels or 16-bit × 1 channel 8/16-bit up/down counter/timer: 1 channel (8-bit × 2 channels)
 16-bit I/O timer
16-bit free run timer: 1 channel
Input capture (ICU): Generates an interrupt request by latching a 16-bit free run timer counter value upon detection of an edge input to the pin.
Output compare (OCU): Generates an interrupt request and reverse the output level upon detection of a match between the 16-bit free run timer counter value and the compare setting value.
Extended I/O serial interface: 3 channels
 I²C interface (1 channel)
Serial I/O port for supporting Inter IC BUS
• UARTO (SCI), UART1 (SCI)
With full-duplex double buffer
Clock asynchronized or clock synchronized transmission can be selectively used.DTP/external interrupt circuit (8 channels)
A module for starting extended intelligent I/O service (EI ² OS) and generating an external interrupt triggered by an external input.
Delayed interrupt generation module
Generates an interrupt request for switching tasks.
 8/10-bit A/D converter (8 channels)
8/10-bit resolution
Starting by an external trigger input.
Conversion time: 26.3 µs
 8-bit D/A converter (based on the R-2R system)
8-bit resolution: 2 channels (independent)
Setup time: 12.5 μs

- Clock timer: 1 channel
- Chip select output (8 channels) An active level can be set.
- Clock output function

■ PRODUCT LINEUP

	Part number	MB90573	MB90574/C	MB90F574/A	MB90V570/A				
ltem									
Classification		Mask ROM	A products	Flash ROM products	Evaluation product				
ROM size		128 kbytes	256	kbytes	None				
RAM size		6 kbytes		10 kbytes					
CPU function	s	The number of instructions: 340 Instruction bit length: 8 bits, 16 bits Instruction length: 1 byte to 7 bytes Data bit length: 1 bit, 8 bits, 16 bits Minimum execution time: 62.5 ns (at machine clock of 16 MHz) Interrupt processing time: 1.5 µs (at machine clock of 16 MHz, minimum value)							
Ports		Gen	eral-purpose I/O port al-purpose I/O ports	orts (CMOS output): 6 s (with pull-up resistor (N-ch open-drain outp al: 97): 24				
UART0 (SCI),	, UART1 (SCI)	Clock synchronized transmission (62.5 kbps to 1 Mbps) Clock asynchronized transmission (1202 bps to 9615 bps) Transmission can be performed by bi-directional serial transmission or by master/slave connection.							
8/10-bit A/D c	converter	Resolution: 8/10-bit Number of inputs: 8 One-shot conversion mode (converts selected channel only once) Scan conversion mode (converts two or more successive channels and can program up to 8 channels.) Continuous conversion mode (converts selected channel continuously) Stop conversion mode (converts selected channel and stop operation repeatedly)							
8/16-bit PPG	timer	Number of channels: 1 (or 8-bit \times 2 channels) PPG operation of 8-bit or 16-bit A pulse wave of given intervals and given duty ratios can be output. Pulse interval: 62.5 ns to 1 μ s (at oscillation of 4 MHz, machine clock of 16 MHz)							
8/16-bit up/do timer	own counter/	Number of channels: 1 (or 8-bit × 2 channels) Event input: 6 channels 8-bit up/down counter/timer used: 2 channels 8-bit re-load/compare function supported: 1 channel							
	16-bit free run timer	Number of channel: 1 Overflow interrupts							
16-bit I/O timer	Output compare (OCU)	Pin i	ister						
	Input capture (ICU)	Rewriting a reg		channels: 2 n input (rising, falling,	or both edges)				

(Continued)

Part number Item	MB90573	MB90574/C	MB90F574/A	MB90V570/A							
DTP/external interrupt circuit	Number of inputs: 8 Started by a rising edge, a falling edge, an "H" level input, or an "L" level inpu External interrupt circuit or extended intelligent I/O service (EI ² OS) can be use										
Delayed interrupt generation module	An interrupt generation module for switching tasks used in real time operating systems.										
Extended I/O serial interface	Clock synchronized transmission (3125 bps to 1 Mbps) LSB first/MSB first										
I ² C interface	Serial I/O port for supporting Inter IC BUS										
Timebase timer	18-bit counter Interrupt interval: 1.024 ms, 4.096 ms, 16.384 ms, 131.072 ms (at oscillation of 4 MHz)										
8-bit D/A converter	8-bit resolution Number of channels: 2 channels Based on the R-2R system										
Watchdog timer	Reset generation interval: 3.58 ms, 14.33 ms, 57.23 ms, 458.75 ms (at oscillation of 4 MHz, minimum value)										
Low-power consumption (standby) mode	Sleep/stop/CPU intermittent operation/clock timer/hardware standby										
Process		CM	IOS								
Power supply voltage for operation*	4.5 V to 5.5 V										

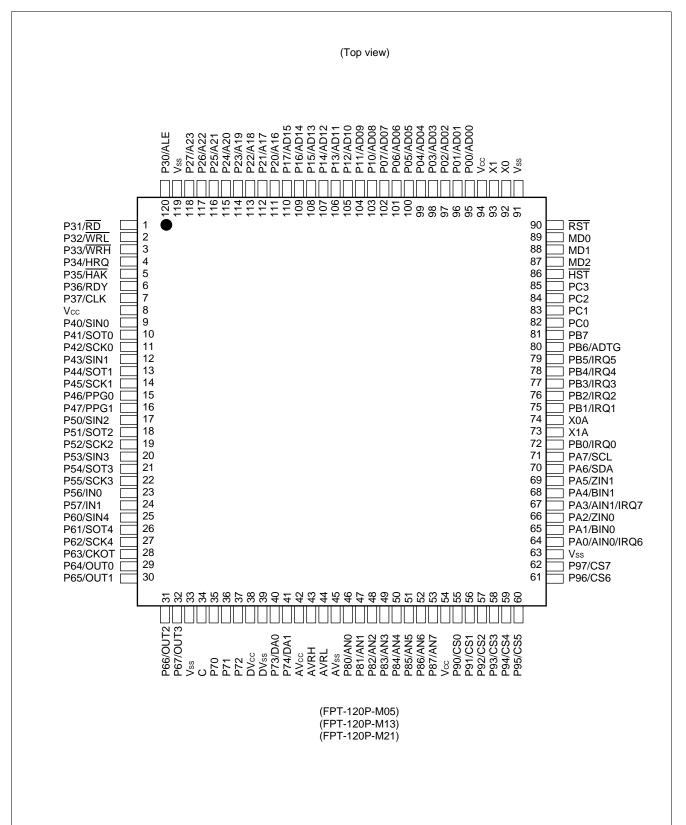
* : Varies with conditions such as the operating frequency. (See section "■ Electrical Characteristics.") Assurance for the MB90V570/A is given only for operation with a tool at a power voltage of 4.5 V to 5.5 V, an operating temperature of 0 to +25°C, and an operating frequency of 1 MHz to 16 MHz.

■ PACKAGE AND CORRESPONDING PRODUCTS

Package	MB90573	MB90574	MB90F574/A	MB90574C
FPT-120P-M05	0	0	0	×
FPT-120P-M13	0	0	0	0
FPT-120P-M21	×	×	0	0

 \odot : Available $\times:$ Not available

Note: For more information about each package, see section "■ Package Dimensions."


DIFFERENCES AMONG PRODUCTS

Memory Size

In evaluation with an evaluation product, note the difference between the evaluation product and the product actually used. The following items must be taken into consideration.

- The MB90V570/A does not have an internal ROM, however, operations equivalent to chips with an internal ROM can be evaluated by using a dedicated development tool, enabling selection of ROM size by settings of the development tool.
- In the MB90V570/A, images from FF4000H to FFFFFFH are mapped to bank 00, and FE0000H to FF3FFFH to mapped to bank FE and FF only. (This setting can be changed by configuring the development tool.)
- In the MB90F574/574/573/F574A/574C, images from FF4000 $_{\rm H}$ to FFFFFH are mapped to bank 00, and FF0000 $_{\rm H}$ to FF3FFFH to bank FF only.
- The products designated with /A or /C are different from those without /A or /C in that they are DTP/externallyinterrupted types which return from standby mode at the ch.0 to ch.1 edge request.

PIN ASSIGNMENT

■ PIN DESCRIPTION

Pin no.			
LQFP-120 *1 QFP-120 *2	Pin name	Circuit type	Function
92,93	X0,X1	А	High speed oscillator input pins
74,73	X0A,X1A	В	Low speed oscillator input pins
89 to 87	MD0 to MD2	С	These are input pins used to designate the operating mode. They should be connected directly to Vcc or Vss.
90	RST	С	Reset input pin
86	HST	С	Hardware standby input pin
95 to 102	P00 to P07	D	In single chip mode, these are general purpose I/O pins. When set for input, they can be set by the pull-up resistance setting register (RDR0). When set for output, this setting will be invalid.
	AD00 to AD07		In external bus mode, these pins function as address low output/data low I/O pins.
103 to 110	P10 to P17	D	In single chip mode, these are general purpose I/O pins. When set for input, they can be set by the pull-up resistance setting register (RDR1). When set for output, the setting will be invalid.
	AD08 to AD15		In external bus mode, these pins function as address middle output/data high I/O pins.
111 to 118	P20 to P27	E	In single chip mode this is a general-purpose I/O port.
	A16 to A23		In external bus mode, these pins function as address high output pins.
120	P30	Е	In single chip mode this is a general-purpose I/O port.
	ALE		In external bus mode, this pin functions as the address latch enable signal output pin.
1	P31	E	In single chip mode this is a general-purpose I/O port.
	RD		In external bus mode, this pin functions as the read strobe signal output pin.
2	P32	E	In single chip mode this is a general-purpose I/O port.
	WRL		In external bus mode, this pin functions as the data bus lower 8-bit write strobe signal output pin.
3	P33	E	In single chip mode this is a general-purpose I/O port.
	WRH		In external bus mode, this pin functions as the data bus upper 8-bit write strobe signal output pin.
4	P34	E	In single chip mode this is a general-purpose I/O port.
	HRQ		In external bus mode, this pin functions as the hold request signal input pin.
5	P35	Е	In single chip mode this is a general-purpose I/O port.
	HAK		In external bus mode, this pin functions as the hold acknowledge signal output pin.
6	P36	Е	In single chip mode this is a general-purpose I/O port.
	RDY		In external bus mode, this pin functions as the ready signal input pin.

Pin no.								
LQFP-120 *1 QFP-120 *2	Pin name	Circuit type	Function					
7	P37	E	In single chip mode this is a general-purpose I/O port.					
	CLK		In external bus mode, this pin functions as the clock (CLK) signal output pin.					
9	P40	F	In single chip mode this is a general-purpose I/O port. It can be set to open drain by the ODR4 register.					
	SINO	-	This is also the UART ch.0 serial data input pin. While UART ch.0 is in input operation, this input signal is in continuous use, and therefore the output function should only be used when needed. If shared by output from other functions, this pin should be output disabled during SIN operation.					
10	P41	F	In single chip mode this is a general-purpose I/O port. It can be set to oper drain by the ODR4 register.					
	SOT0		This is also the UART ch.0 serial data output pin. This function is valid when UART ch.0 is enabled for data output.					
11	P42	F	In single chip mode this is a general-purpose I/O port. It can be set to oper drain by the ODR4 register.					
	SCK0		This is also the UART ch.0 serial clock I/O pin. This function is valid wher UART ch.0 is enabled for clock output.					
12	P43	F	In single chip mode this is a general-purpose I/O port. It can be set to open-drain by the ODR4 register.					
	SIN1		This is also the UART ch.1 serial data input pin. While UART ch.1 is in input operation, this input signal is in continuous use, and therefore the output function should only be used when needed. If shared by output from other functions, this pin should be output disabled during SIN operation.					
13	P44	F	In single chip mode this is a general-purpose I/O port. It can be set to opendrain by the ODR4 register.					
	SOT1		This is also the UART ch.1 serial data output pin. This function is valid when UART ch.1 is enabled for data output.					
14	P45	F	In single chip mode this is a general-purpose I/O port. It can be set to open drain by the ODR4 register.					
	SCK1		This is also the UART ch.1 serial clock I/O pin. This function is valid wher UART ch.1 is enabled for clock output.					
15,16	P46,P47	F	In single chip mode this is a general-purpose I/O port. It can be set to open drain by the ODR4 register.					
	PPG0,PPG1		These are also the PPG0, 1 output pins. This function is valid when PPG0 1 output is enabled.					
17	P50	E	In single chip mode this is a general-purpose I/O port.					
	SIN2		This is also the I/O serial ch.0 data input pin. During serial data input, this input signal is in continuous use, and therefore the output function should only be used when needed.					

*1: FPT-120P-M05

*2: FPT-120P-M13,FPT-120P-M21

Pin no.								
LQFP-120 *1 QFP-120 *2	Pin name	Circuit type	Function					
18	P51	E	In single chip mode this is a general-purpose I/O port.					
	SOT2		This is also the I/O serial ch.0 data output pin. This function is valid when serial ch.0 is enabled for serial data output.					
19	P52	E	In single chip mode this is a general-purpose I/O port.					
	SCK2	-	This is also the I/O serial ch.0 clock I/O pin. This function is valid when serial ch.0 is enabled for serial data output.					
20	P53	E	In single chip mode this is a general-purpose I/O port.					
	SIN3	_	This is also the I/O serial ch.1 data input pin. During serial data input, this input signal is in continuous use, and therefore the output function should only be used when needed.					
21	P54	E	In single chip mode this is a general-purpose I/O port.					
	SOT3	_	This is also the I/O serial ch.1 data output pin. This function is valid when serial ch.1 is enabled for serial data output.					
22	22 P55		P55	P55	P55	E	In single chip mode this is a general-purpose I/O port.	
	SCK3		This is also the I/O serial ch.1 clock I/O pin. This function is valid when serial ch.1 is enabled for serial data output.					
23,24	P56,P57	E	In single chip mode this is a general-purpose I/O port.					
INO,IN1		_	These are also the input capture ch.0/1 trigger input pins. During input capture signal input on ch.0/1 this function is in continuous use, and therefore the output function should only be used when needed.					
25	P60	F	In single chip mode this is a general-purpose I/O port. When set for input it can be set by the pull-up resistance register (RDR6). When set for output this setting will be invalid.					
	SIN4	-	This is also the I/O serial ch.2 data input pin. During serial data input this function is in continuous use, and therefore the output function should only be used when needed.					
26	P61	F	In single chip mode this is a general-purpose I/O port. When set for input it can be set by the pull-up resistance register (RDR6). When set for output this setting will be invalid.					
	SOT4	-	This is also the I/O serial ch.2 data output pin. This function is valid when serial ch.2 is enabled for serial data output.					
27	P62	F	In single chip mode this is a general-purpose I/O port. When set for input it can be set by the pull-up resistance register (RDR6). When set for output this setting will be invalid.					
	SCK4		This is also the I/O serial ch.2 serial clock I/O pin. This function is valid when serial ch.2 is enabled for serial data output.					
28	P63	F	In single chip mode this is a general-purpose I/O port. When set for input it can be set by the pull-up resistance register (RDR6). When set for output this setting will be invalid.					
	СКОТ		This is also the clock monitor output pin. This function is valid when clock monitor output is enabled.					

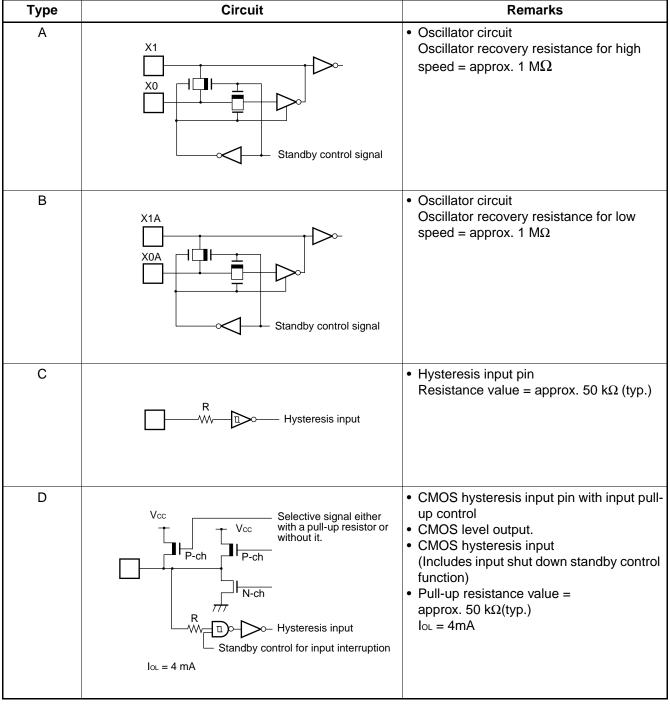
*1: FPT-120P-M05

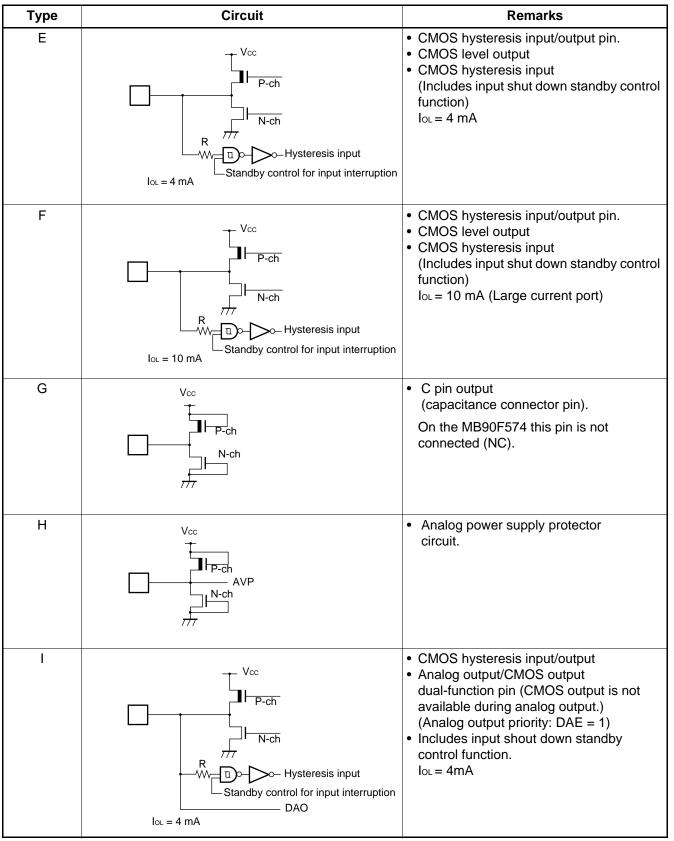
*2: FPT-120P-M13,FPT-120P-M21

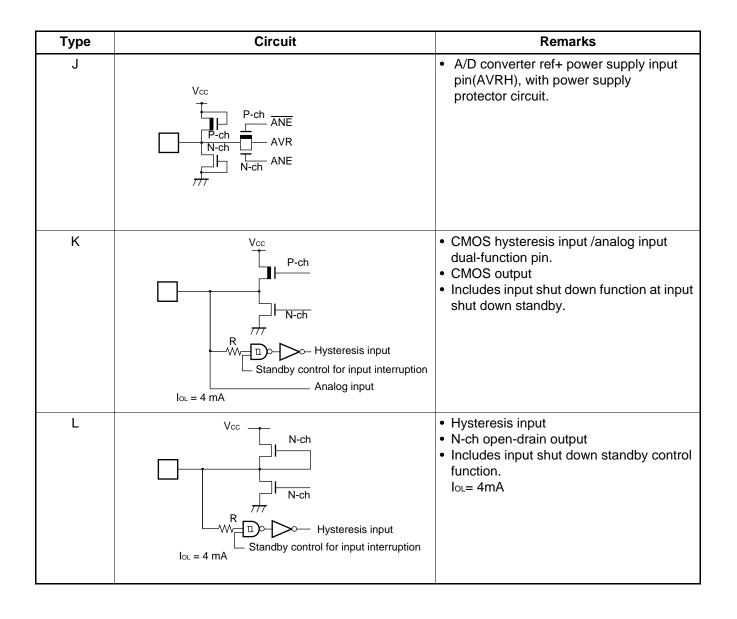
Pin no.								
LQFP-120 *1 QFP-120 *2	Pin name	Circuit type	Function					
29 to 32	P64 to P67	F	In single chip mode these are general-purpose I/O ports. When set for input they can be set by the pull-up resistance register (RDR6). When set for output this setting will be invalid.					
	OUT0 to OUT3		These are also the output compare ch.0 to ch.3 event output pins. This function is valid when the respective channel(s) are enabled for output.					
35 to 37	P70 to P72	E	These are general purpose I/O ports.					
40,41	P73,P74	I	These are general purpose I/O ports.					
	DA0,DA1	-	These are also the D/A converter ch.0,1 analog signal output pins.					
46 to 53	P80 to P87	К	These are general purpose I/O ports.					
	AN0 to AN7		These are also A/D converter analog input pins. This function is valid when analog input is enabled.					
55 to 62	P90 to P97	E	These are general purpose I/O ports.					
	CS0 to CS7		These are also chip select signal output pins. This function is valid when chip select signal output is enabled.					
34	С	G	This is the power supply stabilization capacitor pin. It should be connected externally to an 0.1 μ F ceramic capacitor. Note that this is not required on the FLASH model (MB90F574/A) and MB90574C.					
64	PA0	E	This is a general purpose I/O port.					
	AINO		This pin is also used as count clock A input for 8/16-bit up-down counter ch.0.					
	IRQ6	-	This pin can also be used as interrupt request input ch. 6.					
65	PA1	E	This is a general purpose I/O port.					
	BIN0		This pin is also used as count clock B input for 8/16-bit up-down counter ch.0.					
66	PA2	E	This is a general purpose I/O port.					
	ZINO		This pin is also used as count clock Z input for 8/16-bit up-down counter ch.0.					
67	PA3	E	This is a general purpose I/O port.					
	AIN1		This pin is also used as count clock A input for 8/16-bit up-down counter ch.1.					
	IRQ7	-	This pin can also be used as interrupt request input ch.7.					
68	PA4	E	This is a general purpose I/O port.					
	BIN1	1	This pin is also used as count clock B input for 8/16-bit up-down counter ch.1.					
69	PA5	E	This is a general purpose I/O port.					
	ZIN1		This pin is also used as count clock Z input for 8/16-bit up-down counter ch.1.					

*1: FPT-120P-M05

*2: FPT-120P-M13,FPT-120P-M21


(Continued)


Pin no.							
LQFP-120 *1 QFP-120 *2	Pin name	Circuit type	Function				
70	PA6	L	This is a general purpose I/O port.				
	SDA		This pin is also used as the data I/O pin for the I ² C interface. This function is valid when the I ² C interface is enabled for operation. While the I ² C interface is operating, this port should be set to the input level (DDRA: bit6 = 0).				
71	PA7	L	This is a general purpose I/O port.				
	SCL		This pin is also used as the clock I/O pin for the I^2C interface. This function is valid when the I^2C interface is enabled for operation. While the I^2C interface is operating, this port should be set to the input level (DDRA: bit7 = 0).				
72, 75 to 79	PB0, PB1 to PB5	E	These are general-purpose I/O ports.				
	IRQ0, IRQ1 to IRQ5		These pins are also the external interrupt input pins. IRQ0, 1 are enabled for both rising and falling edge detection, and therefore cannot be used for recovery from STOP status for MB90V570, MB90F574, MB90573 and MB90574. However, IRQ0, 1 can be used for recovery from STOP status for MB90V570A, MB90F574A and MB90574C.				
80	PB6	E	This is a general purpose I/O port.				
	ADTG		This is also the A/D converter external trigger input pin. While the A/D converter is in input operation, this input signal is in continuous use, and therefore the output function should only be used when needed.				
81	PB7	E	This is a general purpose I/O port.				
82 to 85	PC0 to PC3	E	These are general purpose I/O ports.				
8,54,94	Vcc	Power supply	These are power supply (5V) input pins.				
33,63, 91,119	Vss	Power supply	These are power supply (0V) input pins.				
42	AVcc	Н	This is the analog macro (D/A, A/D etc.) Vcc power supply input pin.				
43	AVRH	J	This is the A/D converter Vref+ input pin. The input voltage should not exceed Vcc.				
44	AVRL	Н	This is the A/D converter Vref-input pin. The input voltage should not less than Vss.				
45	AVss	Н	This is the analog macro (D/A, A/D etc.) Vss power supply input pin.				
38	DVcc	Н	This is the D/A converter Vref input pin. The input voltage should not exceed Vcc.				
39	DVss	Н	This is the D/A converter GND power supply pin. It should be set to Vss equivalent potential.				


*1: FPT-120P-M05

*2: FPT-120P-M13,FPT-120P-M21

■ I/O CIRCUIT TYPE

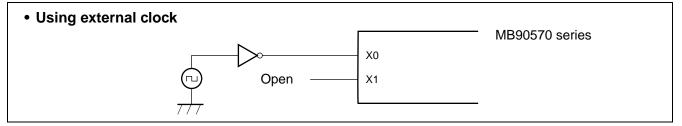
HANDLING DEVICES

1. Preventing Latchup

CMOS ICs may cause latchup in the following situations:

- When a voltage higher than Vcc or lower than Vss is applied to input or output pins.
- When a voltage exceeding the rating is applied between Vcc and Vss.
- When AVcc power is supplied prior to the Vcc voltage.

In turning on/turning off the analog power supply, make sure the analog power voltage (AVcc, AVRH, DVcc) and analog input voltages not exceed the digital voltage (Vcc).


2. Treatment of unused pins

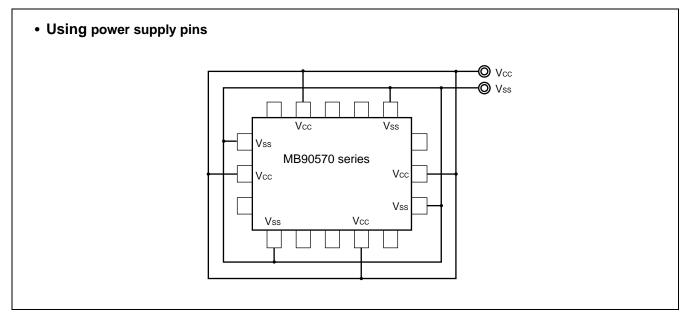
Leaving unused input pins open may result in misbehavior or latch up and possible permanent damage of the device. Therefor they must be tied to Vcc or Ground through resistors. In this case those resistors should be more than 2 k<Symbol>W.

Unused bidirectional pins should be set to the output state and can be left open, or the input state with the above described connection.

3. Notes on Using External Clock

In using the external clock, drive X0 pin only and leave X1 pin unconnected.

4. Unused Sub Clock Mode


If sub clock modes are not used, the oscillator should be connected to the X01A pin and X1A pin

5. Power Supply Pins (Vcc/Vss)

In products with multiple V_{cc} or V_{ss} pins, the pins of a same potential are internally connected in the device to avoid abnormal operations including latch-up. However, connect the pins external power and ground lines to lower the electro-magnetic emission level, to prevent abnormal operation of strobe signals caused by the rise in the ground level, and to conform to the total current rating.

Make sure to connect Vcc and Vss pins via lowest impedance to power lines.

It is recommended to provide a bypass capacitor of around 0.1 μ F between V_{cc} and V_{ss} pin near the device.

6. Crystal Oscillator Circuit

Noises around X0 or X1 pins may be possible causes of abnormal operations. Make sure to provide bypass capacitors via shortest distance from X0, X1 pins, crystal oscillator (or ceramic resonator) and ground lines, and make sure, to the utmost effort, that lines of oscillation circuit do not cross the lines of other circuits.

It is highly recommended to provide a printed circuit board art work surrounding X0 and X1 pins with an grand area for stabilizing the operation.

7. Turning-on Sequence of Power Supply to A/D Converter and Analog Inputs

Make sure to turn on the A/D converter power supply, D/A converter power supply (AVcc, AVRH, AVRL, DVcc, DVss) and analog inputs (AN0 to AN7) after turning-on the digital power supply (Vcc).

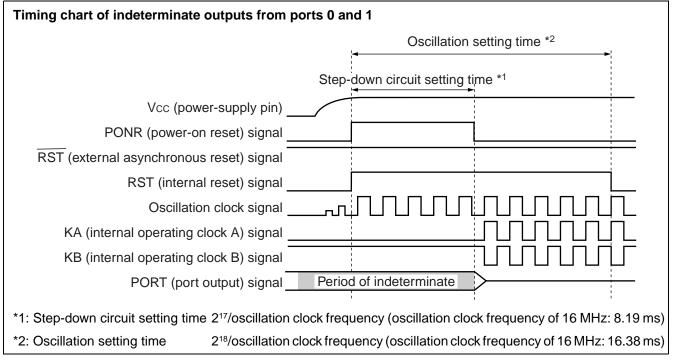
Turn-off the digital power after turning off the A/D converter supply and analog inputs. In this case, make sure that the voltage does not exceed AVRH or AV_{CC} (turning on/off the analog and digital power supplies simultaneously is acceptable).

8. Connection of Unused Pins of A/D Converter

Connect unused pins of A/D converter to AVcc = Vcc, AVss = AVRH = DVcc = Vss.

9. N.C. Pins

The N.C. (internally connected) pins must be opened for use.


10. Notes on Energization

To prevent the internal regulator circuit from malfunctioning, set the voltage rise time during energization at 50 or more μ s (0.2 V to 2.7 V).

11. Indeterminate outputs from ports 0 and 1

The outputs from ports 0 and 1 become indeterminate during oscillation setting time of step-down circuit (during a power-on reset) after the power is turned on. (MB90573, MB90574, MB90V570, MB90V570A)

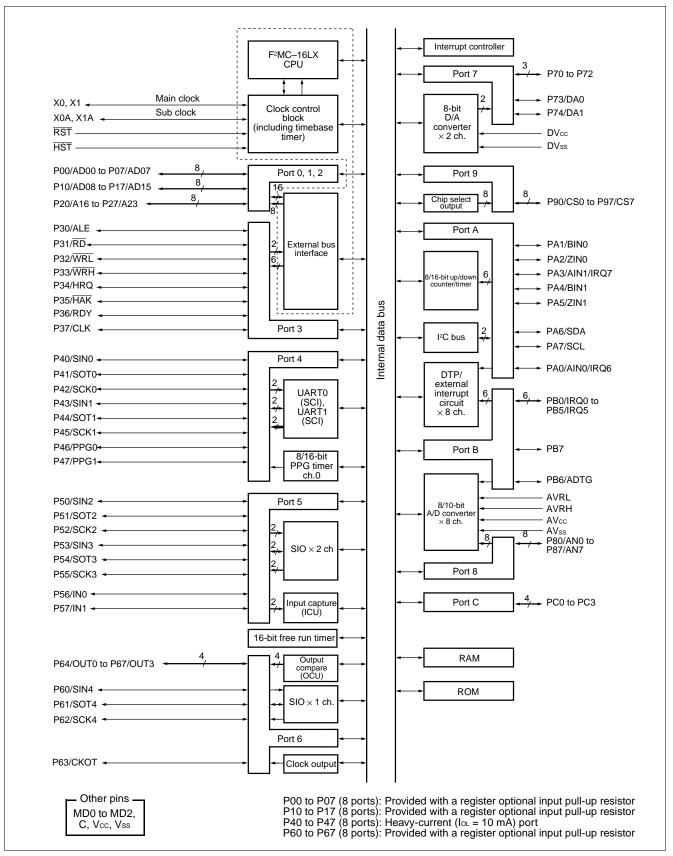
The series without built-in step-down circuit have no oscillation setting time of step-down circuit, so outputs should not become indeterminate. (MB90F574,MB90F574A,MB90574C)

12. Initialization

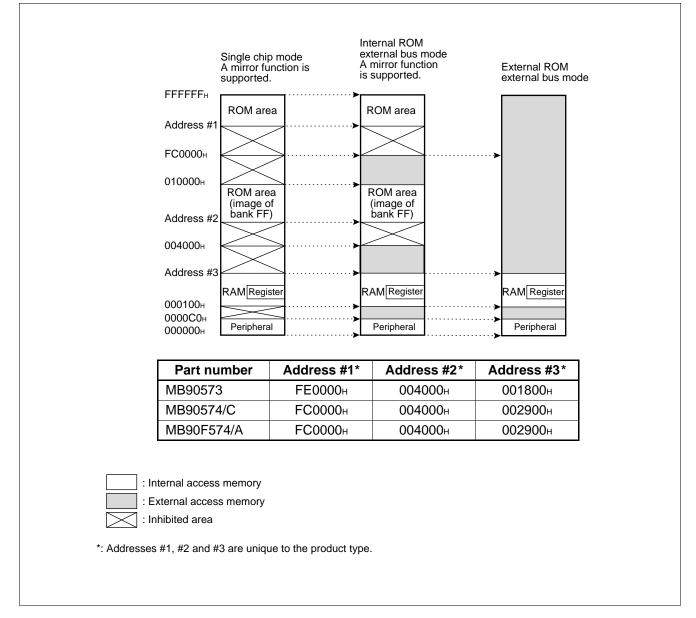
In the device, there are internal registers which are initialized only by a power-on reset. Turn on the power again to initialize these registers.

13. Return from standby state

If the power-supply voltage goes below the standby RAM holding voltage in the standby state, the device may fail to return from the standby state. In this case, reset the device via the external reset pin to return to the normal state.


14. Precautions for Use of 'DIV A, Ri,' and 'DIVW A, Ri' Instructions

The signed multiplication-division instructions 'DIV A, Ri,' and 'DIVW A, RWi' should be used when the corresponding bank registers (DTB, ADB, USB, SSB) are set to value '00h.' If the corresponding bank registers (DTB, ADB, USB, SSB) are set to a value other than '00h,' then the remainder obtained after the execution of the instruction will not be placed in the instruction operand register.

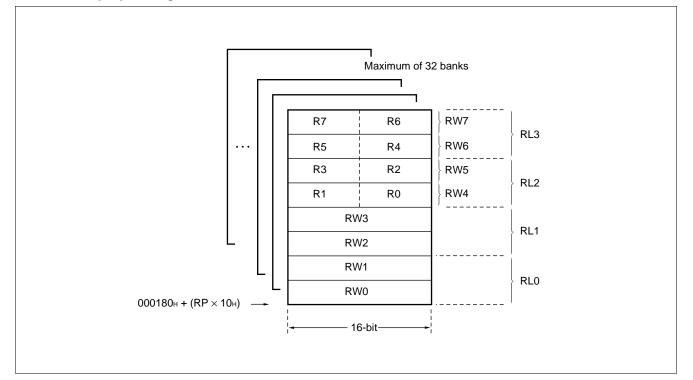

15. Precautions for Use of REALOS

Extended intelligent I/O service (EI²OS) cannot be used, when REALOS is used.

BLOCK DIAGRAM

MEMORY MAP

Note: The ROM data of bank FF is reflected in the upper address of bank 00, realizing effective use of the C compiler small model. The lower 16-bit of bank FF and the lower 16-bit of bank 00 is assigned to the same address, enabling reference of the table on the ROM without stating "far".


For example, if an attempt has been made to access 00C000H, the contents of the ROM at FFC000H are accessed actually. Since the ROM area of the FF bank exceeds 48 kbytes, the whole area cannot be reflected in the image for the 00 bank. The ROM data at FF4000H to FFFFFH looks, therefore, as if it were the image for 00400H to 00FFFFH. Thus, it is recommended that the ROM data table be stored in the area of FF4000H to FFFFFH.

■ F²MC-16LX CPU PROGRAMMING MODEL

• Dedicated registers

AH	AL	: Accumulator (A) Dual 16-bit register used for storing results of calculation etc. The two 16-bit registers can be combined to be used as a 32-bit register.
	USP	: User stack pointer (USP) The 16-bit pointer indicating a user stack address.
	SSP	: System stack pointer (SSP) The 16-bit pointer indicating the status of the system stack address.
	PS	: Processor status (PS) The 16-bit register indicating the system status.
	PC	: Program counter (PC) The 16-bit register indicating storing location of the current instruction code.
	DPR	: Direct page register (DPR) The 8-bit register indicating bit 8 through 15 of the operand address in the short direct addressing mode.
	PCB	: Program bank register (PCB) The 8-bit register indicating the program space.
	DTB	: Data bank register (DTB) The 8-bit register indicating the data space.
	USB	: User stack bank register (USB) The 8-bit register indicating the user stack space.
	SSB	: System stack bank register (SSB) The 8-bit register indicating the system stack space.
	ADB	: Additional data bank register (ADB) The 8-bit register indicating the additional data space.
32	¦16-Dit	

General-purpose registers

• Processor status (PS)

		ILM				RP						CC	R			
	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
PS	ILM2	ILM1	ILM0	B4	B3	B2	B1	B0	_	I	s	т	Ν	z	V	С
Initial value	0	0	0	0	0	0	0	0		0	1	Х	Х	Х	Х	Х
—: Reserved X : Undefined																

■ I/O MAP

Address	Abbreviated register name	Register name	Read/ write	Resource name	Initial value					
00000н	PDR0	Port 0 data register	R/W	Port 0	ХХХХХХХАв					
000001н	PDR1	Port 1 data register	R/W	Port 1	ХХХХХХХХВ					
00002н	PDR2	Port 2 data register	R/W	Port 2	ХХХХХХХАв					
00003н	PDR3	Port 3 data register	R/W	Port 3	ХХХХХХХАв					
000004н	PDR4	Port 4 data register	R/W	Port 4	ХХХХХХХАв					
000005н	PDR5	Port 5 data register	R/W	Port 5	ХХХХХХХАв					
00006н	PDR6	Port 6 data register	R/W	Port 6	ХХХХХХХАв					
000007н	PDR7	Port 7 data register	R/W	Port 7	ХХХХХХХАв					
00008н	PDR8	Port 8 data register	R/W	Port 8	ХХХХХХХАв					
000009н	PDR9	Port 9 data register	R/W	Port 9	ХХХХХХХАв					
00000Ан	PDRA	Port A data register	R/W	Port A	ХХХХХХХАв					
00000Вн	PDRB	Port B data register	R/W	Port B	ХХХХХХХАв					
00000Сн	PDRC	Port C data register	R/W	Port C	ХХХХХХХАв					
00000Dн to 00000Fн		(Disabled)								
000010н	DDR0	Port 0 direction register	R/W	Port 0	00000000в					
000011н	DDR1	Port 1 direction register	R/W	Port 1	00000000в					
000012н	DDR2	Port 2 direction register	R/W	Port 2	00000000в					
000013н	DDR3	Port 3 direction register	R/W	Port 3	00000000в					
000014н	DDR4	Port 4 direction register	R/W	Port 4	00000000в					
000015н	DDR5	Port 5 direction register	R/W	Port 5	00000000в					
000016н	DDR6	Port 6 direction register	R/W	Port 6	00000000в					
000017н	DDR7	Port 7 direction register	R/W	Port 7	— — — О О О О О в					
000018н	DDR8	Port 8 direction register	R/W	Port 8	00000000в					
000019н	DDR9	Port 9 direction register	R/W	Port 9	00000000в					
00001Ан	DDRA	Port A direction register	R/W	Port A	00000000в					
00001Bн	DDRB	Port B direction register	R/W	Port B	00000000в					
00001CH	DDRC	Port C direction register	R/W	Port C	00000000в					
00001DH	ODR4	Port 4 output pin register	R/W	Port 4	00000000в					
00001Ен	ADER	Analog input enable register	R/W	Port 8, 8/10-bit A/D converter	11111118					
00001Fн		(Disa	bled)							
000020н	SMR0	Serial mode register 0	R/W	UART0	00000000в					
000021н	SCR0	Serial control register 0	R/W	(SCI)	00000100в					

Address	Abbreviated register name	Register name	Read/ write	Resource name	Initial value
000022н	SIDR0/ SODR0	Serial input data register 0/ serial output data register 0	R/W	UART0	ХХХХХХХАв
000023н	SSR0	Serial status register 0	R/W	(SCI)	00001-00в
000024н	SMR1	Serial mode register 1	R/W		00000000в
000025н	SCR1	Serial control register 1	R/W	UART1	00000100в
000026н	SIDR1/ SODR1	Serial input data register 1/ serial output data register 1	R/W	(SCI)	ХХХХХХХХ
000027н	SSR1	Serial status register 1	R/W		00001-00в
000028н	CDCR0	Communications prescaler control register 0	R/W	Communica- tions prescaler register 0	01111в
000029н		(Disab	led)		
00002Ан	CDCR1	Communications prescaler control register 1	R/W	Communica- tions prescaler register 0	01111в
00002Вн					
to 00002Fн		(Disab	led)		
000030н	ENIR	DTP/interrupt enable register	R/W		00000000в
000031н	EIRR	DTP/interrupt factor register	R/W	DTP/external	ХХХХХХХХВ
000032н			544	interrupt cir- cuit	00000000в
000033н	ELVR	Request level setting register	R/W		00000000
000034н			11)		
000035н	-	(Disab	iea)		
000036н	ADCS1	A/D control status register lower digits	R/W		00000000в
000037н	ADCS2	A/D control status register upper digits	R/W or W	8/10-bit A/D converter	00000000в
000038н	ADCR1	A/D data register lower digits	R		ХХХХХХХХВ
000039н	ADCR2	A/D data register upper digits	W		00001-ХХв
00003Ан	DADR0	D/A converter data register ch.0	R/W		ХХХХХХХАв
00003BH	DADR1	D/A converter data register ch.1	R/W	8-bit D/A	ХХХХХХХХВ
00003Сн	DACR0	D/A control register 0	R/W	converter	————————————————— В
00003Dн	DACR1	D/A control register 1	R/W		————————————————— В
00003Ен	CLKR	Clock output enable register	R/W	Clock monitor function	—————————————————————————————————————
00003Fн		(Disab	led)		
000040н	PRLL0	PPG0 reload register L ch.0	R/W	8/16-bit PPG	ХХХХХХХАв
000041н	PRLH0	PPG0 reload register H ch.0	R/W	timer 0	ХХХХХХХАв

Address	Abbreviated register name	Register name	Read/ write	Resource name	Initial value			
000042н	PRLL1	PPG1 reload register L ch.1	R/W	8/16-bit PPG	ХХХХХХХАв			
000043н	PRLH1	PPG1 reload register H ch.1	R/W	timer 1	ХХХХХХХАв			
000044н	PPGC0	PPG0 operating mode control register ch.0						
000045н	PPGC1	PPG1 operating mode control register ch.1	0Х00001в					
000046н	PPGOE	PPG0 and 1 output control registers ch.0 and ch.1	R/W	8/16-bit PPG timer 0, 1	00000ХХв			
000047н		(Disabl	ed)					
000048н	SMCSL0	Serial mode control lower status register 0	R/W		—————————————————————————————————————			
000049н	SMCSH0	Serial mode control upper status register 0	R/W	Extended I/O serial interface 0	0000010в			
00004Ан	SDR0	Serial data register 0	R/W		ХХХХХХХАв			
00004Вн		(Disabl	ed)					
00004Сн	SMCSL1	Serial mode control lower status register 1	R/W		—————————————————————————————————————			
00004Dн	SMCSH1	Serial mode control upper status register 1	R/W	Extended I/O serial interface 1	00000010в			
00004Ен	SDR1	Serial data register 1	R/W	-	ХХХХХХХАв			
00004Fн		(Disabl	ed)					
000050н	IPCP0	ICLI data register of 0	R		ХХХХХХХАв			
000051н		ICU data register ch.0	ĸ	16-bit I/O timer	ХХХХХХХАв			
000052н	IPCP1	ICU data register ch.1	R	(input capture	ХХХХХХХАв			
000053н			R.	(ICU) section)	ХХХХХХХАв			
000054н	ICS01	ICU control status register	R/W		00000000в			
000055н		(Disabl	ed)					
000056н	TCDT	Free run timer data register	R/W	16-bit I/O timer	00000000в			
000057н			R/ VV	(16-bit free run	00000000в			
000058н	TCCS	Free run timer control status register	R/W	timer section)	00000000в			
000059н		(Disabl	ed)					
00005Ан		OCU compare register ch 0			ХХХХХХХАв			
00005Вн	OCCP0	OCU compare register ch.0	R/W		ХХХХХХХАв			
00005Сн		OCU compare register ch 1		16-bit I/O timer	ХХХХХХХАв			
00005Dн	OCCP1	OCU compare register ch.1	R/W	(output compare (OCU) section)	ХХХХХХХАв			
00005Ен	OCCP2	OCU compare register ch.2	R/W		ХХХХХХХАв			
00005F н					ХХХХХХХАв			

Address	Abbreviated register name	Register name	Read/ write	Resource name	Initial value
000060н	00000				ХХХХХХХАв
000061н	OCCP3	OCU compare register ch.3	R/W		ХХХХХХХАв
000062н	OCS0	OCU control status register ch.0	R/W	16-bit I/O timer	000000в
000063н	OCS1	OCU control status register ch.1	R/W	 (output compare (OCU) section) 	00000 в
000064н	OCS2	OCU control status register ch.2	R/W		000000в
000065н	OCS3	OCU control status register ch.3	R/W		00000в
000066н		(Disal	blod)		
000067н		(DISA	bieu)		
000068н	IBSR	I ² C bus status register	R		00000000в
000069н	IBCR	I ² C bus control register	R/W		00000000в
00006Ан	ICCR	I ² C bus clock control register	R/W	I ² C interface	— — О X X X X X в
00006Вн	IADR	I ² C bus address register	R/W	-	— X X X X X X X в
00006Сн	IDAR	I ² C bus data register	R/W	-	ХХХХХХХАв
00006Dн			hlad)		
00006Ен	-	(Disa	bied)		
00006Fн	ROMM	ROM mirroring function selection register	W	ROM mirroring function selection module	—————— 1 в
000070н	UDCR0	Up/down count register 0	R		00000000в
000071н	UDCR1	Up/down count register 1	R	-	00000000в
000072н	RCR0	Reload compare register 0	W	8/16-bit up/down counter/timer	00000000в
000073н	RCR1	Reload compare register 1	W		00000000в
000074н	CSR0	Counter status register 0	R/W		00000000в
000075н		(Reserve	d area)*3		
000076н	CCRL0	Counter control register 0	R/W		-0000000в
000077н	CCRH0	Counter control register 0	r////	8/16-bit up/down counter/timer	00000000в
000078н	CSR1	Counter status register 1	R/W		00000000в
000079н		(Reserve	d area)*3		
00007Ан	CCRL1	Counter control register 1	R/W	8/16-bit up/down	-0000000в
00007Вн	CCRH1	Counter control register 1	r////	counter/timer	-0000000в
00007Сн	SMCSL2	Serial mode control lower status register 2	R/W		———————————————————
00007Dн	SMCSH2	Serial mode control higher status register 2	R/W	Extended I/O serial interface 2	00000010в
00007E н	SDR2	Serial data register 2	R/W		ХХХХХХХАв
00007F н		(Disal	bled)		

Address	Abbreviated register name	Register name	Read/ write	Resource name	Initial value
000080н	CSCR0	Chip selection control register 0	R/W		0000в
000081н	CSCR1	Chip selection control register 1	R/W		0000в
000082н	CSCR2	Chip selection control register 2	R/W		0000в
000083н	CSCR3	Chip selection control register 3	R/W	Chip select output	0000в
000084н	CSCR4	Chip selection control register 4	R/W	- output	0000в
000085н	CSCR5	Chip selection control register 5	R/W		0000в
000086н	CSCR6	Chip selection control register 6	R/W		0000в
000087н to 00008Вн		(Disabl	led)		
00008Cн	RDR0	Port 0 input pull-up resistor setup register	R/W	Port 0	00000000в
00008Dн	RDR1	Port 1 input pull-up resistor setup register	R/W	Port 1	00000000в
00008Eн	RDR6	Port 6 input pull-up resistor setup register	R/W	Port 6	00000000в
00008Fн to 00009Dн		(Disabl	led)		
00009Eн	PACSR	Program address detection control status register	R/W	Address match detection function	000000000в
00009Fн	DIRR	Delayed interrupt factor generation/ cancellation register	R/W	Delayed interrupt generation module	0 в
0000А0н	LPMCR	Low-power consumption mode control register	R/W	Low-power consumption	00011000в
0000A1н	CKSCR	Clock select register	R/W	(standby) mode	1111100в
0000А2н to 0000А4н		(Disabl	led)		
0000А5н	ARSR	Automatic ready function select register	W		0011——00в
0000А6н	HACR	Upper address control register	W	External bus pin	00000000в
0000А7н	ECSR	Bus control signal select register	W		00000000в
0000A8н	WDTC	Watchdog timer control register	R/W	Watchdog timer	ХХХХХХХАв
0000А9н	TBTC	Timebase timer control register	R/W	Timebase timer	1 – – 0 0 1 0 0 в
0000ААн	WTC	Clock timer control register	R/W	Clock timer	1 Х О О О О О О в

Address	Abbreviated register name	Register name	Read/ write	Resource name	Initial value
0000ABн to		(Disabl	ed)		
0000ADн			cu)		
0000АЕн	FMCS	Flash control register	R/W	Flash interface	000Х0ХХ0в
0000AFн		(Disabl	ed)	1	
0000В0н	ICR00	Interrupt control register 00	R/W		00000111в
0000В1н	ICR01	Interrupt control register 01	R/W		00000111в
0000В2н	ICR02	Interrupt control register 02	R/W		00000111в
0000B3н	ICR03	Interrupt control register 03	R/W	-	00000111в
0000В4н	ICR04	Interrupt control register 04	R/W		00000111в
0000В5н	ICR05	Interrupt control register 05	R/W		00000111в
0000В6н	ICR06	Interrupt control register 06	R/W	-	00000111в
0000 B7 н	ICR07	Interrupt control register 07	R/W	Interrupt	00000111в
0000B8н	ICR08	Interrupt control register 08	R/W	controller	00000111в
0000В9н	ICR09	Interrupt control register 09	R/W	-	00000111в
0000ВАн	ICR10	Interrupt control register 10	R/W	-	00000111в
0000ВВн	ICR11	Interrupt control register 11	R/W	-	00000111в
0000ВСн	ICR12	Interrupt control register 12	R/W	-	00000111в
0000BDн	ICR13	Interrupt control register 13	R/W	-	00000111в
0000BEн	ICR14	Interrupt control register 14	R/W	-	00000111в
0000BFн	ICR15	Interrupt control register 15	R/W	-	00000111в
0000C0н to 0000FFн		(External a	area)*1		
000100н to 000###н		(RAM ar	ea)*²		
000###н to 001FEFн		(Reserved	area)*³		
001FF0н		Program address detection register 0	R/W		ХХХХХХХАв
001FF1н	PADR0	Program address detection register 1	R/W		ХХХХХХХАв
001FF2н		Program address detection register 2	R/W	Address match	ХХХХХХХАв
001FF3н		Program address detection register 3	R/W	detection function	ХХХХХХХАв
001FF4н	PADR1	Program address detection register 4	R/W		ХХХХХХХАв
001FF5н		Program address detection register 5	R/W		ХХХХХХХХ
001FF6н to 001FFFн					

Descriptions for read/write R/W: Readable and writable R: Read only W: Write only

Descriptions for initial value

0 : The initial value of this bit is "0".

1 : The initial value of this bit is "1".

X : The initial value of this bit is undefined.

- : This bit is unused. The initial value is undefined.

*1: This area is the only external access area having an address of 0000FF_H or lower. An access operation to this area is handled as that to external I/O area.

*2: For details of the RAM area, see "■ MEMORY MAP".

- *3: The reserved area is disabled because it is used in the system.
- Notes: For bits that is initialized by an reset operation, the initial value set by the reset operation is listed as an initial value. Note that the values are different from reading results. For LPMCR/CKSCR/WDTC, there are cases where initialization is performed or not performed, depending on the types of the reset. However initial value for resets that initializes the value are listed.
 - The addresses following 0000FFH are reserved. No external bus access signal is generated.
 - Boundary ##### between the RAM area and the reserved area varies with the product model.

■ INTERRUPT FACTORS, INTERRUPT VECTORS, INTERRUPT CONTROL REGISTER

Informunt course	EI ² OS	Interru	ot vector	Interrupt co	ontrol register	Priority
Interrupt source	support	Number	Address	ICR	Address	Priority
Reset	×	# 08	FFFFDCH	_	_	High
INT9 instruction	×	# 09	FFFFD8H	—	_	
Exception	×	# 10	FFFFD4H	—	_	
8/10-bit A/D converter	0	# 11	FFFFD0H	ICR00	0000В0н	
Input capture 0 (ICU) include	0	# 12	FFFFCCH		UUUUBUH	
DTP0 (external interrupt 0)	0	# 13	FFFFC8H	10004	0000004	
Input capture 1 (ICU) include	0	# 14	FFFFC4H	ICR01	0000B1н	
Output compare 0 (OCU) match	0	# 15	FFFFC0H	10000	0000000	
Output compare 1 (OCU) match	0	# 16	FFFFBC H	ICR02	0000В2н	
Output compare 2 (OCU) match	0	# 17	FFFFB8H	10000	0000000	
Output compare 3 (OCU) match	0	# 18	FFFFB4H	ICR03	0000ВЗн	
Extended I/O serial interface 0	0	# 19	FFFFB0H	ICR04	0000 B4 н	-
16-bit free run timer	×	# 20	FFFFACH		0000 D4 H	
Extended I/O serial interface 1	0	# 21	FFFFA8H	ICR05	0000 B 5н	
Clock timer	×	# 22	FFFFA4H		UUUUDJH	
Extended I/O serial interface 2	0	# 23	FFFFA0H	ICR06	0000000	
DTP1 (external interrupt 1)	0	# 24	FFFF9CH		0000В6н	
DTP2/DTP3 (external interrupt 2/ external interrupt 3)	0	# 25	FFFF98⊦	ICR07	0000 B7 н	
8/16-bit PPG timer 0 counter borrow	×	# 26	FFFF94 _H		0000878	
DTP4/DTP5 (external interrupt 4/ external interrupt 5)	0	# 27	FFFF90H	ICR08	0000 B 8н	
8/16-bit PPG timer 1 counter borrow	×	# 28	FFFF8C _H		0000D0H	
8/16-bit up/down counter/timer 0 borrow/overflow/inversion	0	# 29	FFFF88⊦	ICR09	0000В9н	
8/16-bit up/down counter/timer 0 compare match	0	# 30	FFFF84 _H	101103		
8/16-bit up/down counter/timer 1 borrow/overflow/inversion	0	# 31	FFFF80⊦	ICR10	0000ВАн	
8/16-bit up/down counter/timer 1 compare match	0	# 32	FFFF7CH		0000ВАн	
DTP6 (external interrupt 6)	0	# 33	FFFF78н	ICR11	0000BBн] ↓
Timebase timer	×	# 34	FFFF74н		UUUUDDH	Low

(Continued)

Interrupt source	EI ² OS	Interrup	ot vector	Interrupt co	ntrol register	Priority
	support	Number	Address	ICR	Address	FIIOTILY
DTP7 (external interrupt 7)	0	# 35	FFFF70H	ICR12	0000BCH	
I ² C interface	×	# 36	FFFF6CH		UUUUDCH	High ▲
UART1 (SCI) reception complete	0	# 37	FFFF68 _H	ICR13	0000BDH	
UART1 (SCI) transmission complete	0	# 38	FFFF64н		UUUUBDH	
UART0 (SCI) reception complete	0	# 39	FFFF60H	ICR14	0000BEн	
UART0 (SCI) transmission complete	0	# 40	FFFF5CH		UUUUBEH	
Flash memory	×	# 41	FFFF58H			
Delayed interrupt generation module	×	# 42	FFFF54H	ICR15	0000BFн	Low

 $\odot\,$: Can be used

 $\times \$: Can not be used

 \odot : Can be used. With El²OS stop function.

PERIPHERALS

1. I/O Port

(1) Input/output Port

Port 0 through 4, 6, 8, A and B are general-purpose I/O ports having a combined function as an external bus pin and a resource input. Port 0 to Port 3 have a general-purpose I/O ports function only in the single-chip mode.

Operation as output port

The pin is configured as an output port by setting the corresponding bit of the DDR register to "1". Writing data to PDR register when the port is configured as output, the data is retained in the output latch in the PDR and directly output to the pin.

The value of the pin (the same value retained in the output latch of PDR) can be read out by reading the PDR register.

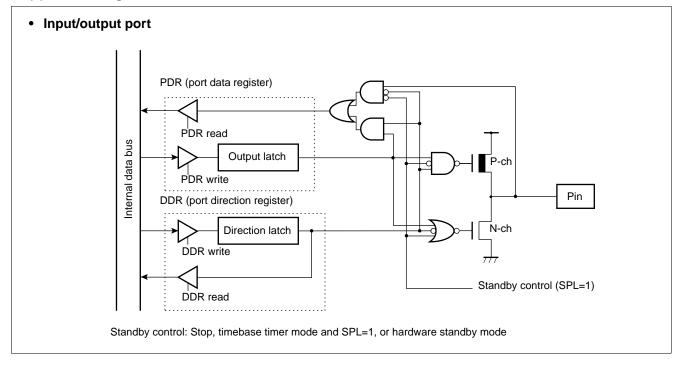
- Note: When a read-modify-write instruction (e.g. bit set instruction) is performed to the port data register, the destination bit of the operation is set to the specified value, not affecting the bits configured by the DDR register for output, however, values of bits configured by the DDR register as inputs are changed because input values to the pins are written into the output latch. To avoid this situation, configure the pins by the DDR register as output after writing output data to the PDR register when configuring the bit used as input as outputs.
- Operation as input port

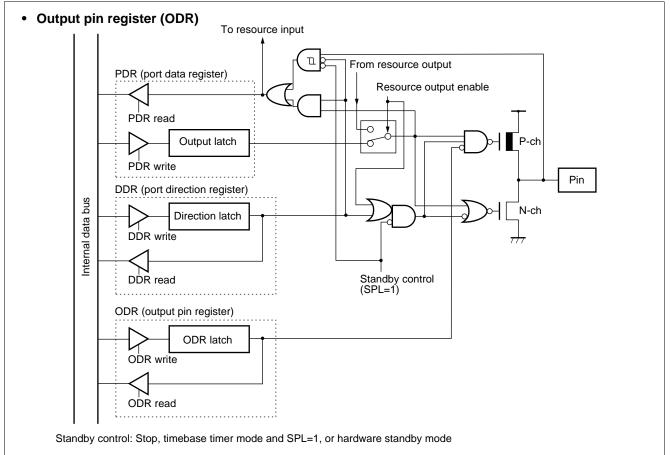
The pin is configured as an input by setting the corresponding bit of the DDR register to "0".

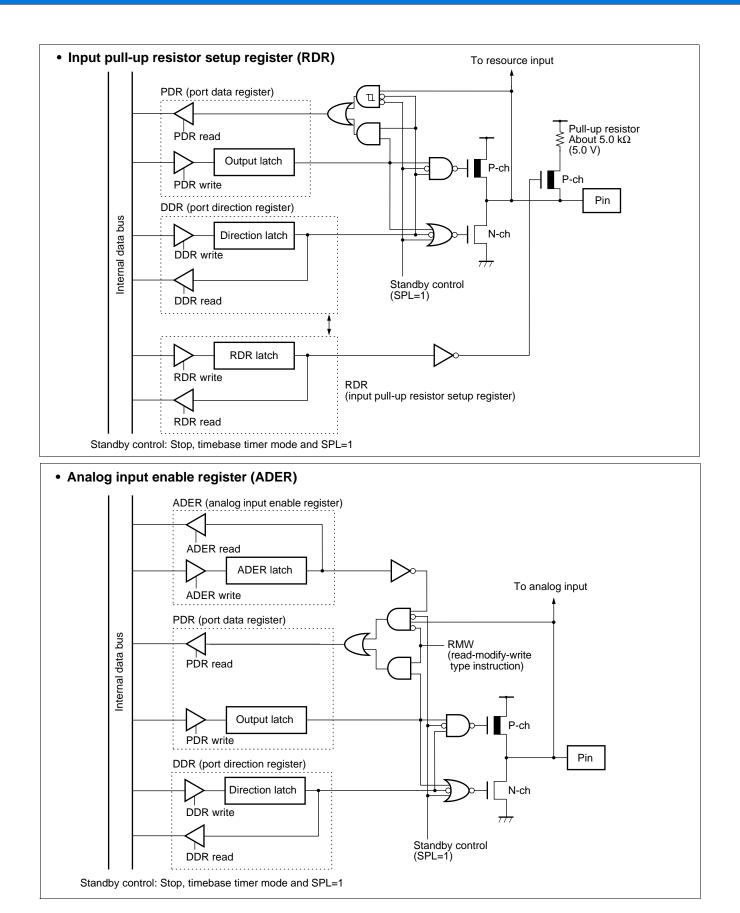
When the pin is configured as an input, the output buffer is turned-off and the pin is put into a high-impedance status.

When a data is written into the PDR register, the data is retained in the output latch of the PDR, but pin outputs are unaffected.

Reading the PDR register reads out the pin level ("0" or "1").

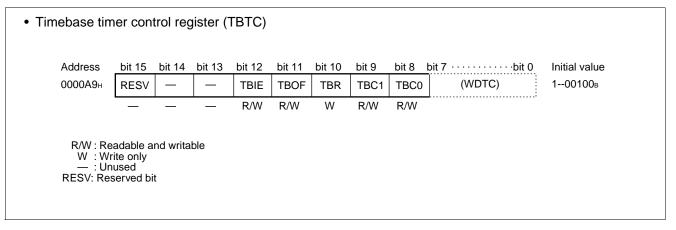

(2) Register Configuration

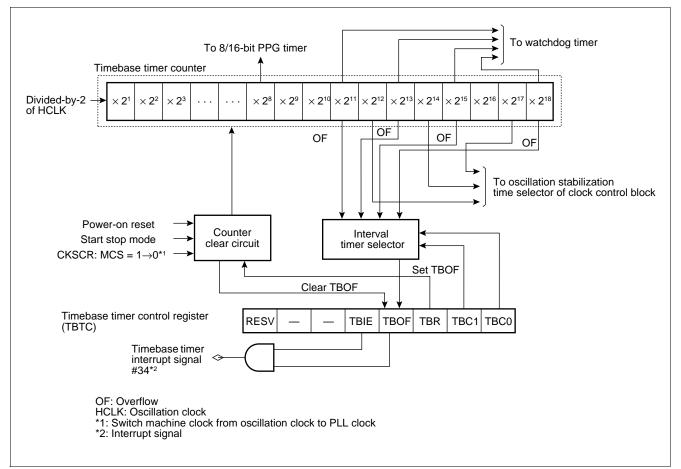

 Port 0 data regist Address 	bit 15 · · ·		• • bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
00000н		(PDR1)		P07	P06	P05	P04	P03	P02	P01	P00	XXXXXXXXX
	l		L	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
 Port 1 data regist 	`	,										
	bit 15	1	1	1	-	-			bit 7		•••• bit 0	Initial value
000001H		P16	P15	P14	P13	P12				(PDRC))	XXXXXXXX
 Port 2 data regist 	R/W er (PDF	R/W ₹2)	R/W	R/W	R/W	R/W	R/W	R/W				
Address	· ·	,	• • bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
000002н		(PDR3)		P27	P26	P25	P24	P23	P22	P21	P20	XXXXXXXXX
	l	· · · · · · · · · · · · · · · · · · ·	L	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Port 2 data regist		221										
 Port 3 data regist Address 	bit 15		bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	bit 7		· · · · bit 0	Initial value
000003н	P37	P36	P35	P34	P33	P32				(PDR2		XXXXXXXX
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		· · · · · · · · · · · · · · · · · · ·	.ít	
- Dart 1 data regist		24)										
 Port 4 data regist 		\ 4)										
 Port 4 data regist Address 			· · bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
-	bit 15 · ·		• • bit 8	bit 7 P47	bit 6 P46	bit 5 P45	bit 4 P44	bit 3 P43	bit 2 P42	bit 1 P41	bit 0 P40	
Address 000004н	bit 15 · · ·	(PDR5)	• • bit 8									
Address 000004н • Port 5 data regist	bit 15 er (PDF	(PDR5) R5)		P47 R/W	P46 R/W	P45 R/W	P44 R/W	P43 R/W	P42 R/W	P41 R/W	P40 R/W	XXXXXXXX
Address 000004н • Port 5 data regist Address	bit 15 er (PDF bit 15	(PDR5) R5) bit 14	bit 13	P47 R/W bit 12	P46 R/W bit 11	P45 R/W bit 10	P44 R/W bit 9	P43 R/W bit 8	P42 R/W	P41 R/W	P40 R/W	XXXXXXXXX
Address 000004н • Port 5 data regist	bit 15 er (PDF bit 15	(PDR5) R5)		P47 R/W	P46 R/W	P45 R/W bit 10 P52	P44 R/W bit 9	P43 R/W bit 8	P42 R/W	P41 R/W	P40 R/W	XXXXXXXXX
Address 000004⊬ • Port 5 data regist Address 000005⊬	bit 15 · · · er (PDF bit 15 P57 R/W	(PDR5) R5) bit 14 P56 R/W	bit 13 P55	P47 R/W bit 12 P54	P46 R/W bit 11 P53	P45 R/W bit 10 P52	P44 R/W bit 9 P51	P43 R/W bit 8 P50	P42 R/W	P41 R/W	P40 R/W	XXXXXXXXX
Address 000004⊬ • Port 5 data regist Address 000005⊬	bit 15 · · · · · · · · · · · · · · · · · ·	(PDR5) bit 14 P56 R/W R6)	bit 13 P55 R/W	P47 R/W bit 12 P54 R/W	P46 R/W bit 11 P53	P45 R/W bit 10 P52	P44 R/W bit 9 P51	P43 R/W bit 8 P50	P42 R/W	P41 R/W	P40 R/W	XXXXXXXXX Initial value XXXXXXXX
Address 000004H • Port 5 data regist Address 000005H • Port 6 data regist	bit 15 er (PDF bit 15 P57 R/W er (PDF bit 15	(PDR5) bit 14 P56 R/W R6)	bit 13 P55 R/W	P47 R/W bit 12 P54 R/W	P46 R/W bit 11 P53 R/W	P45 R/W bit 10 P52 R/W	P44 R/W bit 9 P51 R/W	P43 R/W bit 8 P50 R/W	P42 R/W bit 7	P41 R/W (PDR4	P40 R/W	Initial value
Address 000004H • Port 5 data regist Address 000005H • Port 6 data regist Address	bit 15 er (PDF bit 15 P57 R/W er (PDF bit 15	(PDR5) bit 14 P56 R/W R6)	bit 13 P55 R/W	P47 R/W bit 12 P54 R/W bit 7	P46 R/W bit 11 P53 R/W bit 6	P45 R/W bit 10 P52 R/W bit 5	P44 R/W bit 9 P51 R/W bit 4	P43 R/W bit 8 P50 R/W bit 3	P42 R/W bit 7 bit 2	P41 R/W (PDR4 bit 1	P40 R/W bit 0) bit 0	XXXXXXXXX Initial value XXXXXXXXX Initial value
Address 000004H • Port 5 data regist Address 000005H • Port 6 data regist Address 000006H	bit 15 er (PDF bit 15 P57 R/W er (PDF bit 15	(PDR5) bit 14 P56 R/W R6) (PDR7)	bit 13 P55 R/W	P47 R/W bit 12 P54 R/W bit 7 P67	P46 R/W bit 11 P53 R/W bit 6 P66	P45 R/W bit 10 P52 R/W bit 5 P65	P44 R/W bit 9 P51 R/W bit 4 P64	P43 R/W bit 8 P50 R/W bit 3 P63	P42 R/W bit 7 bit 2 P62	P41 R/W (PDR4 bit 1 P61	P40 R/W bit 0 H) bit 0 P60	XXXXXXXXX Initial value XXXXXXXXX
Address 000004H • Port 5 data regist Address 000005H • Port 6 data regist Address 000006H • Port 7 data regist	bit 15 er (PDF bit 15 P57 R/W er (PDF bit 15	(PDR5) bit 14 P56 R/W R6) (PDR7)	bit 13 P55 R/W	P47 R/W bit 12 P54 R/W bit 7 P67 R/W	P46 R/W bit 11 P53 R/W bit 6 P66 R/W	P45 R/W bit 10 P52 R/W bit 5 P65 R/W	P44 R/W bit 9 P51 R/W bit 4 P64 R/W	P43 R/W bit 8 P50 R/W bit 3 P63 R/W	P42 R/W bit 7 bit 2 P62 R/W	P41 R/W (PDR4 bit 1 P61 R/W	P40 R/W bit 0 H) bit 0 P60	XXXXXXXXX Initial value XXXXXXXXX Initial value
Address 000004⊬ • Port 5 data regist Address 000005⊬ • Port 6 data regist Address 000006⊬ • Port 7 data regist	bit 15 er (PDF bit 15 P57 R/W er (PDF bit 15 er (PDF bit 15	(PDR5) bit 14 P56 R/W R6) (PDR7)	bit 13 P55 R/W	P47 R/W bit 12 P54 R/W bit 7 P67 R/W	P46 R/W bit 11 P53 R/W bit 6 P66 R/W	P45 R/W bit 10 P52 R/W bit 5 P65 R/W	P44 R/W bit 9 P51 R/W bit 4 P64 R/W bit 9	P43 R/W bit 8 P50 R/W bit 3 P63 R/W bit 8	P42 R/W bit 7 bit 2 P62 R/W	P41 R/W (PDR4 bit 1 P61 R/W	P40 R/W bit 0 bit 0 P60 R/W bit 0	XXXXXXXXX Initial value XXXXXXXXX Initial value XXXXXXXX
Address 000004H • Port 5 data regist Address 000005H • Port 6 data regist Address 000006H • Port 7 data regist Address	bit 15 er (PDF bit 15 P57 R/W er (PDF bit 15 er (PDF bit 15	(PDR5) bit 14 P56 R/W R6) (PDR7)	bit 13 P55 R/W	P47 R/W bit 12 P54 R/W bit 7 P67 R/W bit 12	P46 R/W bit 11 P53 R/W bit 6 P66 R/W bit 11	P45 R/W bit 10 P52 R/W bit 5 P65 R/W bit 10	P44 R/W bit 9 P51 R/W bit 4 P64 R/W bit 9	P43 R/W bit 8 P50 R/W bit 3 P63 R/W bit 8	P42 R/W bit 7 bit 2 P62 R/W	P41 R/W (PDR4 bit 1 P61 R/W	P40 R/W bit 0 bit 0 P60 R/W bit 0	Initial value
Address 000004H • Port 5 data regist Address 000005H • Port 6 data regist Address 000006H • Port 7 data regist Address 000007H	bit 15 er (PDF bit 15 P57 R/W er (PDF bit 15 er (PDF bit 15 	(PDR5) bit 14 P56 R/W R6) (PDR7) bit 14 	bit 13 P55 R/W	P47 R/W bit 12 P54 R/W bit 7 P67 R/W bit 12 P74	P46 R/W bit 11 P53 R/W bit 6 P66 R/W bit 11 P73	P45 R/W bit 10 P52 R/W bit 5 P65 R/W bit 10 p72	P44 R/W bit 9 P51 R/W bit 4 P64 R/W bit 9 P64 P71	P43 R/W bit 8 P50 R/W bit 3 P63 R/W bit 8 P70	P42 R/W bit 7 bit 2 P62 R/W	P41 R/W (PDR4 bit 1 P61 R/W	P40 R/W bit 0 bit 0 P60 R/W bit 0	XXXXXXXXX Initial value XXXXXXXX Initial value XXXXXXXX
Address 000004H • Port 5 data regist Address 000005H • Port 6 data regist Address 000006H • Port 7 data regist Address 000007H	bit 15 er (PDF bit 15 P57 R/W er (PDF bit 15 er (PDF bit 15 	(PDR5) bit 14 P56 R/W R6) (PDR7) bit 14 R8)	bit 13 P55 R/W bit 8 bit 13 	P47 R/W bit 12 P54 R/W bit 7 P67 R/W bit 12 P74 R/W	P46 R/W bit 11 P53 R/W bit 6 P66 R/W bit 11 P73	P45 R/W bit 10 P52 R/W bit 5 P65 R/W bit 10 p72	P44 R/W bit 9 P51 R/W bit 4 P64 R/W bit 9 P64 P71	P43 R/W bit 8 P50 R/W bit 3 P63 R/W bit 8 P70	P42 R/W bit 7 bit 2 P62 R/W	P41 R/W (PDR4 bit 1 P61 R/W	P40 R/W bit 0 bit 0 P60 R/W bit 0	XXXXXXXXX Initial value XXXXXXXXX Initial value XXXXXXXXX Initial value
000004н • Port 5 data regist Address 000005н • Port 6 data regist Address 000006н • Port 7 data regist Address 000007н • Port 8 data regist	bit 15 er (PDF bit 15 P57 R/W er (PDF bit 15 er (PDF bit 15 er (PDF bit 15 bit 15 er (PDF bit 15	(PDR5) bit 14 P56 R/W R6) (PDR7) bit 14 R8)	bit 13 P55 R/W bit 8 bit 13 	P47 R/W bit 12 P54 R/W bit 7 P67 R/W bit 12 P74 R/W	P46 R/W bit 11 P53 R/W bit 6 P66 R/W bit 11 P73 R/W	P45 R/W bit 10 P52 R/W bit 5 P65 R/W bit 10 P72 R/W	P44 R/W bit 9 P51 R/W bit 4 P64 R/W bit 9 P71 R/W	P43 R/W bit 8 P50 R/W bit 3 P63 R/W bit 8 P70 R/W	P42 R/W bit 7 bit 2 P62 R/W bit 7	P41 R/W (PDR4 bit 1 P61 R/W (PDR6	P40 R/W bit 0 P60 R/W bit 0	Initial value


Addre	ss bit 15	R9) bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	bit 7		· · · · bit 0	Initial value
00000	9н Р 97	P96	P95	P94	P93	P92	P91	P90	_	(PDR8	5)	XXXXXXXXB
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			<u></u>	
 Port A data reg 	ister (PD	RA)										
Addre	ss bit 15 · ·		·bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
00000	Ан	(PDRB)		PA7	PA6	PA5	PA4	PA3	PA2	PA1	PA0	XXXXXXXX в
Port B data reg	ister (PD	RB)		R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
-	ss bit 15 · ·		· bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
00000	·····	(PDRA)	Γ	PB7	PB6	PB5	PB4	PB3	PB2	PB1	PB0	XXXXXXXXX
	(,	L	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	,000000000
 Port C data reg 	ster (PD	RC)										
Addre	ss bit 15 · ·		· bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
00000	Сн ((Disabled)		-	_	_	—	PC3	PC2	PC1	PC0	XXXXXXXX
 Port 0 direction 	register							R/W	R/W	R/W	R/W	
	s bit 15 · ·	. ,		bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
00001	·····	(DDR1)		D07	D06	D05	D04	D03	D02	D01	D00	00000000
	£	·····	L	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Port 1 direction	register	(DDR1)										
	s bit 15			bit 12	bit 11	bit 10	bit 9	bit 8	bit 7		···· bit 0	Initial value
00001	1н D17	D16	D15	D14	D13	D12	D11			(DDR0		
00001	1 _н D17 R/W	D16 R/W	D15 R/W	D14 R/W	D13 R/W	D12 R/W	D11 R/W					
	R/W	R/W						D10]			
Port 2 direction	R/W	R/W (DDR2)	R/W	R/W				D10	bit 2			Initial value
Port 2 direction	R/W register	R/W (DDR2)	R/W	R/W	R/W	R/W	R/W bit 4 D24	D10 R/W]	(DDR0)	0000000
Port 2 direction Addres	R/W register	R/W (DDR2)	R/W	R/W bit 7	R/W	R/W bit 5	R/W	D10 R/W bit 3	bit 2	(DDR0 bit 1	bit 0	00000000 a
Port 2 direction Addres 00001:	R/W register ss bit 15 ···	R/W (DDR2) 	R/W ∙bit 8	R/W bit 7 D27	R/W bit 6 D26	R/W bit 5 D25	R/W bit 4 D24	D10 R/W bit 3 D23	bit 2 D22	(DDR0 bit 1 D21)) bit 0 D20	00000000 a
Port 2 direction Addres 00001:	R/W register ss bit 15 ··· 2H	R/W (DDR2) 	R/W • bit 8	R/W bit 7 D27 R/W	R/W bit 6 D26 R/W	R/W bit 5 D25 R/W	R/W bit 4 D24 R/W	D10 R/W bit 3 D23 R/W	bit 2 D22 R/W	(DDR0 bit 1 D21 R/W)) bit 0 D20	00000000 a
Port 2 direction Addres 00001: Port 3 direction	R/W register ss bit 15 ··· 2H register ss bit 15 3H D37	R/W (DDR2) (DDR3) (DDR3) bit 14 D36	R/W · bit 8 bit 13 D35	R/W bit 7 D27 R/W bit 12 D34	R/W bit 6 D26 R/W bit 11 D33	R/W bit 5 D25 R/W bit 10 D32	R/W bit 4 D24 R/W bit 9 D31	D10 R/W bit 3 D23 R/W bit 8 D30	bit 2 D22 R/W	(DDR0 bit 1 D21 R/W) bit 0 D20 R/W	Initial value
 Port 2 direction Addres 00001: Port 3 direction Addres 	R/W register ss bit 15 ··· 2H register ss bit 15	R/W (DDR2) (DDR3) (DDR3) bit 14	R/W • bit 8	R/W bit 7 D27 R/W bit 12	R/W bit 6 D26 R/W bit 11	R/W bit 5 D25 R/W bit 10	R/W bit 4 D24 R/W bit 9	D10 R/W bit 3 D23 R/W bit 8	bit 2 D22 R/W	(DDR0 bit 1 D21 R/W) bit 0 D20 R/W	Initial value
 Port 2 direction Addres 00001: Port 3 direction Addres 00001: 	R/W register ss bit 15 ··· 2+ register ss bit 15 3+ D37 R/W	R/W (DDR2) (DDR3) (DDR3) bit 14 D36 R/W	R/W · bit 8 bit 13 D35 R/W	R/W bit 7 D27 R/W bit 12 D34	R/W bit 6 D26 R/W bit 11 D33	R/W bit 5 D25 R/W bit 10 D32	R/W bit 4 D24 R/W bit 9 D31	D10 R/W bit 3 D23 R/W bit 8 D30	bit 2 D22 R/W	(DDR0 bit 1 D21 R/W) bit 0 D20 R/W	Initial value
 Port 2 direction Addres 000011 Port 3 direction Addres 000011 Port 4 direction 	R/W register ss bit 15 ··· 2+ register ss bit 15 3+ D37 R/W	R/W (DDR2) (DDR3) bit 14 D36 R/W (DDR4)	R/W · bit 8 bit 13 D35 R/W	R/W bit 7 D27 R/W bit 12 D34 R/W	R/W bit 6 D26 R/W bit 11 D33	R/W bit 5 D25 R/W bit 10 D32	R/W bit 4 D24 R/W bit 9 D31	D10 R/W bit 3 D23 R/W bit 8 D30	bit 2 D22 R/W	(DDR0 bit 1 D21 R/W) bit 0 D20 R/W	Initial value
 Port 2 direction Addres 000011 Port 3 direction Addres 000011 Port 4 direction 	R/W register ss bit 15 ··· 2+ register ss bit 15 3+ D37 R/W register ss bit 15 ···	R/W (DDR2) (DDR3) bit 14 D36 R/W (DDR4)	R/W · bit 8 bit 13 D35 R/W	R/W bit 7 D27 R/W bit 12 D34 R/W bit 7 D47	R/W bit 6 D26 R/W bit 11 D33 R/W bit 6 D46	R/W bit 5 D25 R/W bit 10 D32 R/W	R/W bit 4 D24 R/W bit 9 D31 R/W bit 4 D44	D10 R/W bit 3 D23 R/W bit 8 D30 R/W	bit 2 D22 R/W bit 7	(DDR0 bit 1 D21 R/W (DDR2	bit 0 D20 R/W bit 0	00000000 ₪ Initial value 00000000 ₪ Initial value 00000000 ₪
 Port 2 direction Addres 000013 Port 3 direction Addres 000013 Port 4 direction Addres 	R/W register ss bit 15 ··· 2+ register ss bit 15 3+ D37 R/W register ss bit 15 ···	R/W (DDR2) (DDR3) bit 14 D36 R/W (DDR4)	R/W · bit 8 bit 13 D35 R/W	R/W bit 7 D27 R/W bit 12 D34 R/W bit 7	R/W bit 6 D26 R/W bit 11 D33 R/W bit 6	R/W bit 5 D25 R/W bit 10 D32 R/W bit 5	R/W bit 4 D24 R/W bit 9 D31 R/W bit 4	D10 R/W bit 3 D23 R/W bit 8 D30 R/W bit 3	bit 2 D22 R/W bit 7	(DDR0 bit 1 D21 R/W (DDR2 bit 1	bit 0 D20 R/W bit 0 2) bit 0	Initial value
 Port 2 direction Addres 000013 Port 3 direction Addres 000013 Port 4 direction Addres 	R/W register ss bit 15 ··· 2+ register ss bit 15 3+ D37 R/W register ss bit 15 ···	R/W (DDR2) (DDR3) bit 14 D36 R/W (DDR4)	R/W · bit 8 bit 13 D35 R/W	R/W bit 7 D27 R/W bit 12 D34 R/W bit 7 D47	R/W bit 6 D26 R/W bit 11 D33 R/W bit 6 D46	R/W bit 5 D25 R/W bit 10 D32 R/W bit 5 D45	R/W bit 4 D24 R/W bit 9 D31 R/W bit 4 D44	D10 R/W bit 3 D23 R/W bit 8 D30 R/W bit 3 D43	bit 2 D22 R/W bit 7 bit 7 bit 2 D42	(DDR0 bit 1 D21 R/W (DDR2 bit 1 D41	bit 0 D20 R/W bit 0 e) bit 0 D40	Initial value
 Port 2 direction Addres 000013 Port 3 direction Addres 000013 Port 4 direction Addres 	R/W register ss bit 15 ··· 2+ register ss bit 15 3+ D37 R/W register ss bit 15 ···	R/W (DDR2) (DDR3) bit 14 D36 R/W (DDR4)	R/W · bit 8 bit 13 D35 R/W	R/W bit 7 D27 R/W bit 12 D34 R/W bit 7 D47	R/W bit 6 D26 R/W bit 11 D33 R/W bit 6 D46	R/W bit 5 D25 R/W bit 10 D32 R/W bit 5 D45	R/W bit 4 D24 R/W bit 9 D31 R/W bit 4 D44	D10 R/W bit 3 D23 R/W bit 8 D30 R/W bit 3 D43	bit 2 D22 R/W bit 7 bit 7 bit 2 D42	(DDR0 bit 1 D21 R/W (DDR2 bit 1 D41	bit 0 D20 R/W bit 0 e) bit 0 D40	Initial value

Port 5 direction re	gistor		Ň									
Port 5 direction re Address	-	• •		bit 12	bit 11	1 bit 10	bit 9	bit 8	bit 7		···· bit 0	Initial value
000015 н	D57	D56	D55							(DDR4		0000000в
	R/W	R/W	R/W	R/W		/ R/W	R/W	R/W			<u></u> ;	
 Port 6 direction re 	gister ((DDR6))									
Address I	oit 15 · ·		••bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
000016н		(DDR7)		D67	D66	D65	D64	D63	D62	D61	D60	0000000в
				R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Port 7 direction re	aister ((DDR7))									
Address	•	· /		bit 12	bit 11	1 bit 10	bit 9	bit 8	bit 7		··· bit 0	Initial value
000017 н	_	_	_	D74	D73	B D72	D71			(DDR6		00000в
	_	<u> </u>	—	R/W	R/W	R/W	R/W	R/W				
• Port 8 direction reg	gister ((DDR8))									
Address I	oit 15 · ·		· · bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
000018н		(DDR9)		D87	D86	D85	D84	D83	D82	D81	D80	00000000в
	• .	·····	·····	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Port 9 direction re Address		• •		h:+ 40	L: 4 4	4 6:440	h:+ 0	h:+ 0	h:+ 7		h it 0	la tial value
		bit 14									···· bit 0	Initial value
000019н	D97 R/W	D96	D95 R/W		D93		D91	D90		(DDR8)	00000000в
Port A direction re				R/11	R/ W	R/W	K / VV	K / VV				
	•	•	,	hit 7	hit 6	hit E	bit 4	bit 3	hit 2	hit 1	hit 0	Initial value
Address b 00001Ан				DA7	bit 6 DA6	bit 5 DA5	DA4	DA3	bit 2 DA2	bit 1 DA1	bit 0 DA0	Initial value
00001AH		(DDRB)		R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	000000008
Port B direction re	aictor	ם מחח/	`	10,11	1011	10,00	10,11	10,10	10,00	10,00	10,00	
	-	•		bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Leffel en les
Address ^k 00001B⊦				DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Initial value
0000164		(DDRA)	l	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	0000000в
	.,			1.7.4.4	1.7, 4.4	11/11	1.7.4.4	11/10	11/00	1.7, 4.4		
Port C direction re	-											
Address b			· · bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
00001Cн	((ODR4)		—	—	—	—	DC3	DC2	DC1	DC0	0000000в
				—	—	—	—	R/W	R/W	R/W	R/W	
Port 4 output pin r	egister	r (ODR	4)									
Address b	oit 15 · ·		∙ bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
00001Dн	((DDRC)		OD47	OD46	OD45	OD44	OD43	OD42	OD41	OD40	0000000в
				R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
 Port 0 input pull-up 	o resis	tor setu	ıp reg	jister (F	RDR0)							
Address b	oit 15 · · ·		• • bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
					RD06	RD05	RD04	RD03	RD02	RD01	RD00	00000000в
00008CH		(RDR1)		RD07	KD00		KD04	KD05	IND02	INDUI	ND00	000000000

Port 1 input pull-up	o resist	or setu	ip rec	ister (RDR1)							
Address	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10) bit 9	bit 8	bit 7 ·		· · · · bit 0	Initial value
00008DH	RD17	RD16	RD1	5 RD1	4 RD1:	3 RD1	2 RD11	I RD10)	(RDR0))	0000000в
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			'	
 Port 6 input pull-up 	o resist	or setu	ip reg	ister (RDR6)							
Address b	oit 15 · · ·		·bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
00008EH	(D	isabled)		RD67	RD66	RD65	RD64	RD63	RD62	RD61	RD60	0000000в
	•			R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
 Analog input enab 	le regis	ster (Al	DER)									
Address I	oit 15 · · ·		• bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
00001Eн	(D	isabled)		ADE7	ADE6	ADE5	ADE4	ADE3	ADE2	ADE1	ADE0	11111111в
				R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
R/W : Rea — : Res X : Unc	erved	nd writab	le									

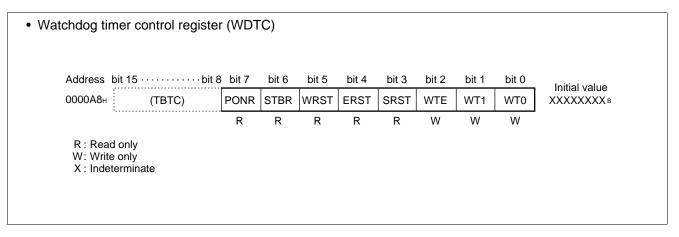


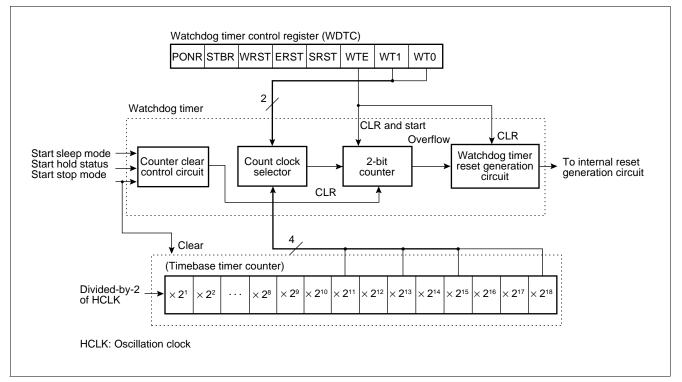

2. Timebase Timer

The timebase timer is a 18-bit free run counter (timebase counter) for counting up in synchronization to the internal count clock (divided-by-2 of oscillation) with an interval timer function for selecting an interval time from four types of 2¹²/HCLK, 2¹⁴/HCLK, 2¹⁶/HCLK, and 2¹⁹/HCLK.

The timebase timer also has a function for supplying operating clocks for the timer output for the oscillation stabilization time or the watchdog timer etc.

(1) Register Configuration





3. Watchdog Timer

The watchdog timer is a 2-bit counter operating with an output of the timebase timer and resets the CPU when the counter is not cleared for a preset period of time.

(1) Register Configuration

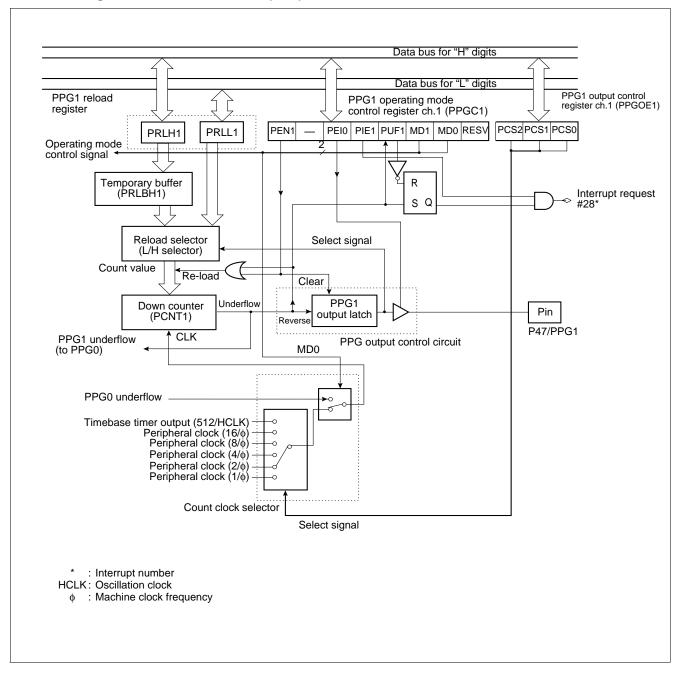
4. 8/16-bit PPG Timer

The 8/16-bit PPG timer is a 2-CH reload timer module for outputting pulse having given frequencies/duty ratios.

The two modules performs the following operation by combining functions.

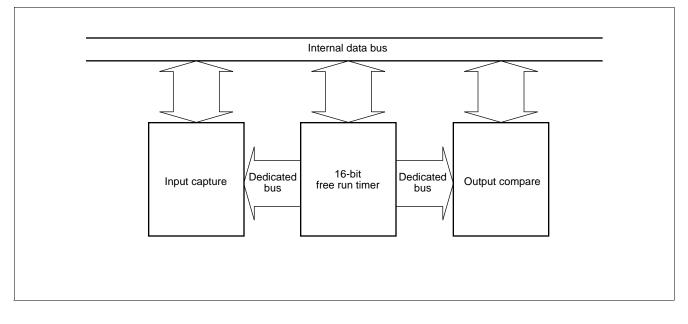
- 8-bit PPG output 2-CH independent operation mode This is a mode for operating independent 2-CH 8-bit PPG timer, in which PPG0 and PPG1 pins correspond to outputs from PPG0 and PPG1 respectively.
- 16-bit PPG timer output operation mode
 In this mode, PPG0 and PPG1 are combined to be operated as a 1-CH 8/16-bit PPG timer operating as a 16-bit timer. Because PPG0 and PPG1 outputs are reversed by an underflow from PPG1 outputting the same output pulses from PPG0 and PPG1 pins.
- 8 + 8-bit PPG timer output operation mode In this mode, PPG0 is operated as an 8-bit communications prescaler, in which an underflow output of PPG0 is used as a clock source for PPG1. A toggle output of PPG0 and PPG output of PPG1 are output from PPG0 and PPG1 respectively.
- PPG output operation

A pulse wave with any period/duty ratio is output. The module can also be used as a D/A converter with an external add-on circuit.


 PPG0 operati 	ng mode c	ontrol r	egiste	er ch.0	(PPG	CO)						
Add	ress bit 15 · ·		• • bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
000	044н (PPGC1)		PEN0	_	PE00	PIE0	PUF0	_	_	RESV	0X000XX1 B
	i			R/W		R/W	R/W	R/W				
 PPG1 operati 	ng mode c	ontrol r	egiste	er ch.1	(PPGC	C1)						
Add	lress bit 15	bit 14	bit 13	bit 12	2 bit 11	l bit 10) bit 9	bit 8	bit 7		···· bit 0	Initial value
000	045H PEN1	_	PEI0	PIE1	PUF	1 MD1	MDC	RES	v	(PPGC	0)	0X000001 B
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W				
 PPG0, 1 outp 	ut control r	egister	ch.0,	ch.1(F	PGOE	Ξ)						
Add	ress bit 15 · ·		· · bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
000	046н ([Disabled)	PCS2	PCS1	PCS0	PCM2	PCM1	PCM0	-	—	000000XXB
	·			R/W	R/W	R/W	R/W	R/W	R/W			
PPG0 reload	•	•		'		L 1. 1. 47		L'LO	L'1 7		L'1 0	Leff et als sets a
	dress bit 15	bit 14	bit 13	bit 12	2 bit 11	l bit 10) bit 9	bit 8	bit 7 ·		••••bit 0	Initial value
000	041н								<u> </u>	(PRLI	_0)	XXXXXXXX B
	R/W	R/W	R/W		/ R/V	/ R//	/ R/W	/ R/W	/			
PPG1 reload	0			,								
	Iress bit 15	bit 14	bit 13	bit 12	2 bit 11	1 bit 1() bit 9	bit 8	bit 7		···· bit 0	Initial value
000	043н									(PRLL [′])	XXXXXXXX в
 PPG0 reload 	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W				
	0	•		,								
	dress bit 15 · ·		••bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
000	^{)040н} (I	PRLH0)										XXXXXXXX в
• DDC1 relead	ragiotar L			R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
PPG1 reload	•	•		,								
	Iress bit 15	•••••	••bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
000	042н (PRLH1)										XXXXXXXX в
				R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
	able and writ	able										
— : Rese X : Unde	efined											
RESV: Res	served bit											

(2) Block Diagram

• Block diagram of 8/16-bit PPG timer (ch.0)

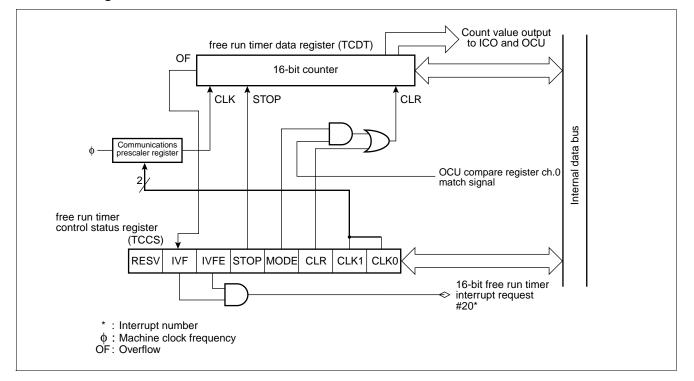

• Block diagram of 8/16-bit PPG timer (ch.1)

5. 16-bit I/O timer

The 16-bit I/O timer module consists of one 16-bit free run timer, two input capture circuits, and four output comparators. This module allows two independent waveforms to be output on the basis of the 16-bit free run timer. Input pulse width and external clock periods can, therefore, be measured.

• Block Diagram

(1) 16-bit free run Timer


The 16-bit free run timer consists of a 16-bit up counter, a control register, and a communications prescaler register. The value output from the timer counter is used as basic timer (base timer) for input capture (ICU) and output compare (OCU).

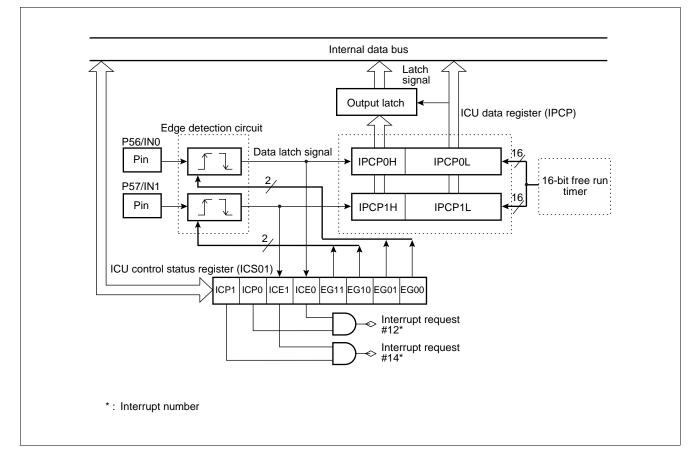
- A counter operation clock can be selected from four internal clocks ($\phi/4$, $\phi/16$, $\phi/32$ and $\phi/64$).
- An interrupt can be generated by overflow of counter value or compare match with OCU compare register 0. (Compare match requires mode setup.)
- The counter value can be initialized to "0000H" by a reset, software clear or compare match with OCU compare register 0.

• Register Configuration

 free run 	n timer dat Address	a regi: bit 15t		•	,	oit 11	oit 10) bit 9	bit 8 I	oit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
	000056н 000057н	T15	T14	T13	T12	T11	T10	Т9	Т8	T7	Т6	T5	T4	Т3	T2	T1	Т0	0000000в
		R/W	R/W	R/W	R/W	R/W	R/W	/ R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
• free run	n timer cor	ntrol st	atus	regi	ster (тсо	CS)											
							,											
	Address	bit 15·			· bit 8	bit 7	, 7	bit 6	bit 5	Ł	oit 4	bit 3	8 t	oit 2	bit 1	bi	t 0	Initial value
	Address 000058н	bit 15	(Disal		∙bit 8	bit 7 RES		bit 6 IVF	bit 5 IVFE		oit 4 TOP	bit 3		oit 2 CLR	bit 1 CLK	-	t 0 _K0	Initial value 0000000₀
		bit 15			· bit 8		SV			E S		1	DE 0			1 CI		

• Block Diagram

(2) Input Capture (ICU)


The input capture (ICU) generates an interrupt request to the CPU simultaneously with a storing operation of current counter value of the 16-bit free run timer to the ICU data register (IPCP) upon an input of a trigger edge to the external pin.

There are four sets (four channels) of the input capture external pins and ICU data registers, enabling measurements of maximum of four events.

- The input capture has two sets of external input pins (IN0, IN1) and ICU registers (IPCP), enabling measurements of maximum of four events.
- A trigger edge direction can be selected from rising/falling/both edges.
- The input capture can be set to generate an interrupt request at the storage timing of the counter value of the 16-bit free run timer to the ICU data register (IPCP).
- The input compare conforms to the extended intelligent I/O service (EI²OS).
- The input capture (ICU) function is suited for measurements of intervals (frequencies) and pulse widths.

 ICU data 	ita registe	r cn.0, c		010,		/							
	Address	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	bit 7 · ·		···bit 0	Initial value
IPCP0(high): IPCP1(high):		CP15	CP14	CP13	CP12	2 CP11	CP10	CP09	9 CP08	3 (IPCF	0 low, IP	CP1 low)	XXXXXXXXB
		R	R	R	R	R	R	R	R				
	Address	bit 15···		· bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
PCP0(low): PCP1(low):	000050н 000052н	(IPCP0 h	igh, IPCP	1 high)	CP07	CP06	CP05	CP04	CP03	CP02	CP01	CP00	XXXXXXXXB
					R	R	R	R	R	R	R	R	
Note	e: This regist detected. (rrespond			put waveform is
		(You can v	vord-acc	ess this						rrespond			put waveform is
	detected. ((You can v	vord-acc er (ICS	ess this 01)						rrespond bit 2			put waveform is Initial value
	detected. (ontrol statu	(You can v Is regist bit 15	vord-acc er (ICS	ess this 601) · bit 8	s registe	er, but you	u canno	t prograr	n it.)	·	ing exter	rnal pin in	
	detected. (Introl statu Address	(You can v Is regist bit 15	vord-acc er (ICS	ess this 601) · bit 8	bit 7	bit 6	u canno bit 5	t prograr bit 4	m it.) bit 3	bit 2	ing exter bit 1	nal pin in bit 0	Initial value
	detected. (Introl statu Address	(You can v is regist bit 15···· (D able and v only	vord-acc er (ICS isabled)	ess this 601) · bit 8	bit 7	bit 6	bit 5	t prograr bit 4 ICE0	n it.) bit 3 EG11	bit 2 EG10	ing exter bit 1 EG01	rnal pin in bit 0 EG00	Initial value

• Block Diagram

(3) Output Compare (OCU)

The output compare (OCU) is two sets of compare units consisting of four-channel OCU compare registers, a comparator and a control register.

An interrupt request can be generated for each channel upon a match detection by performing time-division comparison between the OCU compare data register setting value and the counter value of the 16-bit free run timer.

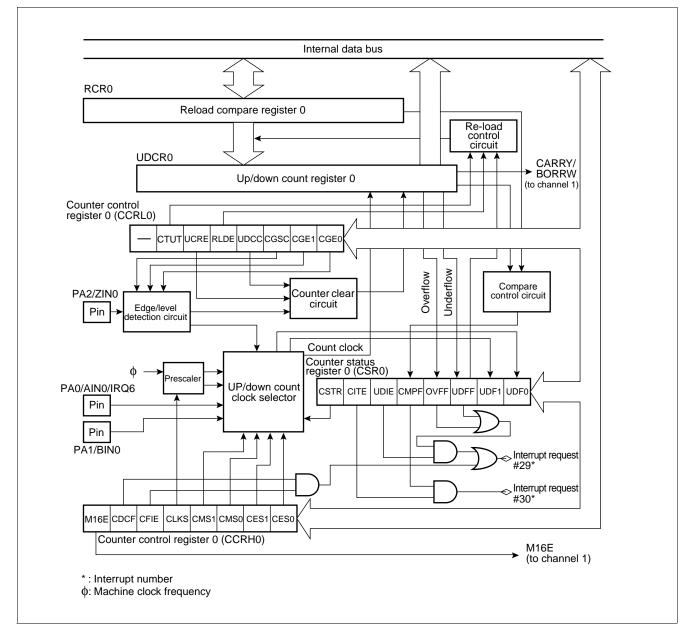
The OUT pin can be used as a waveform output pin for reversing output upon a match detection or a generalpurpose output port for directly outputting the setting value of the CMOD bit.

• Register Configuration

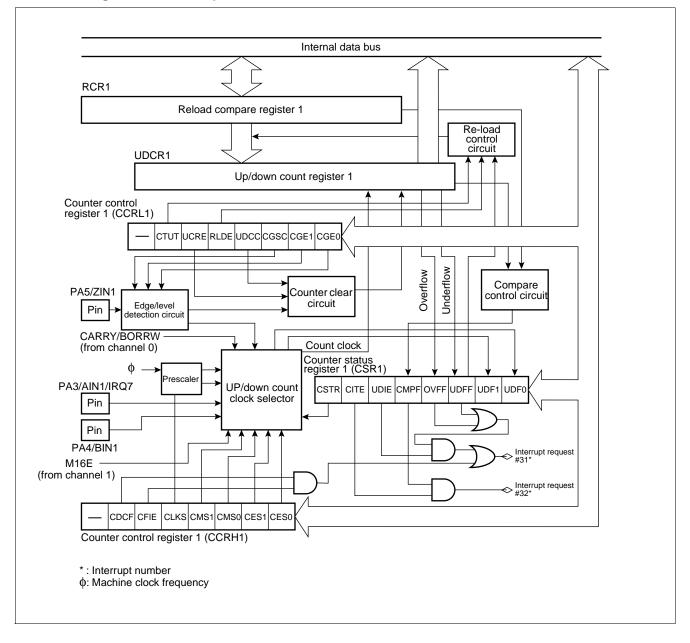
Γ

Address	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	bit 7		· · · bit 0	Initial value
000063н 000065н	—	_	_	СМОД	OTE1	OTEC	OTD1	OTD0	(0)	CS0, OC	S2)	00000в
				R/W	R/W	R/W	R/W	R/W				
OCU control status	registe	er ch.0	, ch.2	(OCS0	, OCS	2)						
	bit 15···		·bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
000062н 000064н	(005	S1, OCS	3)	ICP1	ICP0	ICE1	ICE0	-	-	CST1	CST0	0000 00 8
				R/W	R/W	R/W	R/W		_	R/W	R/W	
OCU compare regi	ster ch.	0 to cł	n.3 (O	CCP0	to OCO	CP3)						
00000 //	Add		bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8		Initial value
OCCP0 (high order add OCCP1 (high order add	ress): 000	005Dн	C15	C14	C13	C12	C11	C10	C09	C08		XXXXXXXX
OCCP2 (high order add OCCP3 (high order add			R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
	Add	ress	_	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
OCCP0 (low order addr OCCP1 (low order addr				C07	C06	C05	C04	C03	C02	C01	C00	
OCCP2 (low order addr OCCP3 (low order addr				R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
R/W : Read — : Rese X : Unde	rved	writable										

• Block diagram


6. 8/16-bit up/down counter/timer

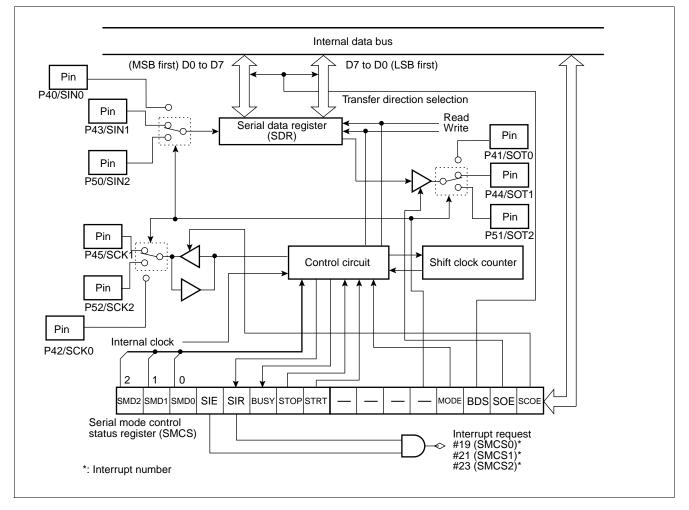
The 8/16-bit up/down counter/timer consists of six event input pins, two 8-bit up/down counters, two 8-bit reload compare registers, and their controllers.


 Up/down count Address 	register			hit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
			·····-									
000070н	((JDCR1)		D07 R	D06 R	D05 R	D04 R	D03 R	D02 R	D01 R	D00 R	0000000в
Up/down count	register		CR1)	ĸ	ĸ	ĸ	ĸ	ĸ	ĸ	ĸ	ĸ	
Address	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10) bit 9	bit 8	bit 7		···· bit 0	Initial value
000071н	D17	D16	D15	D14	D13	D12	D11	D10		(UDCR	0)	0000000в
	R	R	R	R	R	R	R	R				
Reload compare	e registe			hit 7	hit 6	hit E	hit 1	hit 2	hit 2	hit 1	hit O	Initial value
Address					bit 6 D06	bit 5 D05	bit 4	bit 3	bit 2 D02	bit 1	bit 0	Initial value
000072н	((RCR1)	L	D07			D04	D03	-	D01	D00	0000000в
 Reload compare 	rogioto	vr 1 /D(٦D1)	W	W	W	W	W	W	W	W	
 Reioau compare Address 	bit 15	•	bit 13	bit 12	bit 11	bit 10) bit 9	bit 8	bit 7 ·		···· bit 0	Initial value
000073н	D17	D16	D15	D14	D13	D12	D11	D10		(RCR0		0000000в
	W	W	W	W	W	W	W	W				
 Counter status r 												
Address 000074н	bit 15 · · ·		• bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
000074н 000078н	(Rese	erved are		CSTR	CITE	UDIE	CMPF	OVFF	UDFF	UDF1	UDF0	00000000 в
		o		R/W	R/W	R/W	R/W	R/W	R/W	R	R	
Counter control Address	bit 15 ···	0, 1 (C	bit 8	J, CCR bit 7	L1) bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
000076H		-10, CCR			CTUT	UCRE	RLDE	UDCC	CGSC	CGE1	CGE0	- 0000000 в
00007Ан	l		····		R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Counter control	register	0 (CC	RH0)									
Address	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	bit 7 · ·		···· bit 0	Initial value
000077н	M16E	CDCF	CFIE	CLKS	CMS1	I CMS	0 CES1	CESC)	(CCRL	0)	0000000 в
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W				
Counter control	•	•		1		1.1.40		1.11.0			1.11.0	
Address	bit 15	bit 14	bit 13								···· bit 0	Initial value
00007Вн		CDCF	CFIE)	(CCRL	1)	-000000в
		R/W	R/W	R/W	R/W	R/W	R/W	R/W				
R/W : Read R : Read W : Write — : Under	only only	vritable										

(2) Block Diagram

• Block diagram of 8/16-bit up/down counter/timer 0

• Block diagram of 8/16-bit up/down counter/timer 1

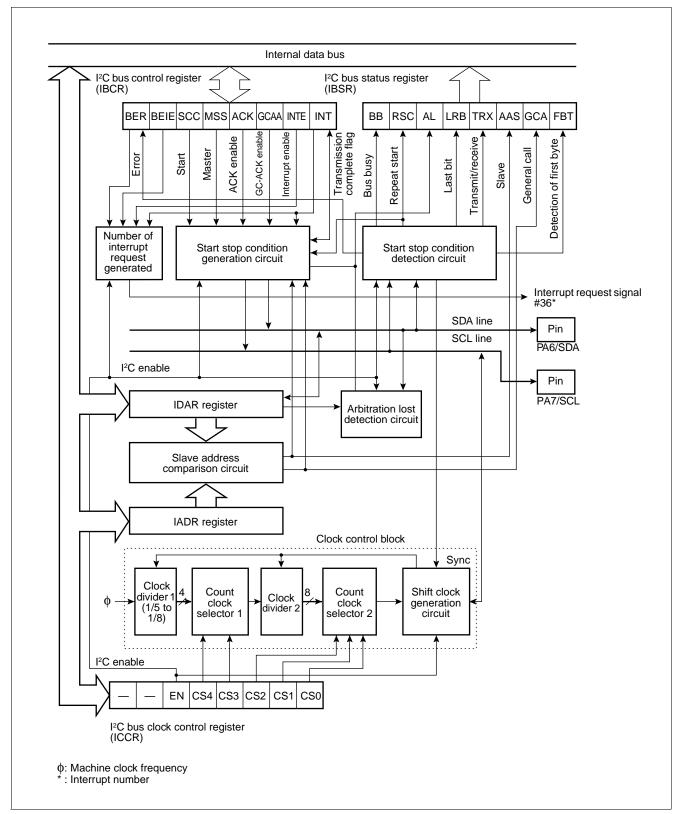


7. Extended I/O serial interface

The extended I/O serial interface transfers data using a clock synchronization system having an 8-bit x 1 channel configuration.

For data transfer, you can select LSB first/MSB first.

Serial mode cont Address	trol upp bit 15	er stat bit 14		gister 0 bit 12	•				,		· · · · bit 0	Initial value
SMCSH0: 000049н SMCSH1: 00004Dн	SMD2	SMD1	SMDC	SIE	SIR	BUS	Y STO	P STRT		(SMCS	L)	0000010в
SMCSH2: 00007DH	R/W	R/W	R/W	R/W	R/W	R	R/W	R/W				
 Serial mode cont 	rol low	er statu	us reg	ister 0	to 2 (\$	SMCSL	0 to S	MCSL2)			
710000	bit 15 · · ·		· · bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
SMCSL0: 000048н SMCSL1: 00004Сн SMCSL2: 00007Сн	(S	MCSH)		—			—	MODE	BDS	SOE	SCOE	
SINC3L2. 00007 CH			_	—	—		—	R/W	R/W	R/W	R/W	
 Serial data regist 	ter 0 to	2 (SD	R0 to	SDR2)								
Address SDR0: 00004A⊦	bit 15 · · ·		••bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
SDR1: 00004EH SDR2: 00007EH	(D	isabled)		D7	D6	D5	D4	D3	D2	D1	D0	XXXXXXXX B
3DR2. 00007 EH				R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
R/W : Readable and R : Read only — : Reserved X : Undefined	writable											


8. I²C Interface

The I²C interface is a serial I/O port supporting Inter IC BUS operating as master/slave devices on I²C bus.

The MB90570/A series contains one channel of an I²C interface, having the following features.

- Master/slave transmission/reception
- Arbitration function
- Clock synchronization function
- Slave address/general call address detection function
- Transmission direction detection function
- Repeated generation function start condition and detection function
- Bus error detection function

 I²C bus status reg 	ister (IBSR	R)									
-	bit 15 · · · · ·		bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
000068н		CR)	BB	RSC	AL	LRB	TRX	AAS	GCA	FBT	0000000в
	·	<i>.</i>	R	R	R	R	R	R	R	R	
 I²C bus control reg 	gister (IBC	R)									
Address	bit 15 bi	it 14 bit 13	3 bit 12	bit 11	bit 10	bit 9	bit 8	bit 7 ·		···bit 0	Initial value
000069н	BER E	BEIE SCO	C MSS	ACK	GCA	A INTE	INT		(IBSR)		0000000в
	R/W F	R/W R/W	R/W	R/W	R/W	R/W	R/W				
 I²C bus clock cont 	rol registe	r (ICCR)									
Address	bit 15 · · · · ·	· · · · · · · bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
00006Ан	(IAD	DR)	_	_	EN	CS4	CS3	CS2	CS1	CS0	0XXXXXB
	·				R/W	R/W	R/W	R/W	R/W	R/W	
 I²C bus address re 	egister (IAI	DR)									
Address	bit 15 bi	it 14 bit 13	3 bit 12	bit 11	bit 10	bit 9	bit 8	bit 7 ·		· · · bit 0	Initial value
00006Вн	—	A6 A5	A4	A3	A2	A1	A0		(ICCR)		-XXXXXXXB
	— F	R/W R/W	R/W	R/W	R/W	R/W	R/W				
 I²C bus data regis 	ster (IDAR))									
Address	bit 15 · · · · ·	·····bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
00006Сн	(Disa	abled)	D7	D6	D5	D4	D3	D2	D1	D0	XXXXXXXXB
			R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
R : Read — : Rese		able									

9. UARTO (SCI), UART1 (SCI)

UART0 (SCI) and UART1 (SCI) are general-purpose serial data communication interfaces for performing synchronous or asynchronous communication (start-stop synchronization system).

- Data buffer: Full-duplex double buffer
- Transfer mode: Clock synchronized (with start and stop bit)

Clock asynchronized (start-stop synchronization system)

- Baud rate: Embedded dedicated baud rate generator
 - External clock input possible

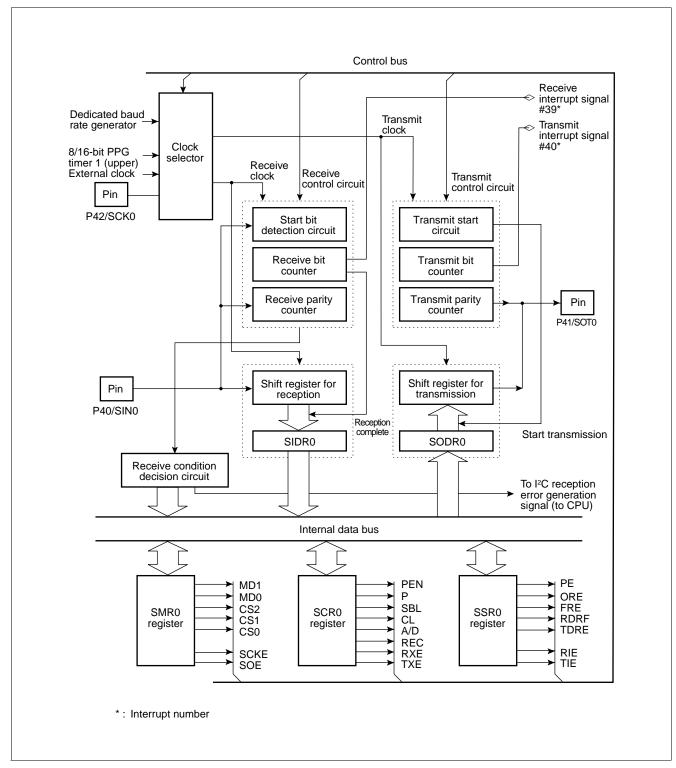
Internal clock (a clock supplied from 16-bit reload timer 0 can be used.)

Asynchronization 9615 bps/31250 bps/4808 bps/2404 bps/1202 bps CLK synchronization 1 Mbps/500 kbps/250 kbps/125 kbps/62.5 kbps 12 MHz, 8 MHz, 10 MHz 12 MHz and 16 MHz

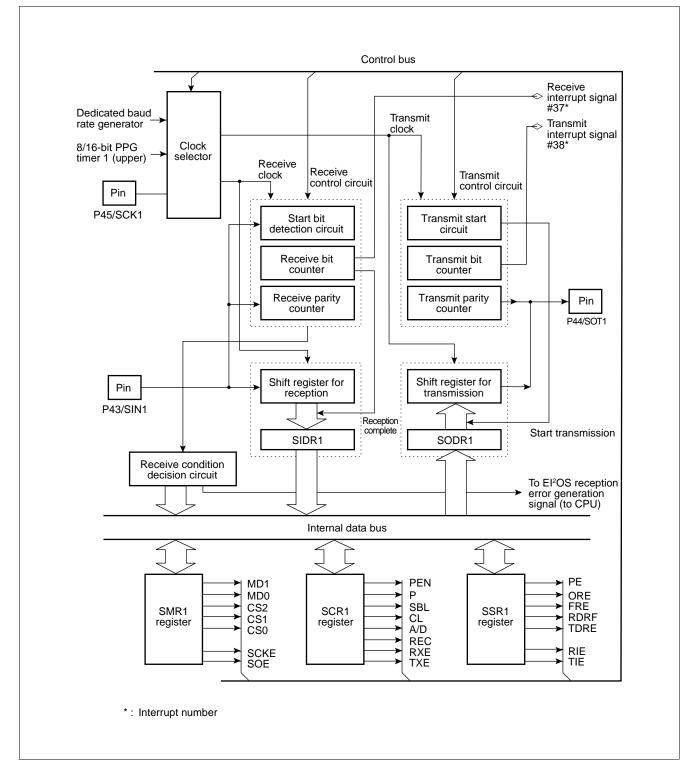
- Data length: 7 bit to 9 bit selective (without a parity bit) 6 bit to 8 bit selective (with a parity bit)
- Signal format: NRZ (Non Return to Zero) system
- Reception error detection: Framing error

Overrun error

Parity error (multi-processor mode is supported, enabling setup of any baud rate by an external clock.)


• Interrupt request: Receive interrupt (receive complete, receive error detection)

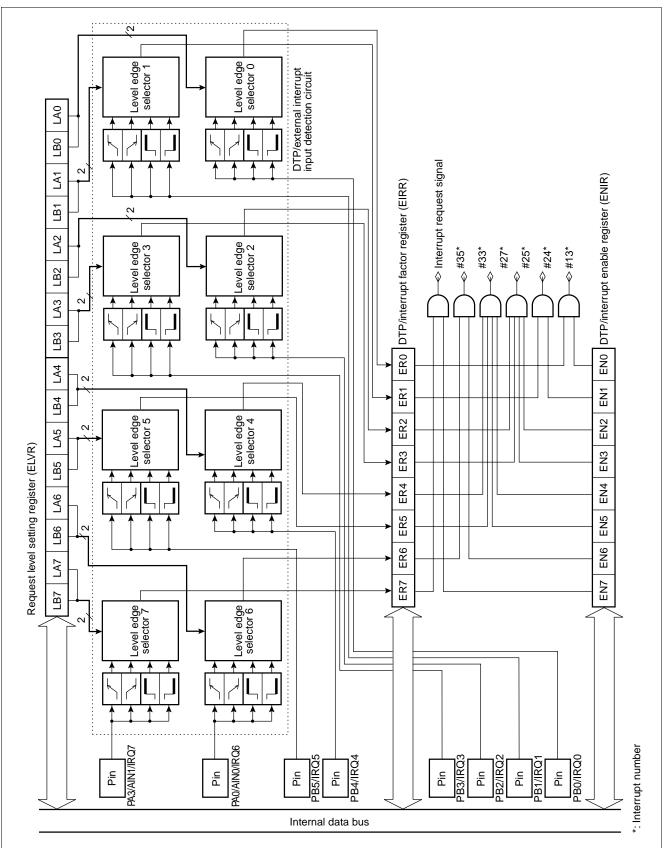
Transmit interrupt (transmission complete)


Transmit/receive conforms to extended intelligent I/O service (EI2OS)

 Serial control register 	er 0,1 (S	SCR0,	SCR1)								
Address	bit 15	bit 14	bit 13	bit 12	2 bit 11	bit 10	0 bit 9	bit 8	bit 7∙		· · · ·bit 0	Initial value
000021н 000025н	PEN	Р	SBL	CL	A/D	REC	RXE	TXE	(S	MR0, SM	/IR1)	00000100в
	R/W	R/W	R/W	R/W	R/W	W	R/W	R/W				
 Serial mode register 	· 0, 1 (S	SMR0,	SMR1)								
Address	bit 15· · ·		∙ ∙bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
000020н 000024н	(SC	R0, SCR	(1)	MD1	MD0	CS2	CS1	CS0	RESV	SCKE	SOE	0000000в
 Serial status registe 	r 0,1 (S	SR0, 5	SSR1)	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Address	bit 15	bit 14	bit 13	bit 12	2 bit 11	bit 10	0 bit 9	bit 8	bit 7.		· · · ·bit 0	Initial value
000023н 000027н	PE	ORE	FRE	RDR	FTRD	= -	RIE	TIE	(SIDR0,	SIDR1/SOD	R0,SODR1)	00001-00в
	R	R	R	R	R		R/W	R/W				
 Serial input data reg 	ister 0,	1 (SID	R0, S	IDR1)								
Address 000022⊦	bit 15· · ·		∙ ∙bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
000022н 000026н	(SS	R0, SSR	1)	D7	D6	D5	D4	D3	D2	D1	D0	XXXXXXXX в
				R	R	R	R	R	R	R	R	
 Serial output data re 	egister (),1 (SC	DR0,	SODF	R1)							
Address 000022 _H	bit 15···		∙ ∙bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
000026н	(SS	R0, SSR	1)	D7	D6	D5	D4	D3	D2	D1	D0	XXXXXXXX в
				W	W	W	W	W	W	W	W	
Communications pre		contro	-	bit 7	(CDC bit 6	BU, CL	bit 4	bit 3	bit 2	bit 1	bit 0	
Address 000028н						DILO						Initial value
00002Ан	(L	Disabled)		MD	—	_	—	DIV3	DIV2	DIV1	DIV0	01111в
R/W: Readabl R : Read on		itable		R/W	_	—	_	R/W	R/W	R/W	R/W	
W : Write on	lý											
— : Reserve X : Undefine												
RESV: Reserved												

- (2) Block Diagram
- UART0 (SCI)

• UART1 (SCI)


10. DTP/External Interrupt Circuit

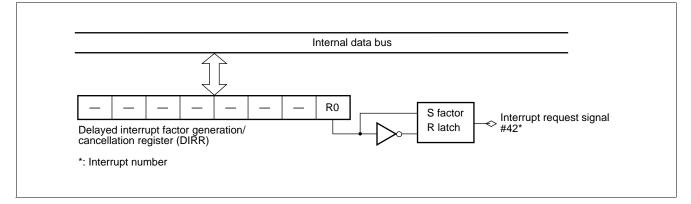
DTP (Data Transfer Peripheral), which is located between the peripheral circuit outside the device and the F²MC-16LX CPU, receives an interrupt request or DMA request generated by the external peripheral circuit* for transmission to the F²MC-16LX CPU. DTP is used to activate the intelligent I/O service or interrupt processing. As request levels for IRQ2 to IRQ7, two types of "H" and "L" can be selected for the intelligent I/O service. Rising and falling edges as well as "H" and "L" can be selected for an external interrupt request. For IRQ0 and IRQ1, a request by a level cannot be entered, but both edges can be entered.

* : The external peripheral circuit is connected outside the MB90570/A series device.

Note: IRQ0 and IRQ1 cannot be used for the intelligent I/O service and return from an interrupt.

 DTP/interrupt factor 	regist	ər (EIR	R)									
Address	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	bit 7		···· bit 0	Initial value
000031н	ER7	ER6	ER5	ER4	ER3	ER2	ER1	ER0		(ENIR)	XXXXXXXXXB
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W				
 DTP/interrupt enabl 	e regis	ter (EN	IIR)									
Address I	oit 15 · ·		• • bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
000030н		(EIRR)		EN7	EN6	EN5	EN4	EN3	EN2	EN1	EN0	00000000 B
				R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
 Request level settin 	g regis	ter (EL	VR)									
Address I	oit 15 · ·		• • bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
Low order address 000032_{H}	(EL	VR uppe	r)	LB3	LA3	LB2	LA2	LB1	LA1	LB0	LA0	00000000B
				R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Address	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	bit 7		···· bit 0	Initial value
High order address 000033H	LB7	LA7	LB6	LA6	LB5	LA5	LB4	LA4		(ELVR lo	wer)	00000000 B
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	-			
R/W: Readab X :Undefin		ritable										

11. Delayed Interrupt Generation Module

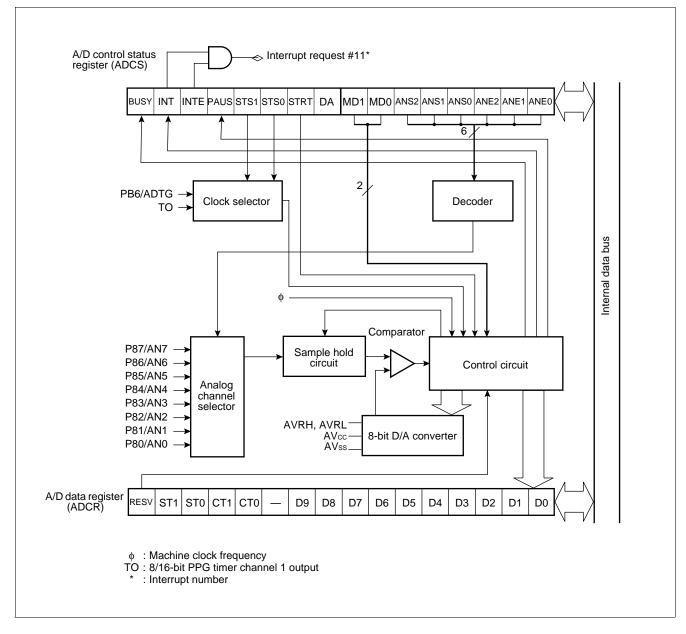

The delayed interrupt generation module generates interrupts for switching tasks for development on a realtime operating system (REALOS series). The module can be used to generate softwarewise generates hardware interrupt requests to the CPU and cancel the interrupts.

This module does not conform to the extended intelligent I/O service (EI²OS).

(1) Register Configuration

The DIRR is the register used to control delay interrupt request generation/cancellation. Programming this register with "1" generates a delay interrupt request. Programming this register with "0" cancels a delay interrupt request. Upon a reset, an interrupt is canceled. The reserved bit area can be programmed with either "0" or "1". For future extension, however, it is recommended that bit set and clear instructions be used to access this register.

12. 8/10-bit A/D Converter

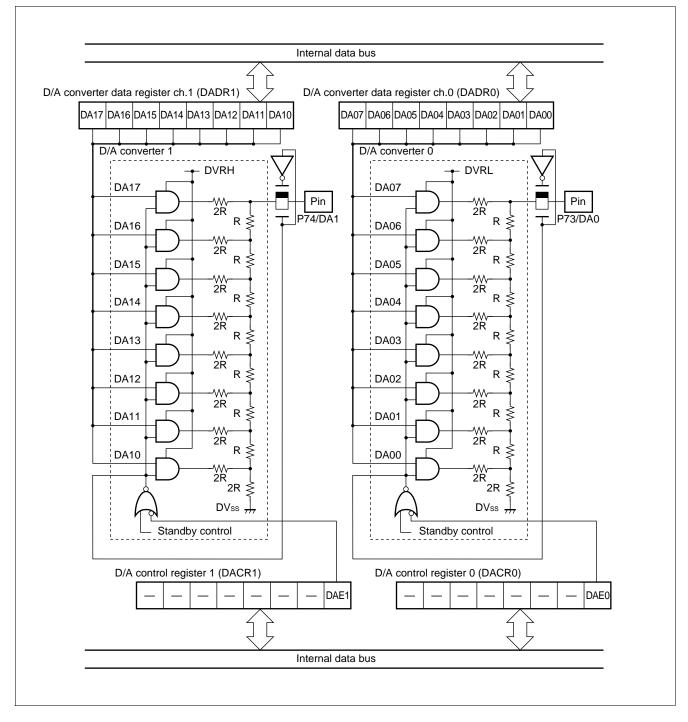

The 8/10-bit A/D converter has a function of converting analog voltage input to the analog input pins (input voltage) to digital values (A/D conversion) and has the following features.

- Minimum conversion time: 26.3 µs (at machine clock of 16 MHz, including sampling time)
- Minimum sampling time: 4 μ s/256 μ s (at machine clock of 16 MHz)
- Compare time: 176/352 machine cycles per channel (176 machine cycles are used for a machine clock below 8 MHz.)
- Conversion method: RC successive approximation method with a sample and hold circuit.
- 8-bit or 10-bit resolution
- Analog input pins: Selectable from eight channels by software Single conversion mode: Selects and converts one channel.
 Scan conversion mode:Converts two or more successive channels. Up to eight channels can be programmed. Continuous conversion mode: Repeatedly converts specified channels.
 Stop conversion mode:Stops conversion after completing a conversion for one channel and wait for the next

activation (conversion can be started synchronously.)

- Interrupt requests can be generated and the extended intelligent I/O service (EI²OS) can be started after the end of A/D conversion. Furthermore, A/D conversion result data can be transferred to the memory, enabling efficient continuous processing.
- When interrupts are enabled, there is no loss of data even in continuous operations because the conversion data protection function is in effect.
- Starting factors for conversion: Selected from software activation, and external trigger (falling edge).

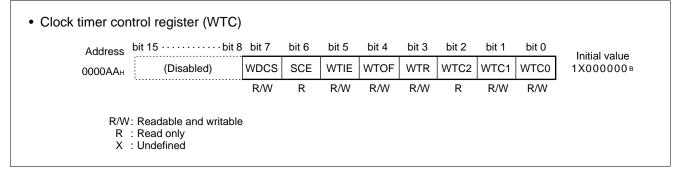
Addr	ess	bit 15	bit 14	bit 13	bit 12	bit 11	l bit 10	bit 9	bit 8	bit 7		···· bit 0	Initial value
0000	37н	BUSY	INT	INTE	PAUS	STS1	1 STSC	STR	r RESV	/	(ADCS	1)	0000000в
		R/W	R/W	R/W	R/W	R/W	/ R/W	W	R/W				
A/D control	l stat	us regi	ister lo	wer d	igits (A	DCS1)						
Addr	ess t	oit 15 · · ·		• • bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
0000	36н	(A	DCS2)		MD1	MD0	ANS2	ANS1	ANS0	ANE2	ANE1	ANE0	00000000B
					R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
A/D data re	egiste	er uppe	er digit	s (AD	CR2)								
Addr	ess	bit 15	bit 14	bit 13	bit 12	bit 11	l bit 10	bit 9	bit 8	bit 7		···· bit 0	Initial value
0000	39н	DSEL	ST1	ST0	CT1	ХСТО	- o	D9	D8		(ADCR	1)	00001-ХХв
		W	W	W	W	W	_			-		,	
A/D data re	egiste	er lowe	r digits	(ADC	CR1)								
	-	oit 15 · · ·	-	•		bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
0000	38н	(A	DCR2)		D7	D6	D5	D4	D3	D2	D1	D0	XXXXXXXX
		·			R	R	R	R	R	R	R	R	
			and writ	abla									

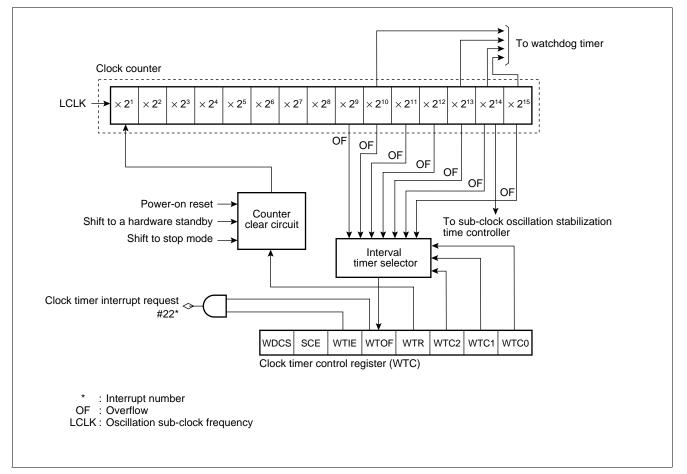


13. 8-bit D/A Converter

Γ

The 8-bit D/A converter, which is based on the R-2R system, supports 8-bit resolution mode. It contains two channels each of which can be controlled in terms of output by the D/A control register.

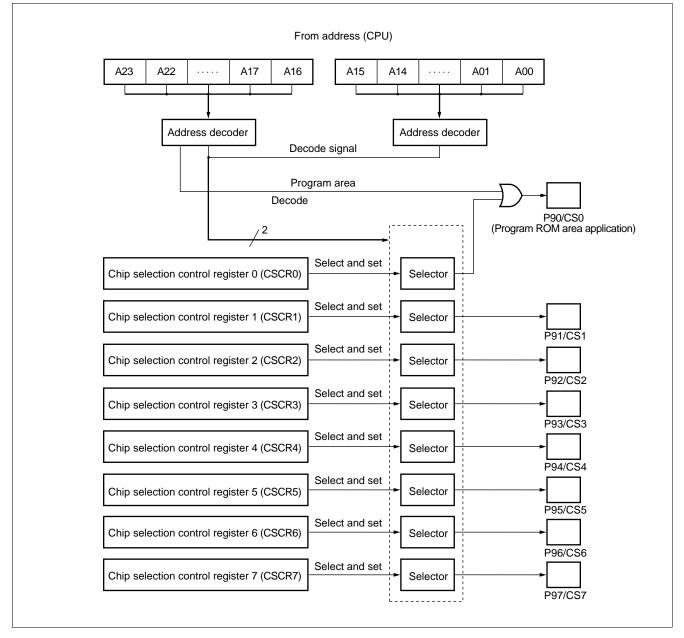

Address	bit 15 · ·		••bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
00003Ан	1)	DADR1)		DA07	DA06	DA05	DA04	DA03	DA02	DA01	DA00	XXXXXXXX в
				R/W	R/W							
D/A converter	data re	gister c	:h.1 ([DADR1)							
Address	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	bit 7 ·		· · · bit 0	Initial value
00003Вн	DA17	DA16	DA15	DA14	DA13	DA12	2 DA11	DA10)	(DADR	0)	XXXXXXXXXB
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W				
Address 00003Сн	:	DACR1)	· · bit 8	bit 7 —	bit 6 —	bit 5 —	bit 4 —	bit 3 —	bit 2 —	bit 1 — —	bit 0 DAE0 R/W	Initial value Ов
D/A control reg	gister 1	(DACF	R1)									
Address	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	bit 7 ·		· · · bit 0	Initial value
	_	-	—	—	-	_	_	DAE1		(DACR	0)	Ов
00003Dн								R/W				
00003Dн	L		—	—	_	_		N/ V V				



14. Clock Timer

The clock timer control register (WTC) controls operation of the clock timer, and time for an interval interrupt.

(1) Register Configuration



15. Chip Select Output

This module generates a chip select signal for facilitating a memory and I/O unit, and is provided with eight chip select output pins. When access to an address is detected with a hardware-set area set for each pin register, a select signal is output from the pin.

Chip selection c	ontrol ı	register	[.] 1, 3,	5, 7 (C	SCR1	, CSCI	R3, CS	SCR5,	CSCR	7)		
Address CSCR1: 000081⊬	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	3 bit 7		···· bit 0	Initial value
CSCR3: 000083H CSCR5: 000085H		_	—	_	ACTL	. OPEL	CSA	1 CSA	0 (CSCR0	, CSCR2, CS	CR4, CSCR6)	
CSCR7: 000087H	-	_	—	—	R/W	R/W	R/W	R/W	/			
Chip selection c	ontrol I	register	0, 2,	4, 6 (C	SCR0	, CSCI	R2, CS	SCR4,	CSCR	6)		
Address b	oit 15 · · ·		·bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
CSCR0: 000080н CSCR2: 000082н CSCR4: 000084н	(CSCR1, CS	CR3, CSCR5,	CSCR7)	_	_	_	_	ACTL	OPEL	CSA1	CSA0	0000в
CSCR6: 000086H				—	_	—	—	R/W	R/W	R/W	R/W	
	Readab Reserve	le and w ed	ritable									

(3) Decode Address Spaces

Pin	C	SA	Decede encos	Number of	Remarks
name	1	0	Decode space	area bytes	Remarks
	0	0	F00000н to FFFFFFн	1 Mbyte	Becomes active when the program ROM
CS0	0	1	F80000н to FFFFFFн	512 kbyte	area or the program vector is fetched.
0.50	1	0	FE0000H to FFFFFH	128 kbyte	
	1	1	—	Disabled	
	0	0	E00000н to EFFFFFн	1 Mbyte	Adapted to the data ROM and RAM areas,
CS1	0	1	F00000н to F7FFFFн	512 kbyte	and external circuit connection applications.
CST	1	0	FC0000H to FDFFFFH	128 kbyte	
	1	1	68FF80н to 68FFFFн	128 byte	
	0	0	003000н to 003FFFн	4 kbyte	Adapted to the data ROM and RAM areas,
000	0	1	FA0000H to FBFFFFH	128 kbyte	and external circuit connection applications.
CS2	1	0	68FF80н to 68FFFFн	128 byte	
	1	1	68FF00н to 68FF7Fн	128 byte	
	0	0	F80000н to F9FFFFн	128 kbyte	Adapted to the data ROM and RAM areas,
000	0	1	68FF00н to 68FF7Fн	128 byte	and external circuit connection applications.
CS3	1	0	68FE80н to 68FEFFн	128 byte	
	1	1	—	Disabled	
	0	0	002800н to 002FFFн	2 kbyte	Adapted to the data ROM and RAM areas,
004	0	1	68FE80н to 68FEFFн	128 byte	and external circuit connection applications.
CS4	1	0	—	Disabled	
	1	1	—	Disabled	
	0	0	68FF80н to 68FFFFн	128 byte	Adapted to the data ROM and RAM areas,
005	0	1	—	Disabled	and external circuit connection applications.
CS5	1	0	_	Disabled	
	1	1	—	Disabled	
	0	0	68FF00н to 68FF7Fн	128 byte	Adapted to the data ROM and RAM areas,
000	0	1	—	Disabled	and external circuit connection applications.
CS6	1	0	—	Disabled	
	1	1	—	Disabled	
CS7	_	_	—	Disabled	Disabled

16. Communications Prescaler Register

This register controls machine clock division.

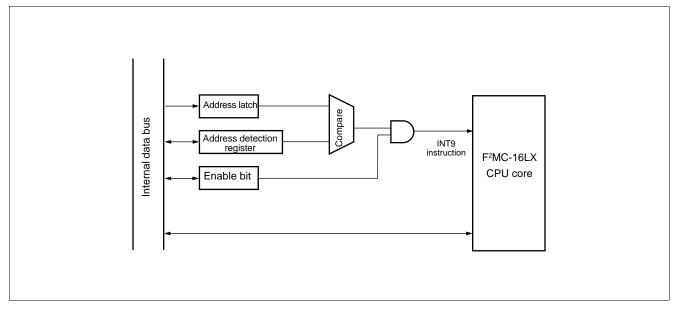
Output from the communications prescaler register is used for UART0 (SCI), UART1 (SCI), and extended I/O serial interface.

The communications prescaler register is so designed that a constant baud rate may be acquired for various machine clocks.

(1) Register Configuration

 Communication 	ns prescaler control	registe	er 0,1 (CDCR	0, CDC	CR1)				
Address	bit 15 · · · · · · bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
000028н 00002Ан	(Disabled)	MD	_	_	_	DIV3	DIV2	DIV1	DIV0	01111в
		R/W				R/W	R/W	R/W	R/W	
	: Readable and writable : Reserved									

17. Address Match Detection Function

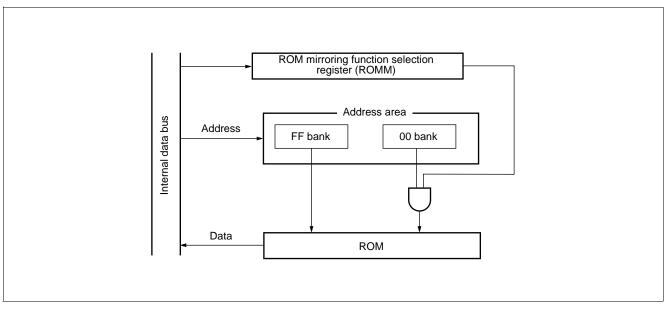

When the address is equal to a value set in the address detection register, the instruction code loaded into the CPU is replaced forcibly with the INT9 instruction code (01H). As a result, when the CPU executes a set instruction, the INT9 instruction is executed. Processing by the INT#9 interrupt routine allows the program patching function to be implemented.

Two address detection registers are supported. An interrupt enable bit is prepared for each register. If the value set in the address detection register matches an address and if the interrupt enable bit is set at "1", the instruction code loaded into the CPU is replaced forcibly with the INT9 instruction code.

(1) Register Configuration

er 0 to 2	(PADF	RO)						
bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
								XXXXXXXXB
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
								XXXXXXXXB
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
								XXXXXXXXB
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
er 3 to 5 bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
								XXXXXXXXXB
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	
								Initial value XXXXXXX8
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
hit 7	hit 6	bit 5	hit 4	hit 3	hit 2	hit 1	bit 0	
		bit 0	DR 4		5112			Initial value XXXXXXX8
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
	-	•	,					
								Initial value
								0000000в
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
	bit 7 R/W bit 7 R/W bit 7 R/W bit 7 R/W bit 7 R/W bit 7 R/W bit 7 R/W	bit 7 bit 6 R/W R/W bit 7 bit 6	R/W R/W R/W bit 7 bit 6 bit 5 R/W R/W R/W bit 7 bit 6 bit 5 R/W R/W R/W bit 7 bit 6 bit 5 R/W R/W R/W bit 7 bit 6 bit 5 R/W R/W R/W bit 7 bit 6 bit 5 R/W R/W R/W bit 7 bit 6 bit 5 R/W R/W R/W bit 7 bit 6 bit 5 R/W R/W R/W bit 7 bit 6 bit 5 R/W R/W R/W bit 7 bit 6 bit 5 R/W R/W R/W bit 7 bit 6 bit 5 R/W R/W R/W Bit 7 bit 6 bit 5 RESV RESV RESV	bit 7 bit 6 bit 5 bit 4 R/W R/W R/W R/W bit 7 bit 6 bit 5 bit 4 R/W R/W R/W R/W bit 7 bit 6 bit 5 bit 4 R/W R/W R/W R/W bit 7 bit 6 bit 5 bit 4 R/W R/W R/W R/W Bit 7 bit 6 bit 5 bit 4 R/W R/W R/W R/W Bit 7 bit 6 bit 5 bit 4 R/W R/W R/W R/W bit 7 bit 6 bit 5 bit 4 R/W R/W R/W R/W bit 7 bit 6 bit 5 bit 4 R/W R/W R/W R/W bit 7 bit 6 bit 5 bit 4 R/W R/W R/W R/W Bit 7 bit 6 bit 5 bit 4 <tr< td=""><td>bit 7 bit 6 bit 5 bit 4 bit 3 R/W R/W R/W R/W R/W bit 7 bit 6 bit 5 bit 4 bit 3 R/W R/W R/W R/W R/W bit 7 bit 6 bit 5 bit 4 bit 3 R/W R/W R/W R/W R/W bit 7 bit 6 bit 5 bit 4 bit 3 R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W bit 7 bit 6 bit 5 bit 4 bit 3 R/W R/W R/W R/W R/W bit 7 bit 6 bit 5 bit 4 bit 3 R/W R/W R/W R/W R/W bit 7 bit 6 bit 5 bit 4 bit 3 R/W R/W R/W R/W R/W Bit 7 bit 6 bit 5 bit 4 bit 3 RESV RESV RESV RESV AD1E <!--</td--><td>bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 R/W R/W R/W R/W R/W R/W R/W bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 R/W R/W R/W R/W R/W R/W bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 R/W R/W R/W R/W R/W R/W bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 R/W R/W R/W R/W R/W R/W bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 R/W R/W R/W R/W R/W R/W bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 R/W R/W R/W R/W R/W R/W bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 R/W R/W</td><td>bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 R/W R/W R/W R/W R/W R/W R/W R/W R/W bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 R/W R/W R/W R/W R/W R/W R/W bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 R/W R/W R/W R/W R/W R/W R/W R/W bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 R/W R/W R/W R/W R/W R/W R/W bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 R/W R/W R/W R/W R/W R/W R/W bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 R/W R/W R/W</td><td>bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0 R/W R/W R/W R/W R/W R/W R/W R/W R/W bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0 R/W R/W R/W R/W R/W R/W R/W R/W bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0 R/W R/W R/W R/W R/W R/W R/W R/W bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0 R/W R/W R/W R/W R/W R/W R/W R/W bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0 R/W R/W R/W R/W R/W R/W R/W R/W bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0 R/W</td></td></tr<>	bit 7 bit 6 bit 5 bit 4 bit 3 R/W R/W R/W R/W R/W bit 7 bit 6 bit 5 bit 4 bit 3 R/W R/W R/W R/W R/W bit 7 bit 6 bit 5 bit 4 bit 3 R/W R/W R/W R/W R/W bit 7 bit 6 bit 5 bit 4 bit 3 R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W bit 7 bit 6 bit 5 bit 4 bit 3 R/W R/W R/W R/W R/W bit 7 bit 6 bit 5 bit 4 bit 3 R/W R/W R/W R/W R/W bit 7 bit 6 bit 5 bit 4 bit 3 R/W R/W R/W R/W R/W Bit 7 bit 6 bit 5 bit 4 bit 3 RESV RESV RESV RESV AD1E </td <td>bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 R/W R/W R/W R/W R/W R/W R/W bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 R/W R/W R/W R/W R/W R/W bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 R/W R/W R/W R/W R/W R/W bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 R/W R/W R/W R/W R/W R/W bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 R/W R/W R/W R/W R/W R/W bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 R/W R/W R/W R/W R/W R/W bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 R/W R/W</td> <td>bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 R/W R/W R/W R/W R/W R/W R/W R/W R/W bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 R/W R/W R/W R/W R/W R/W R/W bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 R/W R/W R/W R/W R/W R/W R/W R/W bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 R/W R/W R/W R/W R/W R/W R/W bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 R/W R/W R/W R/W R/W R/W R/W bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 R/W R/W R/W</td> <td>bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0 R/W R/W R/W R/W R/W R/W R/W R/W R/W bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0 R/W R/W R/W R/W R/W R/W R/W R/W bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0 R/W R/W R/W R/W R/W R/W R/W R/W bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0 R/W R/W R/W R/W R/W R/W R/W R/W bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0 R/W R/W R/W R/W R/W R/W R/W R/W bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0 R/W</td>	bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 R/W R/W R/W R/W R/W R/W R/W bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 R/W R/W R/W R/W R/W R/W bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 R/W R/W R/W R/W R/W R/W bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 R/W R/W R/W R/W R/W R/W bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 R/W R/W R/W R/W R/W R/W bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 R/W R/W R/W R/W R/W R/W bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 R/W R/W	bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 R/W R/W R/W R/W R/W R/W R/W R/W R/W bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 R/W R/W R/W R/W R/W R/W R/W bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 R/W R/W R/W R/W R/W R/W R/W R/W bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 R/W R/W R/W R/W R/W R/W R/W bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 R/W R/W R/W R/W R/W R/W R/W bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 R/W R/W R/W	bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0 R/W R/W R/W R/W R/W R/W R/W R/W R/W bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0 R/W R/W R/W R/W R/W R/W R/W R/W bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0 R/W R/W R/W R/W R/W R/W R/W R/W bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0 R/W R/W R/W R/W R/W R/W R/W R/W bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0 R/W R/W R/W R/W R/W R/W R/W R/W bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0 R/W

(2) Block Diagram


18. ROM Mirroring Function Selection Module

The ROM mirroring function selection module can select what the FF bank allocated the ROM sees through the 00 bank according to register settings.

(1) Register Configuration

ROM mirroring f	functio	n selec	tion reg	gister (ROMN	1)				
Address	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	bit 7 bit 0	Initial value
00006 F н	—	_	—	_	—	_	—	MI	(Disabled)	1в
			_	_		_	_	W		
	Write or Reserve									

Note: Do not access this register during operation at addresses 004000_H to 00FFFF_H.

(2) Block Diagram

19. Low-power Consumption (Standby) Mode

The F²MC-16LX has the following CPU operating mode configured by selection of an operating clock and clock operation control.

Clock mode

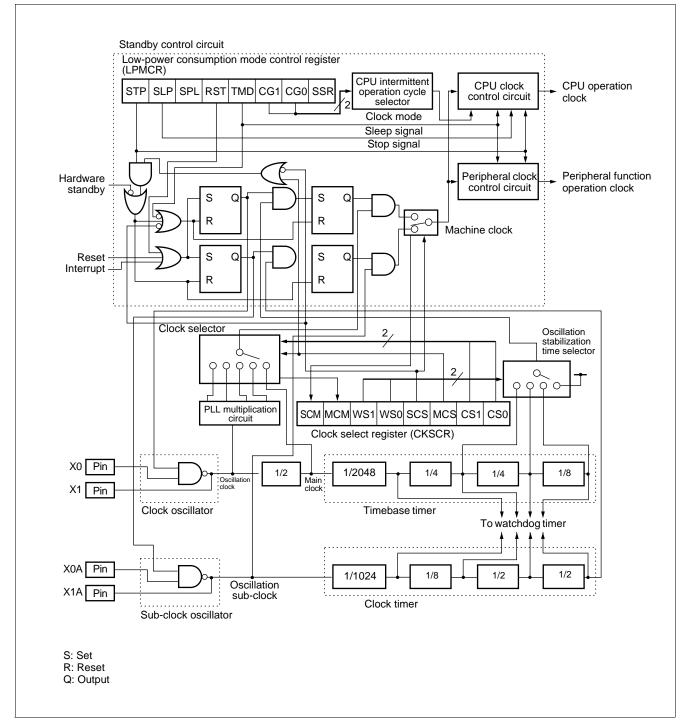
PLL clock mode: A mode in which the CPU and peripheral equipment are driven by PLL-multiplied oscillation clock (HCLK).

Main clock mode: A mode in which the CPU and peripheral equipment are driven by divided-by-2 of the oscillation clock (HCLK).

The PLL multiplication circuits stops in the main clock mode.

CPU intermittent operation mode

The CPU intermittent operation mode is a mode for reducing power consumption by operating the CPU intermittently while external bus and peripheral functions are operated at a high-speed.


• Hardware standby mode

The hardware standby mode is a mode for reducing power consumption by stopping clock supply to the CPU by the low-power consumption control circuit, stopping clock supplies to the CPU and peripheral functions (timebase timer mode), and stopping oscillation clock (stop mode, hardware standby mode). Of these modes, modes other than the PLL clock mode are power consumption modes.

(1) Register Configuration

Addres	s bit 15	CKSCR bit 14	, bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	bit 7		···· bit 0	
0000A1	H SCM	MCM	WS1	WS0	SCS	MCS	CS1	CS0		(LPMCI	R)	Initial value 11111100в
	R	R	R/W	R/W	R/W	R/W	R/W	R/W				
Low-power co	onsumpti	on mod	e cor	trol reg	ister (L	PMCF	R)					
Addres	s bit 15 ·		· · bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
0000A0)н (CKSCR)		STP	SLP	SPL	RST	TMD	CG1	CG0	SSR	00011000 B
				W	W	R/W	W	R/W	W	R/W	R/W	
1	W: Reada R : Read o V : Write o	only	ritable									

(2) Block Diagram

ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Ratings

(AVss = Vss = 0.0 V)

Devementer	Symbol	Va	lue	Unit	Remarks
Parameter	Symbol	Min.	Max.	Unit	Remarks
	Vcc	Vss-0.3	Vss + 6.0	V	
	AVcc	Vss-0.3	Vss + 6.0	V	*1
Power supply voltage	AVRH, AVRL	Vss-0.3	Vss + 6.0	V	*1
	DVRH	Vss-0.3	Vss + 6.0	V	*1
Input voltage	Vi	Vss-0.3	Vss + 6.0	V	*2
Output voltage	Vo	Vss-0.3	Vss + 6.0	V	*2
"L" level maximum output current	Iol		15	mA	*3
"L" level average output current	IOLAV		4	mA	*4
"L" level total maximum output current	ΣΙοι		100	mA	
"L" level total average output current	ΣΙοιαν		50	mA	*5
"H" level maximum output current	Іон		-15	mA	*3
"H" level average output current	Іонач		-4	mA	*4
"H" level total maximum output current	ΣІон		-100	mA	
"H" level total average output current	ΣΙοήαν		-50	mA	*5
			300	mW	MB90573/4 MB90V570/A
Power consumption	PD		500	mW	MB90574C
			800	mW	MB90F574/A
Operating temperature	TA	-40	+85	°C	
Storage temperature	Tstg	-55	+150	°C	

*1: AVcc, AVRH, AVRL, and DVRH shall never exceed Vcc. AVRL shall never exceed AVRH.

*2: V_I and V_o shall never exceed V_{cc} + 0.3 V.

*3: The maximum output current is a peak value for a corresponding pin.

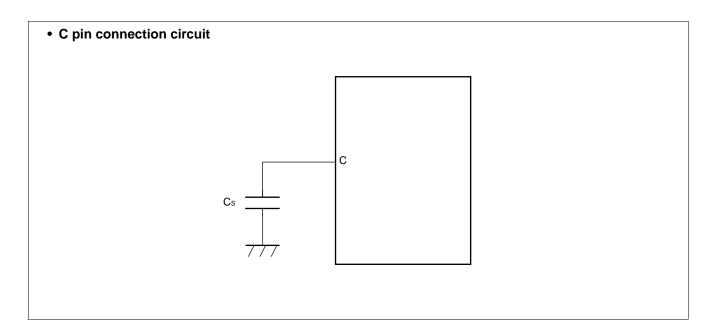
*4: Average output current is an average current value observed for a 100 ms period for a corresponding pin.

*5: Total average current is an average current value observed for a 100 ms period for all corresponding pins.

Note: Average output current = operating × operating efficiency

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

(AVss = Vss = 0.0 V)Value Symbol Unit Remarks Parameter Min. Max. V Vcc 3.0 Normal operation (MB90574/C) 5.5 V Normal operation (MB90F574/A) Vcc 4.5 5.5 Power supply voltage Retains status at the time of V Vcc 3.0 5.5 operation stop Smoothing capacitor Cs 0.1 1.0 * μF TA °C Operating temperature -40 +85


2. Recommended Operating Conditions

* : Use a ceramic capacitor or a capacitor with equivalent frequency characteristics. The smoothing capacitor to be connected to the Vcc pin must have a capacitance value higher than Cs.

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.

Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.

No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representatives beforehand.

3. DC Characteristics

		[(AVcc = Vcc = 5.0)) V ± 10%, /		s = 0.0 V, T	∧ = −4	0°C to +85°C)
Parameter	Symbol	Pin name	Condition		Value	I	Unit	Remarks
- aramotor	• • • • • •		Condition	Min.	Тур.	Max.	•	
"H" level input	Vihs	CMOS hysteresis input pin	Vcc = 3.0 V to 5.5 V	0.8 Vcc	_	Vcc + 0.3	V	
voltage	VIHM	MD pin input	(MB90573) (MB90574)	Vcc - 0.3		Vcc + 0.3	V	
"L" level input voltage	Vils	CMOS hysteresis input pin	$V_{cc} = 4.5 V \text{ to } 5.5 V (MB90F574)$	Vss – 0.3	_	0.2 Vcc	V	
voltage	VILM	MD pin input		Vss – 0.3	—	Vss + 0.3	V	
"H" level output voltage	Vон	Other than PA6 and PA7	Vcc = 4.5 V Іон = -2.0 mA	Vcc-0.5	_		V	
"L" level output voltage	Vol	All output pins	Vcc = 4.5 V Io∟ = 2.0 mA	_	_	0.4	V	
Open-drain output leakage current	lleak	PA6, PA7	_		0.1	5	μΑ	
Input leakage current	Iı∟	Other than PA6 and PA7	Vcc = 5.5 V Vss < Vi < Vcc	-5	_	5	μA	
Pull-up resistance	Rup	P00 to P07, P10 to P17, P60 to P67, RST, MD0, MD1	_	15	30	100	kΩ	
Pull-down resistance	RDOWN	MD0 to MD2		15	30	100	kΩ	
	Icc	Vcc	Internal operation		30	40	mA	MB90574
	Icc	Vcc	at 16 MHz Vcc at 5.0 V		85	130	mA	MB90F574/A
	Icc	Vcc	Normal operation		50	80	mA	MB90574C
	Icc	Vcc	Internal operation		35	45	mA	MB90574
Power	Icc	Vcc	at 16 MHz Vcc at 5.0 V		90	140	mA	MB90F574/A
supply current*	Icc	Vcc	A/D converter operation		55	85	mA	MB90574C
	Icc	Vcc	Internal operation		40	50	mA	MB90574
	Icc	Vcc	at 16 MHz Vcc at 5.0 V		95	145	mA	MB90F574/A
	Icc	Vcc	D/A converter operation		65	85	mA	MB90574C

/ ^ ` / ٠, · / -000 +

(Continued)

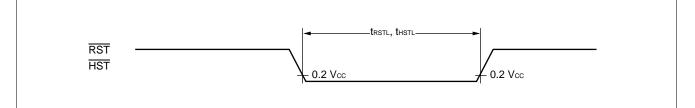
(Continued)

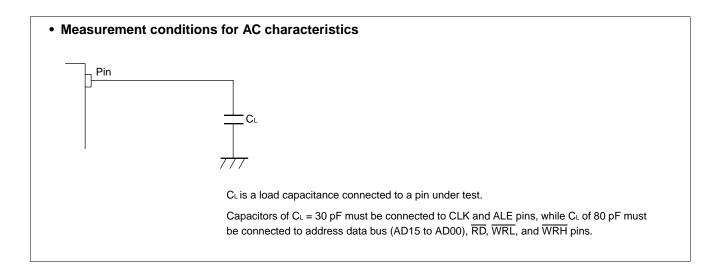
Parameter	Symbol	Pin name	Condition		Value		Unit	Remarks
Farameter	Symbol	Fin name	Condition	Min.	Тур.	Max.	Unit	Remarks
	lcc	Vcc	When data written in flash mode programming of erasing	_	95	140	mA	MB90F574/A
	Iccs	Vcc	Internal operation	_	7	12	mA	MB90574
	Iccs	Vcc	at 16 MHz Vcc = 5.0 V		5	10	mA	MB90F574/A
	Iccs	Vcc	In sleep mode	—	15	20	mA	MB90574C
	Iccl	Vcc	Internal operation	_	0.1	1.0	mA	MB90574
	Iccl	Vcc	at 8 kHz Vcc = 5.0 V	_	4	7	mA	MB90F574/A
Power supply	lcc∟	Vcc	T _A = +25°C Subsystem operation	_	0.03	1	mA	MB90574C
current*	Iccls	Vcc	Internal operation	_	30	50	mA	MB90574
	Iccls	Vcc	at 8 kHz Vcc = 5.0 V	_	0.1	1	mA	MB90F574/A
	Iccls	Vcc	T _A = +25°C In subsleep mode	—	10	50	μA	MB90574C
	Ісст	Vcc	Internal operation	_	15	30	μΑ	MB90574
	Ісст	Vcc	at 8 kHz Vcc = 5.0 V	_	30	50	μA	MB90F574/A
	Ісст	Vcc	$T_A = +25^{\circ}C$ In clock mode	—	1.0	30	μA	MB90574C
	Іссн	Vcc	T. 125°C	_	5	20	μA	MB90574
	Іссн	Vcc	T _A = +25°C In stop mode	_	0.1	10	μA	MB90F574/A MB90574C
Input capacitance	CIN	Other than AVcc, AVss, Vcc, Vss	_	_	10	80	pF	

(AVcc = Vcc = 5.0 V \pm 10%, AVss = Vss = 0.0 V, T_A = -40°C to +85°C)

* : The current value is preliminary value and may be subject to change for enhanced characteristics without previous notice.

4. AC Characteristics


Г


(1) Reset, Hardware Standby Input Timing

(AVcc = √	$/cc = 5.0 V \pm$	10%, AVss = Vss = 0.	0 V, Ta :	= -40°C to +85°C)
		Malua			

Parameter	Symbol	Din namo	Condition	Va	lue	Unit	Remarks
Farameter	Symbol	FIII IIdille	Condition	Min.	Max.	Unit	Relliars
Reset input time	t rstl	RST		4 t _{CP} *	—	ns	
Hardware standby input time	t HSTL	HST		4 t _{CP} *		ns	

* : For tcp (internal operating clock cycle time), refer to "(3) Clock Timings."

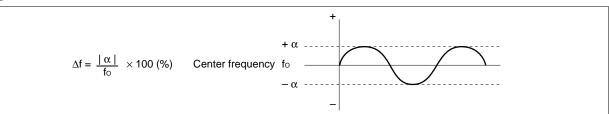
(2) Specification for Power-on Reset

$(AV_{SS} = V_{SS} = 0.0 \text{ V}, T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

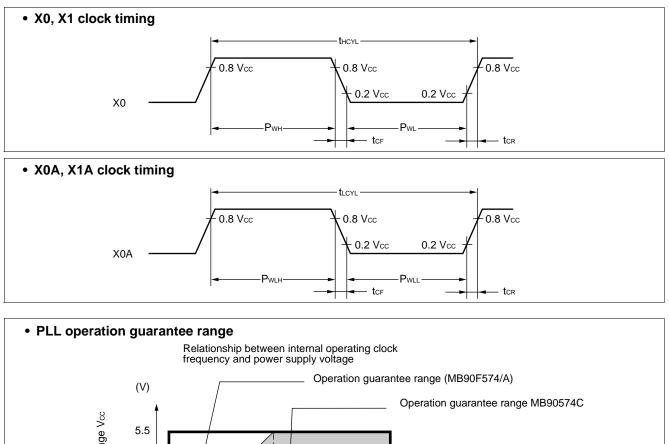
Parameter	Symbol	Din namo	Condition	Va	lue	Unit	Remarks
Falameter	Symbol		Condition	Min.	Max.	Unit	itema ka
Power supply rising time	tR	Vcc		0.05	30	ms	*
Power supply cut-off time	toff	Vcc		4		ms	Due to repeated operations

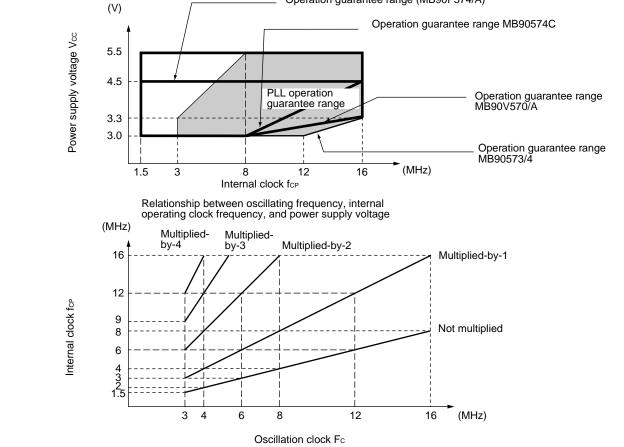
*: Vcc must be kept lower than 0.2 V before power-on.

Notes: • The above ratings are values for causing a power-on reset.

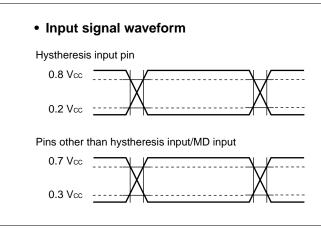

• There are internal registers which can be initialized only by a power-on reset. Apply power according to this rating to ensure initialization of the registers.

Vcc	0.2 V 0.2 V 0.2 V
Sudden changes i	n the power supply voltage may cause a power-on reset.
To change the por	wer supply voltage while the device is in operation, it is recommended to raise the voltage
smoothly to suppr	ess fluctuations as shown below.
In this case, chang	ge the supply voltage with the PLL clock not used. If the voltage drop is 1 mV or fewer per
second, however,	you can use the PLL clock.
In this case, chang	ge the supply voltage with the PLL clock not used. If the voltage drop is 1 mV or fewer per


(3) Clock Timings


Parameter	Symbol	Pin name	Condition		Value		Unit	Remarks
Falameter	Symbol	Finnanie	Condition	Min.	Тур.	Max.	Unit	Neillai KS
Clock frequency	Fc	X0, X1		3	_	16	MHz	
Clock frequency	Fc∟	X0A, X1A			32.768		kHz	
Clock cycle time	t HCYL	X0, X1		62.5	_	333	ns	
	t LCYL	X0A, X1A			30.5	_	μs	
Input clock pulse width	Р _{WH} , Рwl	X0		10		_	ns	Recommend duty ratio of 30% to 70%
	Р _{WLH} , Р _{WLL}	X0A		_	15.2	_	μs	
Input clock rising/falling time	tcr, tcf	X0, X0A		_	_	5	ns	External clock operation
Internal operating clock	fср	_		1.5	_	16	MHz	Main clock operation
frequency	f LCP	_	-	_	8.192	_	kHz	Subclock operation
Internal operating clock cycle	t CP	_	-	62.5	_	333	ns	External clock operation
time	t LCP	_		_	122.1	_	μs	Subclock operation
Frequency fluctuation rate locked	Δf	_				5	%	*

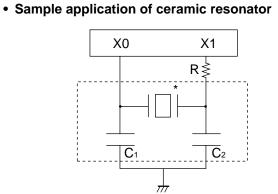
* : The frequency fluctuation rate is the maximum deviation rate of the preset center frequency when the multiplied PLL signal is locked.



The PLL frequency deviation changes periodically from the preset frequency "(about $CLK \times (1CYC \text{ to } 50 \text{ CYC})$ ", thus minimizing the chance of worst values to be repeated (errors are minimal and negligible for pulses with long intervals).



The AC ratings are measured for the following measurement reference voltages.



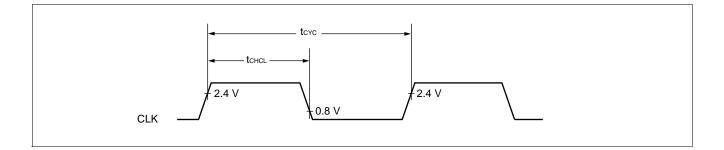
• Output signal waveform

Hystheresis input pin

(4) Recommended Resonator Manufacturers

• Mask ROM product (MB90574)

Resonator manufacturer*	Resonator	Frequency (MHz)	C₁ (pF)	C₁ (pF)	R
	CSA2.00MG040	2.00	100	100	No required
Murata Mfg. Co., Ltd.	CSA4.00MG040	4.00	100	100	No required
	CSA8.00MTZ	8.00	30	30	No required
	CSA16.00MXZ040	16.00	15	15	No required
	CSA32.00MXZ040	32.00	5	5	No required
	CCR3.52MC3 to CCR6.96MC3	3.52 to 6.96	Built-in	Built-in	No required
TDK Corporation	CCR7.0MC5 to CCR12.0MC5	7.00 to 12.00	Built-in	Built-in	No required
	CCR20.0MSC6 to CCR32.0MSC6	20.00 to 32.00	Built-in	Built-in	No required
					(Continued)

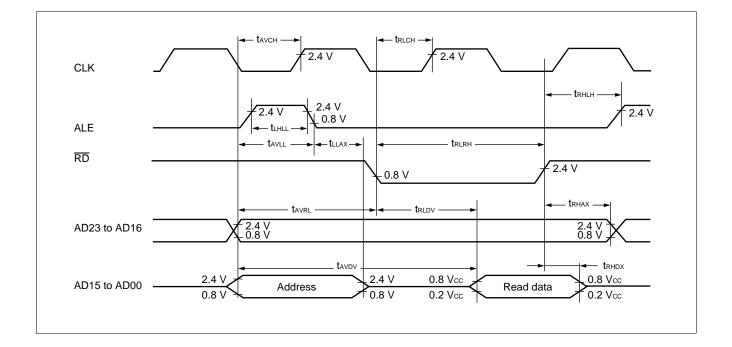

(Continued)

Resonator manufacturer*	Resonator	Frequency (MHz)	C₁ (pF)	C2 (pF)	R
	CSA2.00MG040	2.00	100	100	No required
	CSA4.00MG040	4.00	100	100	No required
Murata Mfg. Co., Ltd.	CSA8.00MTZ	8.00	30	30	No required
	CSA16.00MXZ040	16.00	15	15	No required
	manufacturer* Resonator Prequency (MH2) C1 (pr) C2 (pr) urata Mfg. Co., Ltd. CSA2.00MG040 2.00 100 100 N CSA4.00MG040 4.00 100 100 N CSA4.00MZ2040 16.00 15 15 N CSA32.00MXZ040 32.00 5 5 N CCR3.52MC3 to CCR6.96MC3 3.52 to 6.96 Built-in Built-in N TDK Corporation CCR7.0MC5 to CCR12.0MC5 7.00 to 12.00 Built-in N	No required			
		3.52 to 6.96	Built-in	Built-in	No required
TDK Corporation		7.00 to 12.00	Built-in	Built-in	No required
		20.00 to 32.00 Built-in		Built-in	No required
 Murata Elec Murata Euro Murata Elec Murata Elec TDK Corporat TDK Corpor Chicago Reg TDK Electro Components TDK Singap 	tronics North America, ppe Management GmbH tronics Singapore (Pte.) ion ation of America gional Office: TEL 1-708 nics Europe GmbH s Division: TEL 49-2102 ore (PTE) Ltd.: TEL 65- ong Co., Ltd.: TEL: 852-	4: TEL 49-911-66870 9: TEL 65-758-4233 8-803-6100 9-9450 -273-5022 -736-2238	300		

(5) Clock Output Timing

 $(AV_{CC} = V_{CC} = 5.0 \text{ V} \pm 10\%, \text{ AV}_{SS} = V_{SS} = 0.0 \text{ V}, \text{ T}_{A} = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

Parameter	Symbol	Pin name	Condition	Va	lue	Unit	Remarks
Faiameter	Symbol	i in name	Condition	Min.	Max.	Unit	I Cillai Ko
Cycle time	t cyc	CLK		62.5	—	ns	
$CLK \uparrow \to CLK \downarrow$	t CHCL	CLK		20		ns	

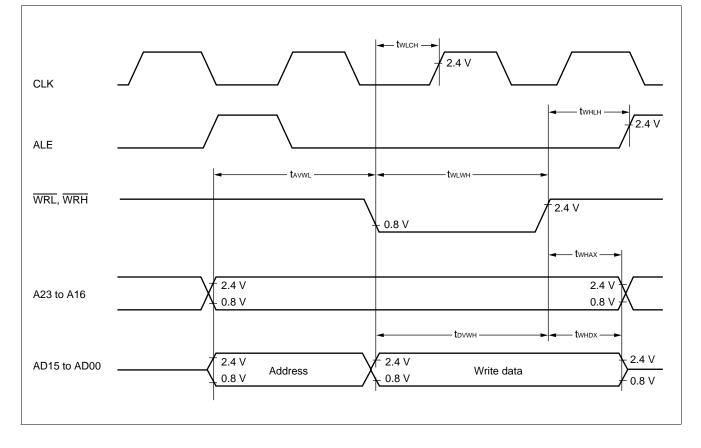


(6) Bus Read Timing

$(AVcc = Vcc = 5.0 V \pm 10\%, AVss = Vss = 0.0 V, T_A = -40^{\circ}C to +85^{\circ}C)$

Parameter	Symbol	Pin name	Condition	Va	lue	Unit	Remarks
Farameter	Symbol	Pin name	Condition	Min.	Max.	Unit	Rellidiks
ALE pulse width	t lhll	ALE		1 tcp*/2 – 20	—	ns	
Effective address \rightarrow ALE \downarrow time	t avll	ALE, A23 to A16, AD15 to AD00		1 tcp*/2 – 20		ns	
$ALE \downarrow \rightarrow address$ effective time	t llax	ALE, AD15 to AD00		1 tcp*/2 – 15	_	ns	
$ \begin{array}{c} \text{Effective address} \rightarrow \\ \overline{\text{RD}} \downarrow \text{time} \end{array} $	t avrl	RD, A23 to A16, AD15 to AD00		1 tcp* – 15	_	ns	
Effective address \rightarrow valid data input	tavdv	A23 to A16, AD15 to AD00		_	5 tcp*/2 – 60	ns	
RD pulse width	t rlrh	RD		3 tcp*/2 – 20	—	ns	
$\overline{RD} \downarrow \rightarrow valid data input$	t rldv	RD, AD15 to AD00	_	_	3 tcp*/2 − 60	ns	
$\overline{RD} \uparrow \rightarrow data hold time$	t RHDX	RD, AD15 to AD00		0	_	ns	
$\overline{RD} \uparrow \rightarrow ALE \uparrow time$	t RHLH	ALE, RD		1 tcp*/2 – 15	_	ns	
$\overline{RD} \uparrow \rightarrow address$ effective time	t RHAX	ALE, A23 to A16		1 tcp*/2 - 10	—	ns	
Effective address \rightarrow CLK \uparrow time	tavcн	CLK, A23 to A16, AD15 to AD00		1 tcp*/2 – 20		ns	
$\overline{RD} \downarrow \to CLK \uparrow time$	t RLCH	CLK, RD		1 tcp*/2 - 20	—	ns	
ALE $\downarrow \rightarrow \overline{RD} \downarrow$ time	t alrl	ALE, RD		1 tcp*/2 – 15	_	ns	

* : For t_{CP} (internal operating clock cycle time), refer to "(3) Clock Timings."

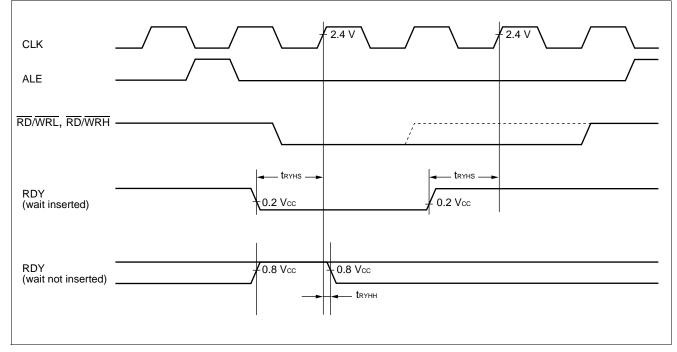


(7) Bus Write Timing

$(AVcc = Vcc = 5.0 V \pm 10\%, AVss = Vss = 0.0 V, I_A = -40^{\circ}C \text{ to } +85^{\circ}C)$								
Parameter	Symbol	Pin name	Condition	Val	ue	Unit	Remarks	
Faranieler	Symbol	Fin name	Condition	Min.	Max.	Unit	Rellidiks	
$\frac{\text{Effective address}}{\text{WR}} \downarrow \text{time}$	tavwl	WRL, WRH, A23 to A16, AD15 to AD00		1 tcp – 15	—	ns		
WR pulse width	t wlwh	WRL, WRH	3	3 t _{CP} */2 − 20		ns		
Write data $\rightarrow \overline{WR} \uparrow$ time	t dvwh	WRL, WRH, AD15 to AD00		3 tcp*/2 − 20	_	ns		
$\overline{WR} \uparrow \rightarrow data hold time$	t whdx	WRL, WRH, AD15 to AD00	_	20	_	ns		
$\overline{\mathrm{WR}} \uparrow \rightarrow \mathrm{address}$ effective time	twhax	WRL, WRH, A23 to A16		1 tcp*/2 – 10	_	ns		
$\overline{WR} \uparrow \rightarrow ALE \uparrow time$	t whlh	ALE, WRL		1 tcp*/2 – 15		ns		
$\overline{WR}\downarrow \to CLK\uparrowtime$	t wLCH	CLK, WRH		1 tcp*/2 - 20		ns		

$(AV_{CC} - V_{CC} - 50)V + 10\% AV_{SS} - V_{SS} - 00V T_{A}$ -40°C to ±85°C)

* : For t_{CP} (internal operating clock cycle time), refer to "(3) Clock Timings."

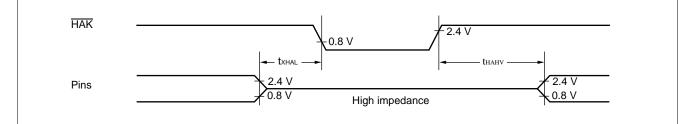


(8) Ready Input Timing

$(AVcc = Vcc = 5.0 V \pm 10\%, AVss = Vss = 0.0 V, T_A = -40^{\circ}C to +85^{\circ}C)$

Parameter	Symbol	Pin name	Condition	Va	lue	Unit	Remarks
	Symbol	Fininame	Condition	Min.	Max.	Unit	Nellial NS
RDY setup time	t RYHS	RDY		45	_	ns	
RDY hold time	t ryhh	RDY		0	-	ns	

Note: Use the automatic ready function when the setup time for the rising edge of the RDY signal is not sufficient.

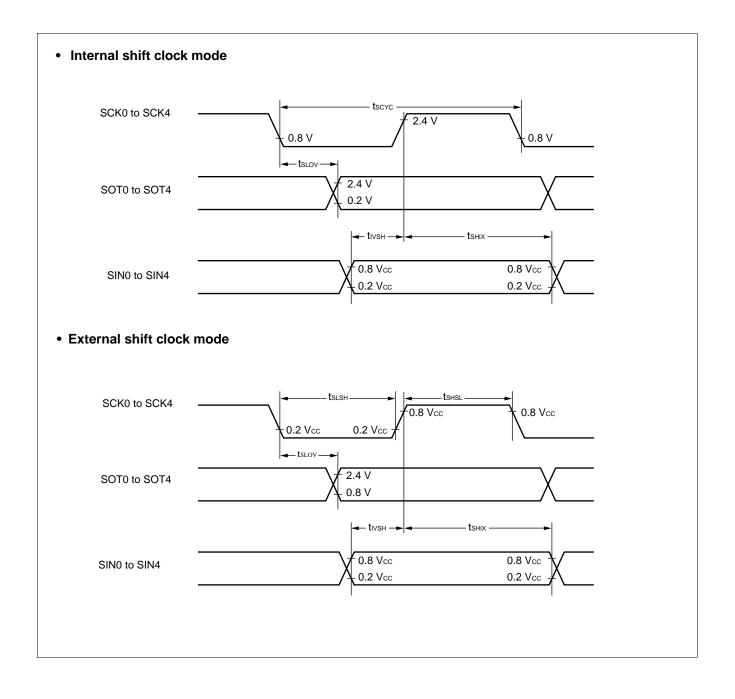


(9) Hold Timing

$(AV_{CC} = V_{CC} = 5.0 \text{ V} \pm 10\%, \text{ AV}_{SS} = V_{SS} = 0.0 \text{ V}, \text{ T}_{A} = -40^{\circ}\text{C} \text{ to } +85^{\circ}\text{C}$									
Demonster	Symbol	Din nomo	Condition	Va	lue	Unit	Remarks		
Parameter	Symbol	Pin name	Condition	Min.	Max.	Unit	Rellidiks		
$\frac{\text{Pins}}{\text{HAK}} \stackrel{\text{in floating status}}{\downarrow \text{time}} \rightarrow$	t xhal	HAK	_	30	1 tcp*	ns			
$\overline{HAK} \uparrow \rightarrow pin valid time$	tнанv	HAK		1 tcp*	2 tcp*	ns			

* : For tcp (internal operating clock cycle time), refer to "(3) Clock Timings."

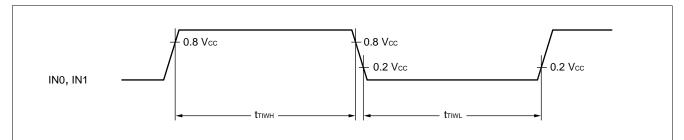
Note: More than 1 machine cycle is needed before HAK changes after HRQ pin is fetched.



(10) UART0 (SCI), UART1 (SCI) Timing

		(AVcc =	= Vcc = 5.0 V ±10%	, AVss = Vss	= 0.0 V, TA =	= -40°	C to +85°C)
Parameter	Symbol	Pin name	Condition	Value		Unit	Remarks
Farameter	Symbol	Fininame	Condition	Min.	Max.	Unit	IVEIIIdi KS
Serial clock cycle time	t scyc	SCK0 to SCK4		8 tcp*	—	ns	
$\begin{array}{l} SCK \downarrow \to SOT \text{ delay} \\ time \end{array}$	tslov	SCK0 to SCK4, SOT0 to SOT4	+ 1 TTL for an	- 80	80	ns	
Valid SIN \rightarrow SCK \uparrow	tıvsн	SCK0 to SCK4, SIN0 to SIN4		100	_	ns	
$SCK \uparrow \rightarrow valid SIN$ hold time	tshix	SCK0 to SCK4, SIN0 to SIN4		60	_	ns	
Serial clock "H" pulse width	t shsl	SCK0 to SCK4		4 t _{CP} *	_	ns	
Serial clock "L" pulse width	t slsh	SCK0 to SCK4	External shift	4 t cp*		ns	
$\begin{array}{l} SCK \downarrow \to SOT \text{ delay} \\ time \end{array}$	tslov	SCK0 to SCK4, SOT0 to SOT4	clock mode C∟ = 80 pF + 1 TTL for an		150	ns	
Valid SIN $ ightarrow$ SCK \uparrow	t ivsh	SCK0 to SCK4, SIN0 to SIN4	output pin	60	_	ns	
$SCK \uparrow \rightarrow valid SIN$ hold time	tsнıx	SCK0 to SCK4, SIN0 to SIN4		60	_	ns	

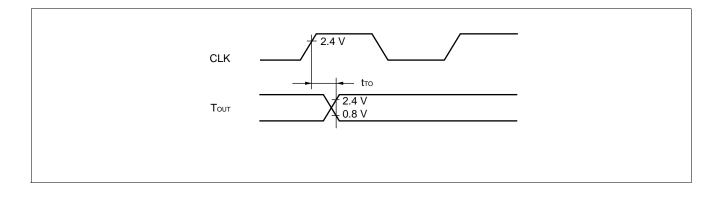
* : For tcp (internal operating clock cycle time), refer to "(3) Clock Timings."


Notes: • These are AC ratings in the CLK synchronous mode.
• CL is the load capacitance value connected to pins while testing.

(11) Timer Input Timing

$(AV_{CC} = V_{CC} = 5.0 \text{ V} \pm 10\%, \text{ AV}_{SS} = V_{SS} = 0.0 \text{ V}, \text{ T}_{A} = -40^{\circ}\text{C} \text{ to } +85^{\circ}\text{C})$									
Parameter	Symbol	Pin name	Condition	Va	lue	Unit	Pomarks		
Faranteter	Symbol	Fininame	Condition	Min.	Max.	Unit	Init Remarks		
Input pulse width	tтıwн, tтıw∟	INO, IN1		4 tcp*		ns			

* : For tcp (internal operating clock cycle time), refer to "(3) Clock Timings."

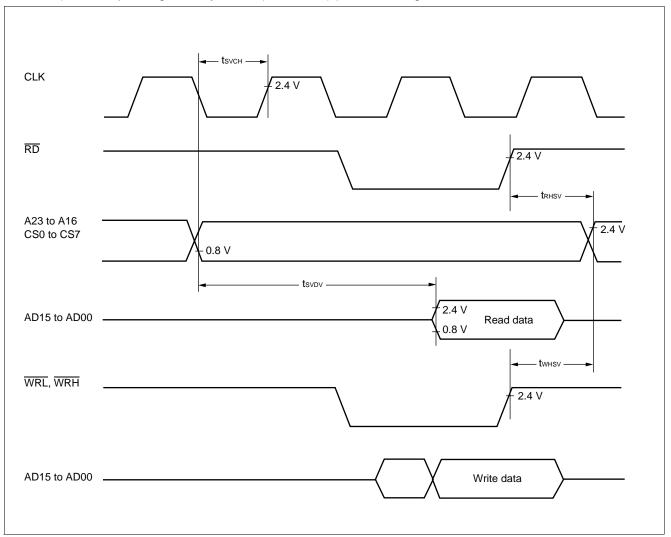


(12) Timer Output Timing

Г

(AVcc =)	Vcc = 5.0 V ±10%,	AVss = Vss = 0.0 \	/, T _A = -4	40°C to +85°	C)
		Value			

Parameter	Symbol	bol Pin name Condition value		lue	Unit	Remarks	
Falameter	er Symbol Finname Condition		Condition	Min.	Max.	Onit	itema ka
$CLK \uparrow \rightarrow T_{OUT}$ transition time	tто	OUT0 to OUT3, PPG0, PPG1	—	30	_	ns	


(13) Trigger Input Timing

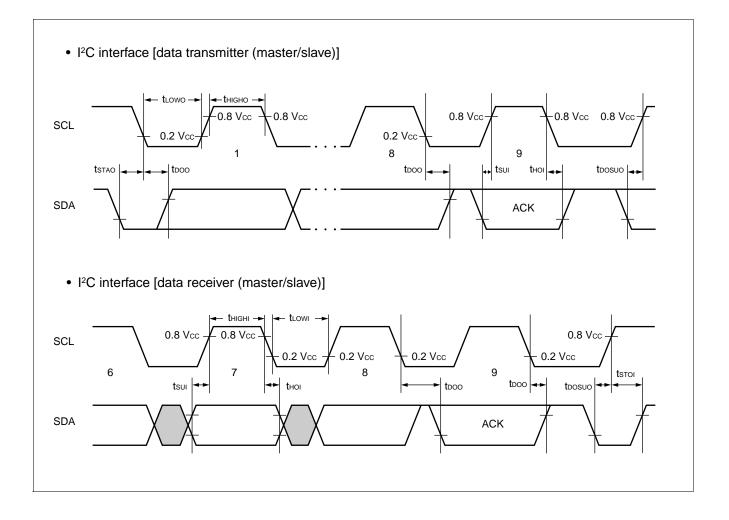
$(AVcc = Vcc = 5.0 V \pm 10\%, AVss = Vss = 0.0 V, T_A = -40^{\circ}C to +85^{\circ}C)$ Value Symbol Pin name Condition Unit Remarks Parameter Min. Max. IRQ0 to IRQ5, 5 tcp* Input pulse width **t**trgl ____ ____ ns ADTG, IN0, IN1 * : For t_{CP} (internal operating clock cycle time), refer to "(3) Clock Timings." 0.8 Vcc 0.8 Vcc $0.2 \; Vcc$ 0.2 Vcc IRQ0 to IRQ5 ADTG, IN0, IN1 **t**trgl **t**trgh

(14) Chip Select Output Timing

(AVcc = Vcc = 5.0 V ±10%, AVss = Vss = 0.0 V, T _A = −40°C to +85°C									
Parameter	Symbol	Pin name	Condition	Va	Unit	Demontre			
Farameter	Symbol	Fininame	Condition	Min.	Max.	Unit	Remarks		
Valid chip select output \rightarrow Valid data input time	tsvdv	CS0 to CS7, AD15 to AD00		_	5 tcp*/2 – 60	ns			
$\overline{RD} \uparrow \rightarrow chip \ select$ output effective time	t RHSV	RD, CS0 to CS7		1 tcp*/2 – 10	_	ns			
$\overline{WR} \uparrow \rightarrow chip select$ output effective time	t wнs∨	CS0 to CS7, WRL, WRH	_	1 tcp*/2 – 10	_	ns			
Valid chip select output $\rightarrow \text{CLK} \uparrow \text{time}$	tsvcн	CLK, CS0 to CS7		1 tcp*/2 – 20		ns			

* : For tcp (internal operating clock cycle time), refer to "(3) Clock Timings."

(15) I²C Timing

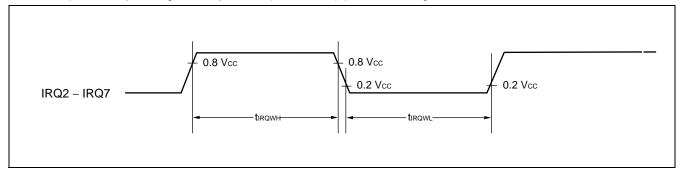

 $(AV_{CC} = V_{CC} = 2.7 \text{ V to } 5.5 \text{ V}, \text{ AV}_{SS} = V_{SS} = 0.0 \text{ V}, \text{ } T_{A} = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

Parameter	Symbol	Pin name	Condition	Va	lue	Unit	Remarks	
Farameter	Symbol		Condition	Min.	Max.	Unit		
Internal clock cycle time	t CP	—		62.5	666	ns	All products	
Start condition output	t stao		-	tcp×m×n/2-20	tcp×m×n/2+20	ns		
Stop condition output	tsтоо	SDA,SCL		tc⊧(m×n/ 2+4)-20	tc⊧(m×n/ 2+4)+20	ns	Only as master	
Start condition detection	t stai	027,002		3tcp+40	_	ns	Only as slave	
Stop condition detection	t stoi			3tcp+40	_	ns	Only as slave	
SCL output "L" width	tLowo	201		tcp×m×n/2-20	tcp×m×n/2+20	ns		
SCL output "H" width	tнідно	SCL	-	tc⊧(m×n/ 2+4)-20	tc⊧(m×n/ 2+4)+20	ns	Only as master	
SDA output delay time	tdoo			2tcp-20	2tcp+20	ns		
Setup after SDA output interrupt period	toosuo	SDA,SCL		4tcp-20	_	ns		
SCL input "L" width	tlowi	SCL		3tcp+40		ns		
SCL input "H" width	tніgнi	JUL		tcp+40	—	ns		
SDA input setup time	tsui	SDA,SCL		40	_	ns		
SDA input hold time	tноi	SDA,SCL		0	_	ns		

Notes: • "m" and "n" in the above table represent the values of shift clock frequency setting bits (CS4-CS0) in the clock control register "ICCR". For details, refer to the register description in the hardware manual.

• toosuo represents the minimum value when the interrupt period is equal to or greater than the SCL "L" width.

• The SDA and SCL output values indicate that rise time is 0 ns.



(16) Pulse Width on External Interrupt Pin at Return from STOP Mode

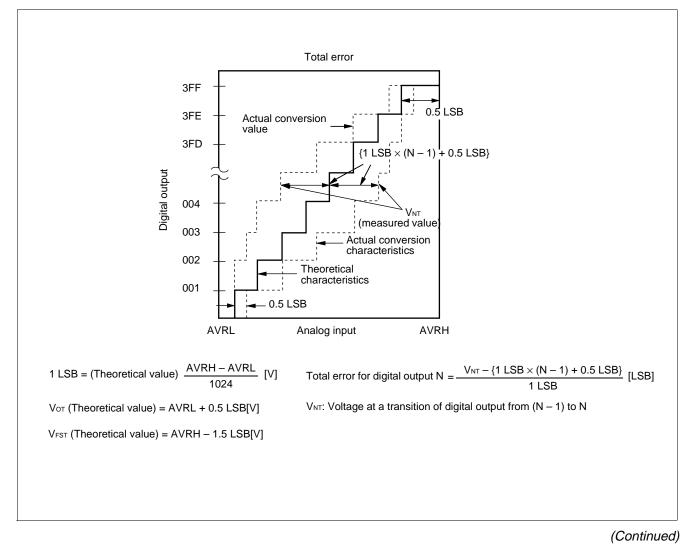
 $(AV_{CC} = V_{CC} = 2.7 \text{ V to } 5.5 \text{ V}, \text{ AV}_{SS} = \text{V}_{SS} = 0.0 \text{ V}, \text{ T}_{A} = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

Parameter	Symbol	Pin name	Condition	Va	lue	Unit	Remarks	
Falameter	Symbol	Fininame	Condition	Min.	Max.	Unit	Remarks	
Input pulse width	tirqwh tirqwl	IRQ2 to IRQ7	_	6tcp	_	ns		

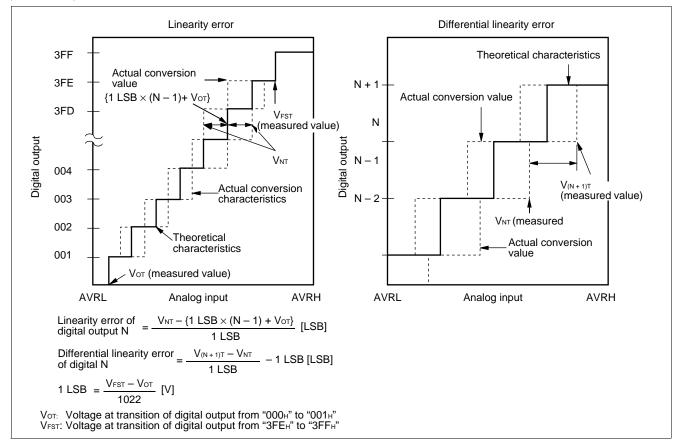
* : For tcp (internal operating clock cycle time), refer to "(3) Clock Timings."

5. A/D Converter Electrical Characteristics

	(AVcc = Vc	c = 2.7 V to \$	5.5 V, AVss = Vss = 0.0 V, 2.7 V	/ ≦ AVRH -	- AVRL, TA Value	= -40°C to	+85°C)
Parameter	Symbol	Pin name	Condition		Unit		
rarameter	Cymbol	1 III Hallic	Condition	Min.	Тур.	Max.	onit
Resolution	_	—		—	8/10	—	bit
Total error	—	_		_	_	±5.0	LSB
Non-linear error		_			—	±2.5	LSB
Differential linearity error		_			_	±1.9	LSB
Zero transition voltage	Vот	AN0 to AN7		–3.5 LSB	+0.5 LSB	+4.5 LSB	mV
Full-scale transition voltage	Vfst	AN0 to AN7		AVRH 6.5 LSB	AVRH -1.5 LSB	AVRH +1.5 LSB	mV
Conversion time	_	_	$V_{CC} = 5.0 \text{ V} \pm 10\%$ at machine clock of 16 MHz	352t c₽			μs
Sampling period	_	_	$V_{CC} = 5.0 \text{ V} \pm 10\%$ at machine clock of 6 MHz	64tcp	—	_	μs
Analog port input current	Iain	AN0 to AN7				10	μΑ
Analog input voltage	VAIN	AN0 to AN7	-	AVRL		AVRH	V
Reference	_	AVRH		AVRL +2.7		AVcc	V
voltage		AVRL		0		AVRH -2.7	V
	la	AVcc			5		mA
Power supply current	Іан	AVcc	CPU stopped and 8/10-bit A/D converter not in operation (Vcc = AVcc = AVRH = 5.0 V)			5	μΑ
	IR	AVRH	—		400		μA
Reference voltage supply current	Irh	AVRH	CPU stopped and 8/10-bit A/D converter not in operation (Vcc = AVcc = AVRH = 5.0 V)			5	μΑ
Offset between channels	_	AN0 to AN7	_		_	4	LSB


6. A/D Converter Glossary

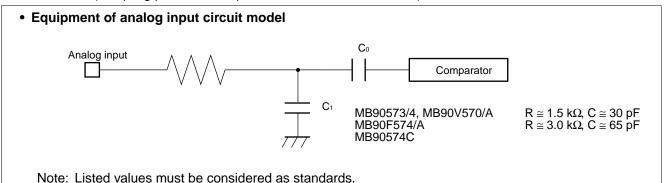
Resolution: Analog changes that are identifiable with the A/D converter


Linearity error: The deviation of the straight line connecting the zero transition point ("00 0000 0000" ↔ "00 0000 0001") with the full-scale transition point ("11 1111 1110" ↔ "11 1111 1111") from actual conversion characteristics

Differential linearity error: The deviation of input voltage needed to change the output code by 1 LSB from the theoretical value

Total error: The total error is defined as a difference between the actual value and the theoretical value, which includes zero-transition error/full-scale transition error and linearity error.

(Continued)



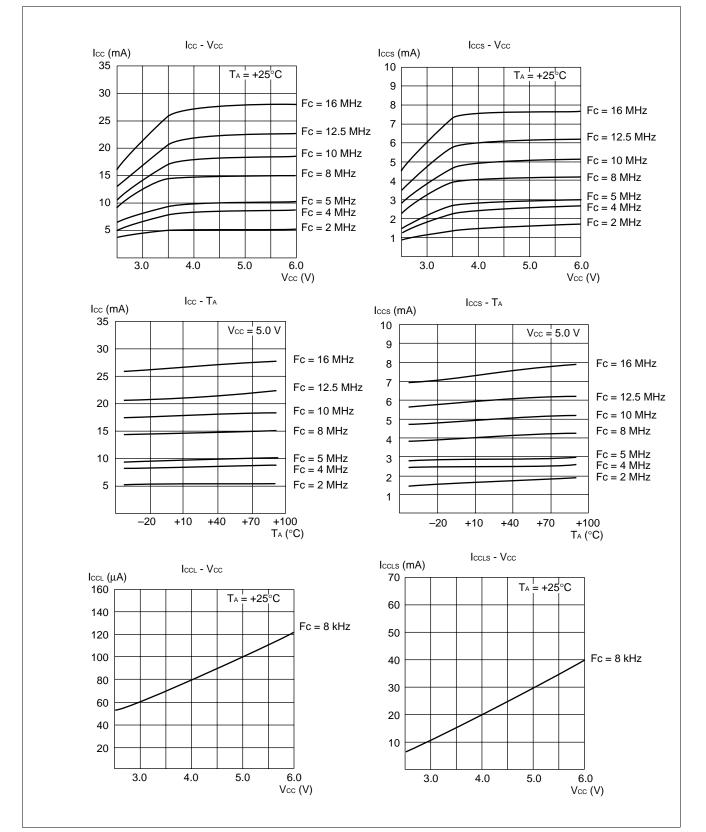
7. Notes on Using A/D Converter

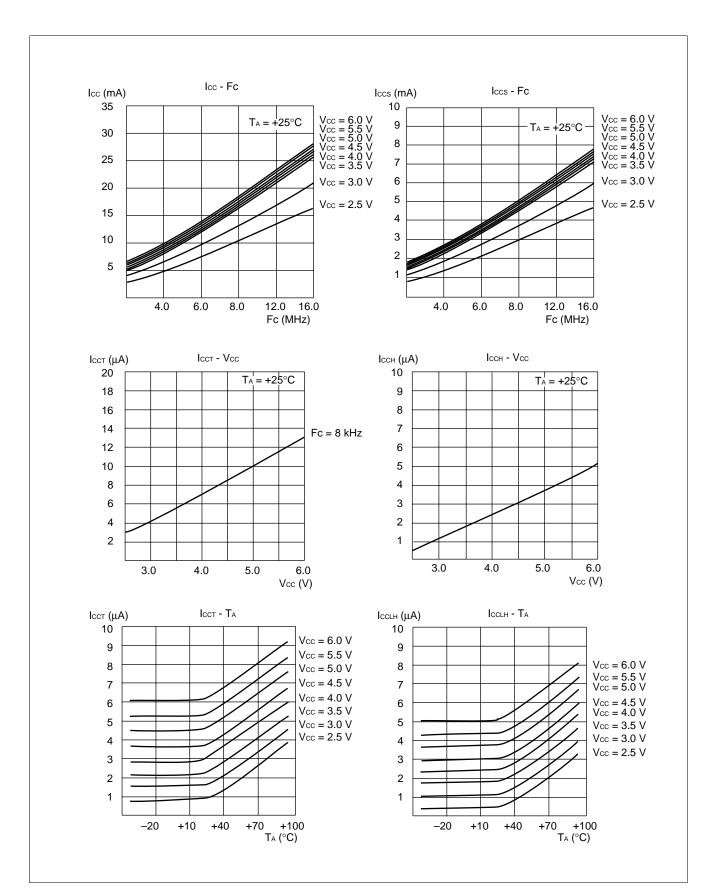
Select the output impedance value for the external circuit of analog input according to the following conditions. Output impedance values of the external circuit of 7 k Ω or lower are recommended.

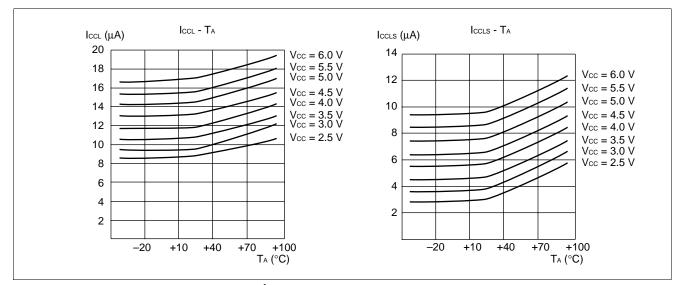
When capacitors are connected to external pins, the capacitance of several thousand times the internal capacitor value is recommended to minimized the effect of voltage distribution between the external capacitor and internal capacitor.

When the output impedance of the external circuit is too high, the sampling period for analog voltages may not be sufficient (sampling period = $4.00 \ \mu s$ @machine clock of 16 MHz).

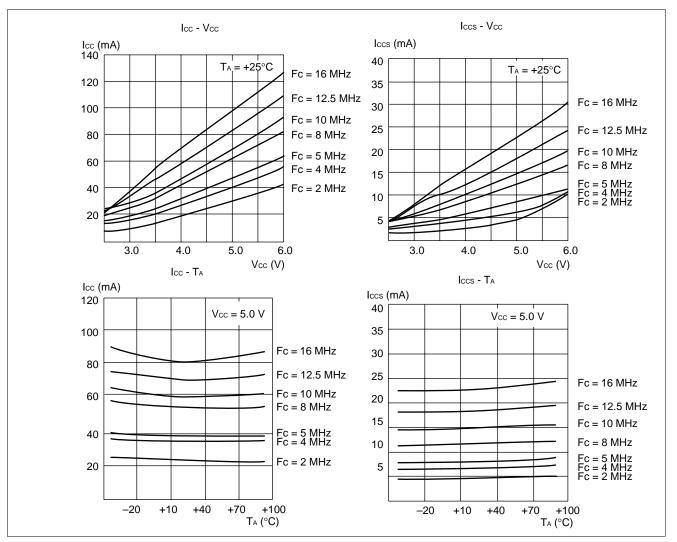
• Error

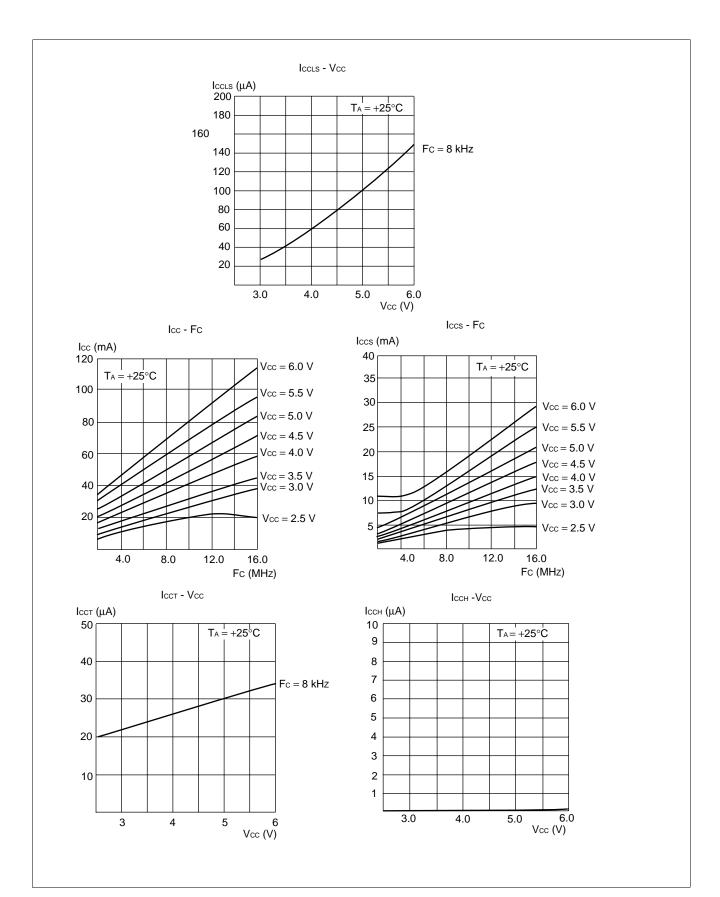

The smaller the | AVRH – AVRL |, the greater the error would become relatively.

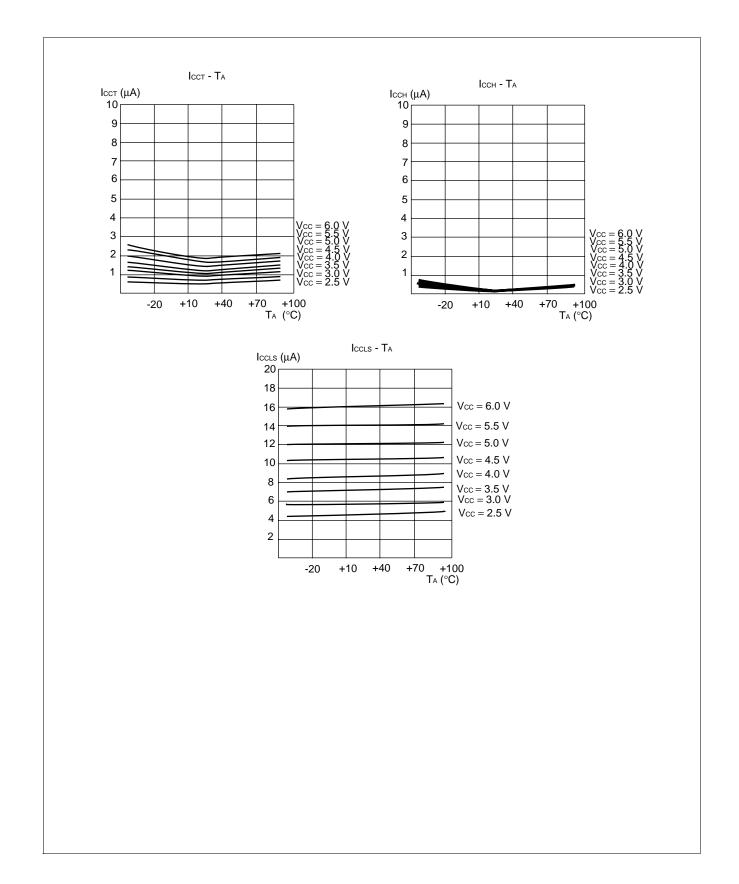

8. D/A Converter Electrical Characteristics

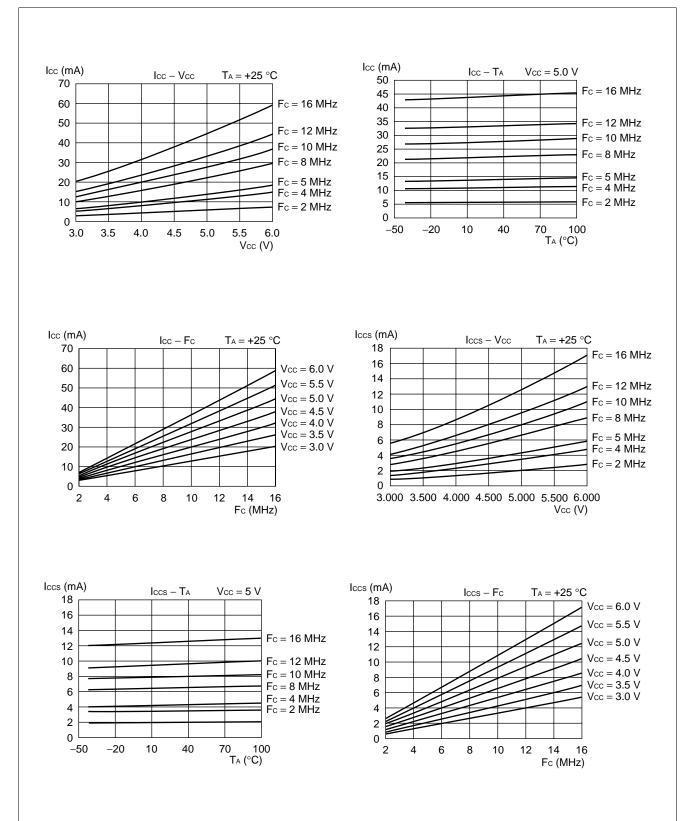

$(AVcc = Vcc = DVcc = 5.0 V \pm 10\%, AVss = Vss = DVss = 0.0 V, T_A = -40^{\circ}C \text{ to } +85^{\circ}C)$									
Deremeter	Symbol	Pin name	Value				Domorko		
Parameter	Symbol	Pin name	Min.	Тур.	Max.	Unit	Remarks		
Resolution	_	—	_	8	_	bit			
Differential linearity error	_	_	_	—	±0.9	LSB			
Absolute accuracy				_	±1.2	%			
Linearity error			_		±1.5	LSB			
Conversion time				10	20	μs	Load capacitance: 20 pF		
Analog reference voltage	_	DVcc	Vss + 3.0	—	AVcc	V			
Reference voltage	Idvr	DVcc	_	120	300	μA	Conversion under no load		
supply current	IDVRS	DVcc	_		10	μΑ	In sleep mode		
Analog output impedance	_			20		kΩ			

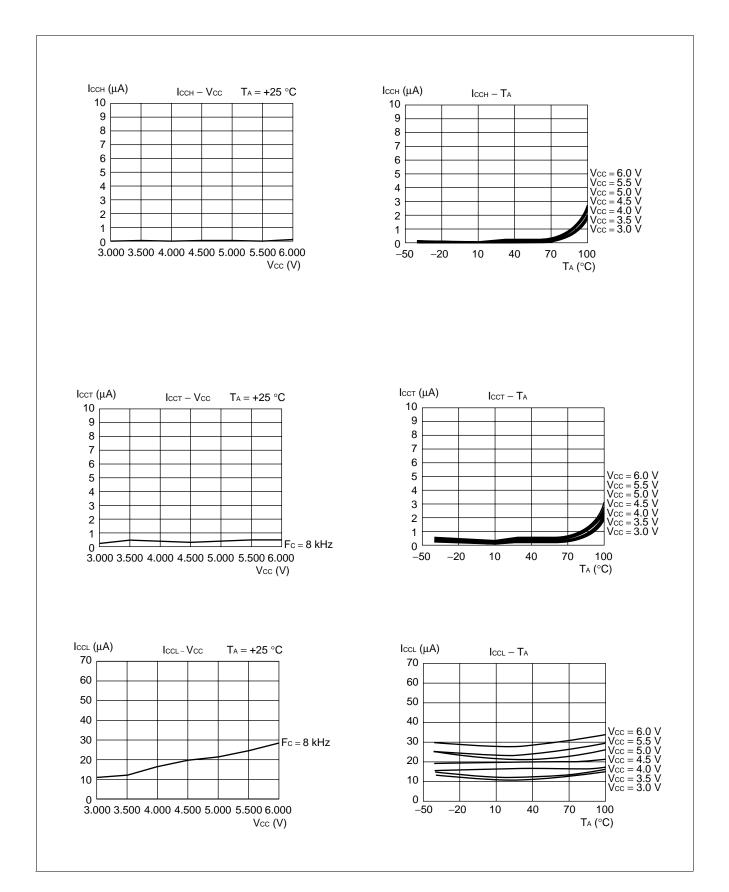
EXAMPLE CHARACTERISTICS

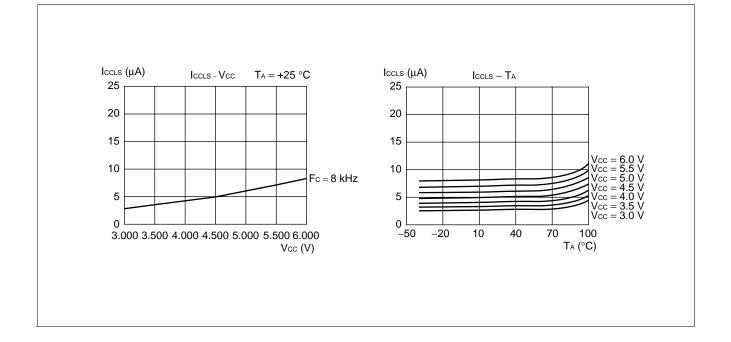

(1) Power Supply Current (MB90574)











(3) Power Supply Current (MB90574C)

■ INSTRUCTIONS (351 INSTRUCTIONS)

Table 1 Explanation of Items in Tables of Instructions

ltem	Meaning
Mnemonic	Upper-case letters and symbols: Represented as they appear in assembler. Lower-case letters: Replaced when described in assembler. Numbers after lower-case letters: Indicate the bit width within the instruction code.
#	Indicates the number of bytes.
~	Indicates the number of cycles. m: When branching n : When not branching See Table 4 for details about meanings of other letters in items.
RG	Indicates the number of accesses to the register during execution of the instruction. It is used calculate a correction value for intermittent operation of CPU.
В	Indicates the correction value for calculating the number of actual cycles during execution of the instruction. (Table 5) The number of actual cycles during execution of the instruction is the correction value summed with the value in the "~" column.
Operation	Indicates the operation of instruction.
LH	Indicates special operations involving the upper 8 bits of the lower 16 bits of the accumulator. Z : Transfers "0". X : Extends with a sign before transferring. - : Transfers nothing.
АН	Indicates special operations involving the upper 16 bits in the accumulator. * : Transfers from AL to AH. - : No transfer. Z : Transfers 00 _H to AH. X : Transfers 00 _H or FF _H to AH by signing and extending AL.
Ι	Indicates the status of each of the following flags: I (interrupt enable), S (stack), T (sticky bit),
S	N (negative), Z (zero), V (overflow), and C (carry).
Т	 * : Changes due to execution of instruction. - : No change.
N	S : Set by execution of instruction.
Z	R : Reset by execution of instruction.
V	
С	
RMW	 Indicates whether the instruction is a read-modify-write instruction. (a single instruction that reads data from memory, etc., processes the data, and then writes the result to memory.) * : Instruction is a read-modify-write instruction. - : Instruction is not a read-modify-write instruction. Note: A read-modify-write instruction cannot be used on addresses that have different meanings depending on whether they are read or written.

• Number of execution cycles

The number of cycles required for instruction execution is acquired by adding the number of cycles for each instruction, a corrective value depending on the condition, and the number of cycles required for program fetch. Whenever the instruction being executed exceeds the two-byte (word) boundary, a program on an internal ROM connected to a 16-bit bus is fetched. If data access is interfered with, therefore, the number of execution cycles is increased.

For each byte of the instruction being executed, a program on a memory connected to an 8-bit external data bus is fetched. If data access in interfered with, therefore, the number of execution cycles is increased. When a general-purpose register, an internal ROM, an internal RAM, an internal I/O device, or an external bus is accessed during intermittent CPU operation, the CPU clock is suspended by the number of cycles specified by the CG1/0 bit of the low-power consumption mode control register. When determining the number of cycles required for instruction execution during intermittent CPU operation, therefore, add the value of the number of times access is done \times the number of cycles suspended as the corrective value to the number of ordinary execution cycles.

Symbol	Meaning
A	32-bit accumulator The bit length varies according to the instruction. Byte : Lower 8 bits of AL Word : 16 bits of AL Long : 32 bits of AL and AH
AH AL	Upper 16 bits of A Lower 16 bits of A
SP	Stack pointer (USP or SSP)
PC	Program counter
PCB	Program bank register
DTB	Data bank register
ADB	Additional data bank register
SSB	System stack bank register
USB	User stack bank register
SPB	Current stack bank register (SSB or USB)
DPR	Direct page register
brg1	DTB, ADB, SSB, USB, DPR, PCB, SPB
brg2	DTB, ADB, SSB, USB, DPR, SPB
Ri	R0, R1, R2, R3, R4, R5, R6, R7
RWi	RW0, RW1, RW2, RW3, RW4, RW5, RW6, RW7
RWj	RW0, RW1, RW2, RW3
RLi	RL0, RL1, RL2, RL3
dir	Compact direct addressing
addr16 addr24 ad24 0 to 15 ad24 16 to 23	Direct addressing Physical direct addressing Bit 0 to bit 15 of addr24 Bit 16 to bit 23 of addr24
io	I/O area (000000н to 0000FFн)
imm4 imm8 imm16 imm32 ext (imm8)	 4-bit immediate data 8-bit immediate data 16-bit immediate data 32-bit immediate data 16-bit data signed and extended from 8-bit immediate data
disp8 disp16	8-bit displacement 16-bit displacement
bp	Bit offset
vct4 vct8	Vector number (0 to 15) Vector number (0 to 255)
()b	Bit address
rel	PC relative addressing
ear eam	Effective addressing (codes 00 to 07) Effective addressing (codes 08 to 1F)
rlst	Register list

Table 2 Explanation of Symbols in Tables of Instructions

Code		Notatior	1	Address format	Number of bytes in address extension *
00 01 02 03 04 05 06 07	R0 R1 R2 R3 R4 R5 R6 R7	RW0 RW1 RW2 RW3 RW4 RW5 RW6 RW7	RL0 (RL0) RL1 (RL1) RL2 (RL2) RL3 (RL3)	Register direct "ea" corresponds to byte, word, and long-word types, starting from the left	
08 09 0A 0B	@R\ @R\ @R\ @R\	W1 W2		0	
0C 0D 0E 0F	@R\ @R\	W0 + W1 + W2 + W3 +		Register indirect with post-increment	0
10 11 12 13 14 15 16 17	@R\ @R\ @R\ @R\ @R\ @R\	W0 + dis $W1 + dis$ $W2 + dis$ $W3 + dis$ $W4 + dis$ $W5 + dis$ $W6 + dis$ $W7 + dis$	р8 p8 p8 p8 p8 p8 p8	Register indirect with 8-bit displacement	1
18 19 1A 1B	@RW0 + disp16 @RW1 + disp16 @RW2 + disp16 @RW3 + disp16			Register indirect with 16-bit displacement	2
1C 1D 1E 1F	@R\	W0 + RW W1 + RW C + disp´ `16	/7	Register indirect with index Register indirect with index PC indirect with 16-bit displacement Direct address	0 0 2 2

Table 3 Effective Address Field

Note : The number of bytes in the address extension is indicated by the "+" symbol in the "#" (number of bytes) column in the tables of instructions.

Code	Operand	Number of register accesses for each type of addressing	
00 to 07	Ri RWi RLi	Listed in tables of instructions	Listed in tables of instructions
08 to 0B	@RWj	2	1
0C to 0F	@RWj +	4	2
10 to 17	@RWi + disp8	2	1
18 to 1B	@RWj + disp16	2	1
1C 1D 1E 1F	@RW0 + RW7 @RW1 + RW7 @PC + disp16 addr16	4 4 2 1	2 2 0 0

 Table 4
 Number of Execution Cycles for Each Type of Addressing

Note : "(a)" is used in the "~" (number of states) column and column B (correction value) in the tables of instructions.

Table 5	Compensation V	alues for Number	of Cycles Used to	Calculate Number	of Actual Cycles
---------	----------------	------------------	-------------------	------------------	------------------

Operand	(b)	byte	(c) v	vord	(d) l	ong
Operand	Cycles	Access	Cycles	Access	Cycles	Access
Internal register	+0	1	+0	1	+0	2
Internal memory even address Internal memory odd address	+0 +0	1 1	+0 +2	1 2	+0 +4	2 4
Even address on external data bus (16 bits) Odd address on external data bus (16 bits)	+1 +1	1 1	+1 +4	1 2	+2 +8	2 4
External data bus (8 bits)	+1	1	+4	2	+8	4

Notes: • "(b)", "(c)", and "(d)" are used in the "~" (number of states) column and column B (correction value) in the tables of instructions.

• When the external data bus is used, it is necessary to add in the number of wait cycles used for ready input and automatic ready.

Table 6 Correction Values for Number of Cycles Used to Calculate Number of Program Fetch Cycles

Instruction	Byte boundary	Word boundary
Internal memory	_	+2
External data bus (16 bits)	_	+3
External data bus (8 bits)	+3	—

Notes: • When the external data bus is used, it is necessary to add in the number of wait cycles used for ready input and automatic ready.

• Because instruction execution is not slowed down by all program fetches in actuality, these correction values should be used for "worst case" calculations.

I	Mnemonic	#	~	RG	В	Operation	LH	AH	I	s	т	Ν	z	v	С	RMW
MOV MOV MOV MOV MOV MOV MOV MOV	A, dir A, addr16 A, Ri A, ear A, eam A, io A, #imm8 A, @A A, @RLi+disp8 A, #imm4	2 3 1 2 2+ 2 2 3 1	3 4 2 3+ (a) 3 2 3 10 1	0 0 1 0 0 0 2 0	(b) (b) 0 (b) (b) (b) 0 (b) 0	byte (A) \leftarrow (dir) byte (A) \leftarrow (addr16) byte (A) \leftarrow (Ri) byte (A) \leftarrow (ear) byte (A) \leftarrow (eam) byte (A) \leftarrow (io) byte (A) \leftarrow (io) byte (A) \leftarrow (i(A)) byte (A) \leftarrow ((RLi)+disp8) byte (A) \leftarrow imm4	ZZZZZZZZZZZZ	* * * * * _ * *				* * * * * * * R	* * * * * * * * *			- - - - - - - - -
MOVX MOVX MOVX MOVX MOVX MOVX MOVX MOVX	A, dir A, addr16 A, Ri A, ear A, eam A, io A, #imm8 A, @A A,@RWi+disp8 A, @RLi+disp8	2 3 2 2 2 2 2 2 2 2 2 3	3 4 2 3+ (a) 3 2 3 5 10	0 0 1 0 0 0 1 2	(b) (b) 0 (b) (b) (b) (b) (b)	byte (A) \leftarrow (dir) byte (A) \leftarrow (addr16) byte (A) \leftarrow (Ri) byte (A) \leftarrow (ear) byte (A) \leftarrow (eam) byte (A) \leftarrow (io) byte (A) \leftarrow (io) byte (A) \leftarrow ((A)) byte (A) \leftarrow ((RWi)+disp8) byte (A) \leftarrow ((RLi)+disp8)	******	* * * * * * * *				* * * * * * * * *	* * * * * * * * *			
MOV MOV MOV MOV MOV MOV MOV MOV MOV MOV	dir, A addr16, A Ri, A ear, A ear, A io, A @ RLi+disp8, A Ri, ear Ri, eam ear, Ri eam, Ri Ri, #imm8 io, #imm8 dir, #imm8 ear, #imm8 ear, #imm8 ear, #imm8 ear, #imm8 ear, #imm8	2 3 1 2 2+ 2 3 2 2+ 2 2 2+ 2 3 3 3 3 3 3 3 4 2	3423+ (a)31034+ (a)45+ (a)25524+ (a)3	$\begin{array}{c} 0 \\ 0 \\ 1 \\ 1 \\ 0 \\ 0 \\ 2 \\ 2 \\ 1 \\ 2 \\ 1 \\ 1 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ \end{array}$	(b) (b) 0 (b) (b) (b) 0 (b) 0 (b) 0 (b) 0 (b) 0 (b) 0 (b) 0 (b)	byte (dir) \leftarrow (A) byte (addr16) \leftarrow (A) byte (Ri) \leftarrow (A) byte (ear) \leftarrow (A) byte (ear) \leftarrow (A) byte (io) \leftarrow (A) byte (io) \leftarrow (A) byte (Ri) \leftarrow (ear) byte (Ri) \leftarrow (ear) byte (ear) \leftarrow (Ri) byte (ear) \leftarrow (Ri) byte (io) \leftarrow imm8 byte (io) \leftarrow imm8 byte (io) \leftarrow imm8 byte (ear) \leftarrow imm8						* * * * * * * * * * * - *	* * * * * * * * * * * - *			
XCH XCH XCH XCH XCH	A, ear A, eam Ri, ear Ri, eam	2 2+ 2 2+	4 5+ (a) 7 9+ (a)	2 0 4 2	$0 \\ 2 \times (b) \\ 0 \\ 2 \times (b)$	byte (A) \leftrightarrow (ear) byte (A) \leftrightarrow (eam) byte (Ri) \leftrightarrow (ear) byte (Ri) \leftrightarrow (eam)	Z Z -	- - -	- - -	 	 	- - -	 	 	 	- - -

 Table 7
 Transfer Instructions (Byte) [41 Instructions]

Table 8 Transfer Instructions (Word/Long Word) [38 Instr	tructions]
--	------------

Mnemonic	#	~	RG	В	Operation	LH	AH	I	s	т	Ν	z	v	С	RMW
MOVW A, dir	2	3	0	(c)	word (A) \leftarrow (dir)	I	*	Ι	-	_	*	*	I	_	_
MOVW A, addr16	3	4	0	(c)	word $(A) \leftarrow (addr16)$	_	*	_	_	_	*	*	_	_	-
MOVW A, SP	1	1	0	Û	word $(A) \leftarrow (SP)$	_	*	-	_	—	*	*	-	—	-
MOVW A, RWi	1	2	1	0	word $(A) \leftarrow (RWi)$	-	*	-	-	—	*	*	-	-	-
MOVW A, ear	2	2	1	0	word (A) \leftarrow (ear)	-	*	-	-	—	*	*	-	-	-
MOVW A, eam	2+	3+ (a)	0	(c)	word (A) \leftarrow (eam)	—	*	_	-	—	*	*	_	—	-
MOVW A, io	2	3	0	(c)	word (A) \leftarrow (io)	-	*	-	-	—	*	*	-	-	-
MOVW A, @A	2	3	0	(c)	word (A) \leftarrow ((A))	-	*	-	-	—	*	*	-	-	-
MOVW A, #imm16	3	2	0	0	word (A) \leftarrow imm16	-	*	-	-	-	*	*	-	-	-
MOVW A, @RWi+disp8	2	5	1	(c)	word (A) \leftarrow ((RWi) +disp8)	-	*	_	-	-	*	*	-	-	-
MOVW A, @RLi+disp8	3	10	2	(c)	word (A) \leftarrow ((RLi) +disp8)	-	~	-	-	-	*	*	-	-	-
MOVW dir, A	2	3	0	(c)	word (dir) \leftarrow (A)	_	_	_	_	-	*	*	-	_	-
MOVW addr16, A	3	4	0	(c)	word (addr16) \leftarrow (A)	-	—	-	-	—	*	*	-	-	-
MOVW SP, A	1	1	0	0	word (SP) \leftarrow (A)	-	-	-	-	—	*	*	-	-	-
MOVW RWi, A	1	2	1	0	word (RWi) \leftarrow (A)	-	-	-	-	-	*	*	-	-	-
MOVW ear, A	2	2	1	0	word (ear) \leftarrow (A)	-	-	-	-	-	*	*	-	-	-
MOVW eam, A	2+	3+ (a)	0	(C)	word (eam) \leftarrow (A)	-	-	-	-	-	*	*	-	-	-
MOVW io, A	2	3	0	(c)	word (io) \leftarrow (A)	-	-	-	-	-	*	*	-	-	-
MOVW @RWi+disp8, A	2 3	5 10	1 2	(c)	word ((RWi) +disp8) \leftarrow (A) word ((RLi) +disp8) \leftarrow (A)	-	-	-	-	-	*	*	-	—	-
MOVW @RLi+disp8, A MOVW RWi, ear	2	3	2	(c) (0)	word ((RUi) + dispo) \leftarrow (A) word (RWi) \leftarrow (ear)	_	-	_	-	_	*	*	_	_	_
MOVW RWi, eam	2+	4+ (a)	1	(0) (c)	word (RWi) \leftarrow (ear)	_	_	_			*	*			
MOVW ear, RWi	2	4+ (a) 4	2		word (RWI) \leftarrow (RWI) word (ear) \leftarrow (RWI)	_	_	_	_	_	*	*	_	_	_
MOVW eam, RWi	2+	5+ (a)	1	(c)	word (ear) \leftarrow (RWi)	_	_	_	_	_	*	*	_	_	_
MOVW RWi, #imm16	3	2	1	0	word (RWi) \leftarrow imm16	_	_	_	_	_	*	*	_	_	_
MOVW io, #imm16	4	5	0	(c)	word (io) \leftarrow imm16	_	_	_	_	_	_	_	_	_	_
MOVW ear, #imm16	4	2	1	0	word (ear) \leftarrow imm16	_	_	_	_	_	*	*	_	_	_
MOVW eam, #imm16	4+	4+ (a)	0	(c)	word (eam) \leftarrow imm16	_	_	_	_	_	_	_	_	_	_
MOVW @AL, AH			_	(-)											
/MOVW@A, T	2	3	0	(c)	word ((A)) \leftarrow (AH)	-	—	-	-	-	*	*	-	-	—
XCHW A, ear	2	4	2	0	word (A) \leftrightarrow (ear)	_	_	_	_	_	_	_	_	_	_
XCHW A, eam	2+	5+ (a)	0	2× (c)		_	_	_	_	_	_	_	_	_	_
XCHW RWi, ear	2	7	4	0 Ó	word (RWi) ↔ (ear)	_	_	_	_	_	_	_	_	_	_
XCHW RWi, eam	2+	9+ (a)	2	2× (c)	word (RWi) ↔ (eam)	Ι	—	-	Ι	-	-	Ι	Ι	_	-
MOVL A, ear	2	4	2	0	long (A) \leftarrow (ear)	Ι	_	Ι	-	-	*	*	Ι	-	—
MOVL A, eam	2+	5+ (a)	0	(d)	long (A) \leftarrow (eam)	-	-	-	—	-	*	*	-	-	-
MOVL A, #imm32	5	3	0	0	$long\ (A) \gets imm32$	-	_	-	-	-	*	*	-	-	-
MOVL ear, A	2	4	2	0	long (ear) \leftarrow (A)	_	_	-	_	–	*	*	_	-	_
MOVL eam, A	2+	5+ (a)	0	(d)	long (eam) \leftarrow (A)	-	-	-	-	—	*	*	-	-	-

Mne	emonic	#	~	RG	В	Operation	LH	AH	I	s	т	Ν	z	v	С	RMW
ADD	A,#imm8	2	2	0	0	byte (A) \leftarrow (A) +imm8	Ζ	_	Ι	_	_	*	*	*	*	_
ADD	A, dir	2	5	0	(b)	byte $(A) \leftarrow (A) + (dir)$	Ζ	—	_	_	—	*	*	*	*	-
ADD	A, ear	2	3	1	0	byte (A) \leftarrow (A) +(ear)	Ζ	—	—	—	—	*	*	*	*	—
ADD	A, eam	2+	4+ (a)	0	(b)	byte (A) \leftarrow (A) +(eam)	Ζ	-	—	—	—	*	*	*	*	-
ADD	ear, A	2	3	2	0	byte (ear) \leftarrow (ear) + (A)	-	-	-	-	-	*	*	*	*	-
ADD	eam, A	2+	5+ (a)	0	2× (b)	byte (eam) \leftarrow (eam) + (A)	Ζ	—	-	-	-	*	*	*	*	*
ADDC	А	1	2	0	0	byte (A) \leftarrow (AH) + (AL) + (C)	Ζ	-	-	-	-	*	*	*	*	-
ADDC	A, ear	2	3	1	0	byte (A) \leftarrow (A) + (ear) + (C)	Z	-	-	-	-	*	*	*	*	-
ADDC	A, eam	2+	4+ (a)	0	(b)	byte (A) \leftarrow (A) + (eam) + (C)	Z	-	-	-	-	*	*	*	*	—
ADDDC		1	3	0	0	byte (A) \leftarrow (AH) + (AL) + (C) (decimal)	Z	-	-	-	-	*	*	*	*	-
SUB	A, #imm8	2	2	0	0	byte (A) \leftarrow (A) $-imm8$	Z	-	-	-	-	*	*	*	*	-
SUB	A, dir	2	5	0	(b)	byte (A) \leftarrow (A) – (dir)	Z	-	-	-	-	*	*	*	*	-
SUB	A, ear	2	3	1	0	byte (A) \leftarrow (A) – (ear)	Z	-	-	-	-	*	*	*	*	-
SUB	A, eam	2+	4+ (a)	0	(b)	byte (A) \leftarrow (A) – (eam)	Ζ	-	-	-	-	*	*	*	*	-
SUB	ear, A	2	3	2	0	byte (ear) \leftarrow (ear) – (A)	-	-	-	-	-	*	*	*	*	
SUB	eam, A	2+	5+ (a)	0	2×(b)	byte (eam) \leftarrow (eam) – (A)	-	-	-	-	-	*	*	*	*	
SUBC	A	1	2	0	0	byte (A) \leftarrow (AH) – (AL) – (C)	Z	-	-	-	-	*	*	*	*	-
SUBC	A, ear	2	3	1	0	byte (A) \leftarrow (A) – (ear) – (C)	Z Z	-	-	-	-	*	*	*	*	-
SUBC	A, eam	2+ 1	4+ (a) 3	0 0	(b) 0	byte (A) \leftarrow (A) – (eam) – (C) byte (A) \leftarrow (AH) – (AL) – (C) (decimal)	Z		-	-	-	*	*	*	*	-
SUBDC	A	•	•	0	0		Z	-	-	-	-					-
ADDW	А	1	2	0	0	word (A) \leftarrow (AH) + (AL)	-	-	-	-	-	*	*	*	*	-
ADDW	A, ear	2	3	1	0	word (A) \leftarrow (A) +(ear)	—	-	—	-	-	*	*	*	*	—
ADDW	A, eam	2+	4+ (a)	0	(c)	word (A) \leftarrow (A) +(eam)	—	—	—	—	—	*	*	*	*	—
ADDW	A, #imm16	3	2	0	0	word (A) \leftarrow (A) +imm16	-	-	-	-	-	*	*	*	*	-
ADDW	ear, A	2	3	2	0	word (ear) \leftarrow (ear) + (A)	-	-	-	-	-	*	*	*	*	_
	eam, A	2+	5+ (a)	0	2×(c)	word (eam) \leftarrow (eam) + (A)	-	-	-	-	-	*	*	*	*	*
ADDCW		2	3	1	0	word (A) \leftarrow (A) + (ear) + (C)	-	-	-	-	—	*	*		*	-
ADDCW		2+	4+ (a)	0	(c)	word (A) \leftarrow (A) + (eam) + (C)	-	-	-	-	-	*	*	*	*	—
SUBW		1	2	0	0	word (A) \leftarrow (AH) – (AL)	—	-	-	-	-	*	*	*	*	-
SUBW	A, ear	2	3	1	0	word (A) \leftarrow (A) – (ear)	-	-	-	-	-	*	*	*	*	-
	A, eam	2+	4+ (a)	0	(c)	word (A) \leftarrow (A) – (eam)	-	-	-	-	-	*	*	*	*	-
SUBW	A, #imm16	3	2	0	0	word $(A) \leftarrow (A) - imm16$	-	-	-	-	-	*	*	*	*	-
SUBW	ear, A	2	3	2	0	word (ear) \leftarrow (ear) – (A)	-	-	-	-	-	*	*	*	*	
SUBW	eam, A	2+	5+ (a)	0	2×(c)	word (eam) \leftarrow (eam) – (A)	-	-	-	-	-	*	*	*	*	
SUBCW		2	3	1	0	word (A) \leftarrow (A) – (ear) – (C)	-	-	-	-	-	*	*	*	*	-
SUBCW	A, eam	2+	4+ (a)	0	(c)	word (A) \leftarrow (A) – (eam) – (C)	-	-	-	-	-	Â	Ŷ	î		-
ADDL	A, ear	2	6	2	0	long (A) \leftarrow (A) + (ear)	-	-	—	-	-	*	*	*	*	-
ADDL	A, eam	2+	7+ (a)	0	(d)	long (A) \leftarrow (A) + (eam)	-	—	-	-	-	*	*	*	*	-
ADDL	A, #imm32	5	4	0	0	long (A) \leftarrow (A) +imm32	-	—	-	-	-	*	*	*	*	-
SUBL	A, ear	2	_ 6	2	0	long (A) \leftarrow (A) – (ear)	-	-	-	-	-	*	*	*	*	-
SUBL	A, eam	2+	7+ (a)	0	(d)	long (A) \leftarrow (A) – (eam)	-	-	—	-	-	*	*	*	*	-
SUBL	A, #imm32	5	4	0	0	long (A) \leftarrow (A) –imm32	-	-	—	-	-	*	*	*	*	-

 Table 9
 Addition and Subtraction Instructions (Byte/Word/Long Word) [42 Instructions]

Mne	emonic	#	~	RG	В	Operation	LH	AH	I	s	Т	N	z	۷	С	RMW
INC INC	ear eam	2 2+	2 5+ (a)	2 0	0 2× (b)	byte (ear) \leftarrow (ear) +1 byte (eam) \leftarrow (eam) +1	-	-	-	-	-	*	*	*	-	- *
DEC DEC	ear eam	2 2+	3 5+ (a)	2 0	0 2× (b)	byte (ear) ← (ear) −1 byte (eam) ← (eam) −1	-	_	_	_	-	*	*	*	_	 *
INCW INCW	ear eam	2 2+	3 5+ (a)	2 0	0 2× (c)	word (ear) \leftarrow (ear) +1 word (eam) \leftarrow (eam) +1	-	-	-	-	_	*	*	*	_	- *
DECW DECW		2 2+	3 5+ (a)	2 0	0 2× (c)	word (ear) \leftarrow (ear) –1 word (eam) \leftarrow (eam) –1	-	_	-	_	-	*	*	*	-	 *
INCL INCL	ear eam	2 2+	7 9+ (a)	4 0	0 2× (d)	long (ear) \leftarrow (ear) +1 long (eam) \leftarrow (eam) +1	-	-	-	-	_	*	*	* *	_	- *
DECL DECL	ear eam	2 2+	7 9+ (a)	4 0	0 2× (d)	long (ear) ← (ear) −1 long (eam) ← (eam) −1	-	-	-	-	-	*	*	*	-	— *

 Table 10
 Increment and Decrement Instructions (Byte/Word/Long Word) [12 Instructions]

Note : For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

Mne	emonic	#	~	RG	В	Operation	LH	AH	I	s	т	Ν	z	v	С	RMW
CMP CMP CMP	A A, ear A, eam	1 2 2+	1 2 3+ (a)	0 1 0	0 0 (b)	byte (AH) – (AL) byte (A) \leftarrow (ear) byte (A) \leftarrow (eam)					-	* * *	* * *	* * *	* * *	_ _ _
CMP	A, #imm8	2	2	0) ٥	byte (A) ← imm8	-	-	—	-	—	*	*	*	*	-
		1 2 2+ 3	1 2 3+ (a) 2	0 1 0 0	0 0 (c) 0	word (AH) – (AL) word (A) \leftarrow (ear) word (A) \leftarrow (eam) word (A) \leftarrow imm16						* * *	* * * *	* * * *	* * *	
CMPL	A, ear A, eam A, #imm32	2 2+ 5	6 7+ (a) 3	2 0 0	0 (d) 0	word (A) \leftarrow (ear) word (A) \leftarrow (eam) word (A) \leftarrow imm32	-	_ _ _	- - -		- - -	* *	* *	* *	* *	_ _ _

 Table 11
 Compare Instructions (Byte/Word/Long Word) [11 Instructions]

Table 12 Multiplication and Division Instructions (Byte/Word/Long Word) [11 Instructions]

Mnen	nonic	#	۲	RG	В	Operation	LH	AH	I	s	Т	Ν	z	۷	С	RMW
DIVU	А	1	*1	0	0	word (AH) /byte (AL) Quotient \rightarrow byte (AL) Remainder \rightarrow byte (AH)	-	-	-	-	-	-	-	*	*	-
DIVU	A, ear	2	*2	1	0	word (A)/byte (ear) Quotient \rightarrow byte (A) Remainder \rightarrow byte (ear)	-	-	-	_	-	-	-	*	*	-
DIVU	A, eam	2+	*3	0	*6	word (A)/byte (eam) Quotient \rightarrow byte (A) Remainder \rightarrow byte (eam)	-	-	-	_	-	-	-	*	*	-
DIVUW	A, ear	2	*4	1	0	long (A)/word (ear) Quotient \rightarrow word (A) Remainder \rightarrow word (ear)	-	-	-	_	-	-	-	*	*	-
DIVUW	A, eam	2+	*5	0	*7	long (A)/word (eam) Quotient \rightarrow word (A) Remainder \rightarrow word (eam)	-	-	-	_	_	_	-	*	*	_
MULU	А	1	*8	0	0	byte (AH) *byte (AL) \rightarrow word (A)	_	_	_	_	_	_	_	_	_	_
MULU	A, ear	2	*9	1	0	byte (A) *byte (ear) \rightarrow word (A)	-	-	-	—	-	-	-	-	-	-
MULU	A, eam	2+	*10	0	(b)	byte (A) *byte (eam) \rightarrow word (A)	-	-	-	-	-	-	-	-	-	-
MULUW		1	*11	0	0	word (AH) *word (AL) \rightarrow long (A)	—	—	-	_	–	—	_	_	-	_
MULUW MULUW		2 2+	*12 *13	1 0	0 (c)	word (A) *word (ear) \rightarrow long (A) word (A) *word (eam) \rightarrow long (A)	-	-	-	-	-	-	-	-	-	- -

*1: 3 when the result is zero, 7 when an overflow occurs, and 15 normally.

*2: 4 when the result is zero, 8 when an overflow occurs, and 16 normally.

*3: 6 + (a) when the result is zero, 9 + (a) when an overflow occurs, and 19 + (a) normally.

*4: 4 when the result is zero, 7 when an overflow occurs, and 22 normally.

*5: 6 + (a) when the result is zero, 8 + (a) when an overflow occurs, and 26 + (a) normally.

*6: (b) when the result is zero or when an overflow occurs, and $2 \times (b)$ normally.

*7: (c) when the result is zero or when an overflow occurs, and $2 \times (c)$ normally.

*8: 3 when byte (AH) is zero, and 7 when byte (AH) is not zero.

*9: 4 when byte (ear) is zero, and 8 when byte (ear) is not zero.

*10: 5 + (a) when byte (eam) is zero, and 9 + (a) when byte (eam) is not 0.

*11: 3 when word (AH) is zero, and 11 when word (AH) is not zero.

*12: 4 when word (ear) is zero, and 12 when word (ear) is not zero.

*13: 5 + (a) when word (eam) is zero, and 13 + (a) when word (eam) is not zero.

Mnem	nonic	#	~	RG	В	Operation	LH	AH	I	S	т	Ν	z	۷	С	RMW
DIV	A	2	*1	0	0	word (AH) /byte (AL) Quotient \rightarrow byte (AL)	Z	-	-	_	-	_	-	*	*	-
DIV	A, ear	2	*2	1	0	Remainder \rightarrow byte (AH) word (A)/byte (ear) Quotient \rightarrow byte (A)	Z	_	_	_	_	_	_	*	*	-
DIV	A, eam	2 +	*3	0	*6	Remainder \rightarrow byte (ear) word (A)/byte (eam) Quotient \rightarrow byte (A)	Z	_	_	_	_	_	-	*	*	-
DIVW	A, ear	2	*4	1	0	Remainder \rightarrow byte (eam) long (A)/word (ear) Quotient \rightarrow word (A)	_	_	_	_	_	_	_	*	*	-
DIVW	A, eam	2+	*5	0	*7	Remainder \rightarrow word (ear) long (A)/word (eam) Quotient \rightarrow word (A) Remainder \rightarrow word (eam)	_	_	_	_	_	_	_	*	*	-
MULU	А	2	*8	0	0	byte (AH) *byte (AL) \rightarrow word (A)	_	_	_	_	_	_	_	_	_	_
MULU	A, ear	2	*9	1	0	byte (A) *byte (ear) \rightarrow word (A)	—	—	—	_	—	—	—	_	_	—
MULU	A, eam	2 +	*10	0	(b)	byte (A) *byte (eam) \rightarrow word (A)	-	—	-	—	—	—	-	—	-	—
MULUW	A	2	*11	0	0	word (AH) *word (AL) \rightarrow long (A)	-	-	-	-	-	—	-	—	-	—
MULUW		2	*12	1	0	word (A) *word (ear) \rightarrow long (A)	-	-	-	-	-	-	-	-	-	—
MULUW	A, eam	2 +	*13	0	(c)	word (A) *word (eam) \rightarrow long (A)	-	-	-	-	-	-	-	-	-	-

Table 13 Signed Multiplication and Division Instructions (Byte/Word/Long Word) [11 Instructions]

*1: Set to 3 when the division-by-0, 8 or 18 for an overflow, and 18 for normal operation.

*2: Set to 3 when the division-by-0, 10 or 21 for an overflow, and 22 for normal operation.

*3: Set to 4 + (a) when the division-by-0, 11 + (a) or 22 + (a) for an overflow, and 23 + (a) for normal operation.

- *4: Positive dividend: Set to 4 when the division-by-0, 10 or 29 for an overflow, and 30 for normal operation. Negative dividend: Set to 4 when the division-by-0, 11 or 30 for an overflow and 31 for normal operation.
- *5: Positive dividend: Set to 4 + (a) when the division-by-0, 11 + (a) or 30 + (a) for an overflow, and 31 + (a) for normal operation.
 - Negative dividend: Set to 4 + (a) when the division-by-0, 12 + (a) or 31 + (a) for an overflow, and 32 + (a) for normal operation.

*6: When the division-by-0, (b) for an overflow, and $2 \times (b)$ for normal operation.

*7: When the division-by-0, (c) for an overflow, and $2 \times$ (c) for normal operation.

*8: Set to 3 when byte (AH) is zero, 12 when the result is positive, and 13 when the result is negative.

*9: Set to 3 when byte (ear) is zero, 12 when the result is positive, and 13 when the result is negative.

- *10: Set to 4 + (a) when byte (eam) is zero, 13 + (a) when the result is positive, and 14 + (a) when the result is negative.
- *11: Set to 3 when word (AH) is zero, 12 when the result is positive, and 13 when the result is negative.
- *12: Set to 3 when word (ear) is zero, 16 when the result is positive, and 19 when the result is negative.
- *13: Set to 4 + (a) when word (eam) is zero, 17 + (a) when the result is positive, and 20 + (a) when the result is negative.
- Notes: When overflow occurs during DIV or DIVW instruction execution, the number of execution cycles takes two values because of detection before and after an operation.
 - When overflow occurs during DIV or DIVW instruction execution, the contents of AL are destroyed.
 - For (a) to (d), refer to "Table 4 Number of Execution Cycles for Effective Address in Addressing Modes" and "Table 5 Correction Values for Number of Cycles for Calculating Actual Number of Cycles."

Mn	emonic	#	~	RG	В	Operation	LH	AH	I	s	т	Ν	z	v	С	RMW
AND AND AND AND AND	A, #imm8 A, ear A, eam ear, A eam, A	2 2 2+ 2 2+	2 3 4+ (a) 3 5+ (a)	0 1 0 2 0	0 (b) 0 2×(b)	byte (A) \leftarrow (A) and imm8 byte (A) \leftarrow (A) and (ear) byte (A) \leftarrow (A) and (eam) byte (ear) \leftarrow (ear) and (A) byte (eam) \leftarrow (eam) and (A)		_ _ _ _				* * * *	* * * *	R R R R R		- - - *
OR OR OR OR OR	A, #imm8 A, ear A, eam ear, A eam, A	2 2+ 2 2+	2 3 4+ (a) 3 5+ (a)	0 1 0 2 0	0 (b) 0 2×(b)	byte (A) \leftarrow (A) or imm8 byte (A) \leftarrow (A) or (ear) byte (A) \leftarrow (A) or (eam) byte (ear) \leftarrow (ear) or (A) byte (eam) \leftarrow (eam) or (A)	- - - -	- - - -				* * * *	* * * *	R R R R R R		 *
XOR XOR XOR XOR XOR	A, #imm8 A, ear A, eam ear, A eam, A	2 2+ 2 2+	2 3 4+ (a) 3 5+ (a)	0 1 0 2 0	0 (b) 0 2×(b)	byte (A) \leftarrow (A) xor imm8 byte (A) \leftarrow (A) xor (ear) byte (A) \leftarrow (A) xor (eam) byte (ear) \leftarrow (ear) xor (A) byte (eam) \leftarrow (eam) xor (A)	- - -	- - - -				* * * *	* * * *	R R R R R R		 *
NOT NOT NOT	A ear eam	1 2 2+	2 3 5+ (a)	0 2 0	0 0 2× (b)	byte (A) ← not (A) byte (ear) ← not (ear) byte (eam) ← not (eam)	_ _ _	- - -				* * *	* * *	R R R		- - *
ANDW ANDW ANDW	A, #imm16 A, ear A, eam	1 3 2+ 2+ 2+	2 2 3 4+ (a) 3 5+ (a)	0 0 1 0 2 0	0 0 (c) 0 2× (c)	word (A) \leftarrow (AH) and (A) word (A) \leftarrow (A) and imm16 word (A) \leftarrow (A) and (ear) word (A) \leftarrow (A) and (ear) word (ear) \leftarrow (ear) and (A) word (eam) \leftarrow (eam) and (A)		- - - -				* * * * * *	* * * * *	R R R R R R		*
ORW ORW ORW ORW ORW ORW	A A, #imm16 A, ear A, eam ear, A eam, A	1 3 2+ 2 2+	2 2 3 4+ (a) 3 5+ (a)	0 0 1 0 2 0	0 0 (c) 0 2× (c)	word (A) \leftarrow (AH) or (A) word (A) \leftarrow (A) or imm16 word (A) \leftarrow (A) or (ear) word (A) \leftarrow (A) or (eam) word (ear) \leftarrow (ear) or (A) word (eam) \leftarrow (eam) or (A)		- - - -	- - - -			* * * * *	* * * * *	R R R R R R R		 *
XORW XORW XORW	A, #imm16 A, ear A, eam	1 3 2 2+ 2 2+	2 2 3 4+ (a) 3 5+ (a)	0 0 1 0 2 0	0 0 (c) 0 2× (c)	word (A) \leftarrow (AH) xor (A) word (A) \leftarrow (A) xor imm16 word (A) \leftarrow (A) xor (ear) word (A) \leftarrow (A) xor (ear) word (ear) \leftarrow (ear) xor (A) word (eam) \leftarrow (eam) xor (A)	- - - -	- - - -	- - - -			* * * * *	* * * * *	R R R R R R R		 *
NOTW NOTW NOTW	ear	1 2 2+	2 3 5+ (a)	0 2 0	0 0 2× (c)	word (A) \leftarrow not (A) word (ear) \leftarrow not (ear) word (eam) \leftarrow not (eam)	_ _ _	_ _ _	_ _ _		_ _ _	* *	* * *	R R R	_ _ _	 *

Table 14 Logical 1 Instructions (Byte/Word) [39 Instructions]

Mne	emonic	#	~	RG	В	Operation	LH	AH	I	s	т	Ν	z	۷	с	RMW
	A, ear A, eam	2 2+	6 7+ (a)	2 0	0 (d)	long (A) \leftarrow (A) and (ear) long (A) \leftarrow (A) and (eam)	-		-	-	-	*	*	R R	-	-
	A, ear A, eam	2 2+	6 7+ (a)	2 0	0 (d)	long (A) \leftarrow (A) or (ear) long (A) \leftarrow (A) or (eam)	-	-	-	_	_	*	*	R R		_ _
	A, ea A, eam	2 2+	6 7+ (a)	2 0	0 (d)	long (A) \leftarrow (A) xor (ear) long (A) \leftarrow (A) xor (eam)						*	*	R R		_ _

Table 15 Logical 2 Instructions (Long Word) [6 Instructions]

Note : For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

Table 16	Sign Inversion	Instructions	(Byte/Word)	[6 Instructions]
----------	----------------	--------------	-------------	------------------

Mn	emonic	#	~	RG	В	Operation	LH	AH	I	s	т	N	z	۷	С	RMW
NEG	А	1	2	0	0	byte (A) \leftarrow 0 – (A)	Х	-	-	-	-	*	*	*	*	-
NEG NEG	ear eam	2 2+	3 5+ (a)	2 0		byte (ear) \leftarrow 0 – (ear) byte (eam) \leftarrow 0 – (eam)	-	-	-	_	-	*	*	*	*	 *
NEGW	А	1	2	0	0	word (A) \leftarrow 0 – (A)	_	Ι	Ι	Ι	-	*	*	*	*	_
NEGW NEGW		2 2+	3 5+ (a)	2 0	0 2× (c)	word (ear) $\leftarrow 0 - (ear)$ word (eam) $\leftarrow 0 - (eam)$	-				-	* *	* *	* *	*	— *

Note : For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

Table 17	Normalize	Instruction	(Long	Word)	[1 Ir	nstruction]	
----------	-----------	-------------	-------	-------	-------	-------------	--

Mnemonic	#	~	RG	В	Operation	LH	AH	I	S	Т	Ν	Z	۷	С	RMW
NRML A, R0	2	*1	1		long (A) \leftarrow Shift until first digit is "1" byte (R0) \leftarrow Current shift count	I	-	_	Ι	Ι	-	*	-	_	-

*1: 4 when the contents of the accumulator are all zeroes, 6 + (R0) in all other cases (shift count).

Mnemonic	#	~	RG	В	Operation	LH	AH	I	s	т	Ν	z	v	С	RMW
RORC A	2	2	0	0	byte (A) \leftarrow Right rotation with carry	-	Ι	-	1	1	*	*	I	*	-
ROLC A	2	2	0	0	byte $(A) \leftarrow$ Left rotation with carry	_	-	_	_	_	*	*	—	*	-
	_	-	-	-								*			
RORC ear	2	3	2	0	byte (ear) \leftarrow Right rotation with carry	-	—	-	-	-	*	*	—	*	—
RORC eam	2+	5+ (a)	0	2× (b)	byte (eam) \leftarrow Right rotation with carry	—	-	-	-	-	*	*	—	*	*
ROLC ear	2	3	2	0	byte (ear) \leftarrow Left rotation with carry	—	-	-	-	-	*	*	—	*	_
ROLC eam	2+	5+ (a)	0	2× (b)	byte (eam) \leftarrow Left rotation with carry	-	-	-	-	-	*	*	-	*	*
	2		4	0	b_{1} to (A) (Arithmetic right berral shift (A DO)					*	*	*		*	
ASR A, RO	2	*1	1	0	byte (A) \leftarrow Arithmetic right barrel shift (A, R0)	-	-	-	_	*	*	*	_	*	_
LSR A, RO	2	*1	1	0	byte (A) \leftarrow Logical right barrel shift (A, R0)	-	-	-	_		*	*	_	*	_
LSL A, R0	2	*1	1	0	byte (A) \leftarrow Logical left barrel shift (A, R0)	-	-	-	-	-	î	~	-	â	-
ASRW A	1	2	0	0	word (A) \leftarrow Arithmetic right shift (A, 1 bit)	Ι	_	Ι	I	*	*	*	_	*	_
LSRW A/SHRW A	1	2	0	0	word (A) \leftarrow Logical right shift (A, 1 bit)	_	—	_	_	*	R	*	—	*	_
LSLW A/SHLWA	1	2	0	0	word $(A) \leftarrow Logical left shift (A, 1 bit)$	_	—	_	_	_	*	*	—	*	-
	_			_								*			
ASRW A, R0	2	*1	1	0	word (A) \leftarrow Arithmetic right barrel shift (A,	-	—	—	—	*	*		—	*	-
LSRW A, R0	2	*1	1	0	R0)	—	-	-	-	*	*	*	—	*	-
LSLW A, R0	2	*1	1	0	word (A) \leftarrow Logical right barrel shift (A, R0)	-	-	-	-	-	*	*	—	*	-
					word (A) \leftarrow Logical left barrel shift (A, R0)										
ASRL A, R0	2	*2	1	0	long (A) \leftarrow Arithmetic right shift (A, R0)	_	—	_	_	*	*	*	-	*	-
LSRL A, R0	2	*2	1	0	long (A) \leftarrow Logical right barrel shift (A, R0)	_	—	_	-	*	*	*	-	*	—
LSLL A, R0	2	*2	1	0	long (A) \leftarrow Logical left barrel shift (A, R0)	—	-	-	-	-	*	*	-	*	-

 Table 18
 Shift Instructions (Byte/Word/Long Word) [18 Instructions]

*1: 6 when R0 is 0, 5 + (R0) in all other cases.

*2: 6 when R0 is 0, 6 + (R0) in all other cases.

Mnemonic	#	~	RG	В	Operation	LH	АН	I	s	т	Ν	z	۷	С	RMW
BZ/BEQ rel	2	*1	0	0	Branch when (Z) = 1	-	-	Ι		_	_	_			_
BNZ/BNE rel	2	*1	0	0	Branch when $(Z) = 0$	—	_	—	—	—	—	—	—	_	_
BC/BLO rel	2	*1	0	0	Branch when $(C) = 1$	—	—	—	—	—	—	—	—	—	_
BNC/BHS rel	2	*1	0	0	Branch when $(C) = 0$	—	_	—	—	—	—	—	—	_	_
BN rel	2	*1	0	0	Branch when $(N) = 1$	_	_	_	_	—	—	—	_	_	_
BP rel	2	*1	0	0	Branch when $(N) = 0$	—	_	—	—	—	—	—	—	_	_
BV rel	2	*1	0	0	Branch when $(V) = 1$	—	_	—	—	—	—	—	—	_	_
BNV rel	2	*1	0	0	Branch when $(V) = 0$	_	_	_	_	—	—	—	_	_	_
BT rel	2	*1	0	0	Branch when $(T) = 1$	—	_	—	—	—	—	—	—	_	_
BNT rel	2	*1	0	0	Branch when $(T) = 0$	—	_	—	—	—	—	—	—	_	_
BLT rel	2	*1	0	0	Branch when (V) xor $(N) = 1$	_	_	_	_	—	—	—	_	_	_
BGE rel	2	*1	0	0	Branch when (V) xor $(N) = 0$	—	_	—	—	—	—	—	—	_	_
BLE rel	2	*1	0	0	Branch when $((V) \text{ xor } (N))$ or $(Z) = 1$	—	_	—	—	—	—	—	—	_	_
BGT rel	2	*1	0	0	Branch when $((V) \text{ xor } (N)) \text{ or } (Z) = 0$	_	_	_	_	—	—	—	_	_	_
BLS rel	2	*1	0	0	Branch when (C) or $(Z) = 1$	—	_	—	—	—	—	—	—	_	_
BHI rel	2	*1	0	0	Branch when (C) or $(Z) = 0$	—	_	—	—	—	—	—	—	_	_
BRA rel	2	*1	0	0	Branch unconditionally	—	-	—	—	—	—	—	—	—	-
JMP @A	1	2	0	0	word (PC) \leftarrow (A)	_	_	_	_	_	_	_	_	_	_
JMP addr16	3	3	Ō	Õ	word (PC) \leftarrow addr16	_	_	_	_	_	_	_	_	_	_
JMP @ear	2	3	1	Õ	word (PC) \leftarrow (ear)	_	_	_	_	_	_	_	_	_	_
JMP @eam	2+	4+ (a)	0	(c)	word (PC) \leftarrow (eam)	_	_	_	_	_	_	_	_	_	_
JMPP @ear *3	2	5	2	0	word (PC) \leftarrow (ear), (PCB) \leftarrow (ear +2)	_	_	_	_	_	_	_	_	_	_
JMPP @eam *3	2+	6+ (a)	0	(d)	word (PC) \leftarrow (eam), (PCB) \leftarrow (eam +2)	_	_	_	_	_	_	_	_	_	_
JMPP addr24	4	4	Ō	0	word (PC) \leftarrow ad24 0 to 15,	_	_	_	_	_	_	_	_	_	_
	_		-	-	$(PCB) \leftarrow ad24 \ 16 \ to \ 23$										
CALL @ear *4	2	6	1	(C)	word (PC) \leftarrow (ear)	—	_	—	—	—	—	—	—	_	_
CALL @eam *4	2+	7+ (a)	0	2× (c)	word (PC) \leftarrow (eam)	—	_	—	—	—	—	—	—	_	_
CALL addr16 *5	3	6	0	(c)	word (PC) \leftarrow addr16	—	_	_	_	—	—	—	—	_	_
CALLV #vct4 *5	1	7	0	2× (c)	Vector call instruction	—	_	_	_	—	—	—	—	_	_
CALLP @ear *6	2	10	2	$2 \times (c)$	word (PC) \leftarrow (ear) 0 to 15,	—	_	_	_	—	—	—	—	_	_
					$(PCB) \leftarrow (ear) 16 \text{ to } 23$										
CALLP @eam *6	2+	11+ (a)	0	*2	word (PC) \leftarrow (eam) 0 to 15,	_	_	_	_	-	_	_	_	_	_
		. ,			(PCB) ← (eam) 16 to 23										
CALLP addr24 *7	4	10	0	2× (c)	word (PC) \leftarrow addr0 to 15, (PCB) \leftarrow addr16 to 23	-	-	-	-	-	-	-	-	—	-

 Table 19
 Branch 1 Instructions [31 Instructions]

*1: 4 when branching, 3 when not branching.

*2: (b) + $3 \times$ (c)

*3: Read (word) branch address.

*4: W: Save (word) to stack; R: read (word) branch address.

*5: Save (word) to stack.

*6: W: Save (long word) to W stack; R: read (long word) R branch address.

*7: Save (long word) to stack.

Mn	emonic	#	~	RG	В	Operation	LH	AH	I	s	т	Ν	z	v	с	RMW
CBNE A,	, #imm8, rel	3	*1	0	0	Branch when byte (A) ≠ imm8	_	_	_	-	-	*	*	*	*	_
	, #imm16, rel	4	*1	0	0	Branch when word $(A) \neq \text{imm16}$	-	—	-	-	-	*	*	*	*	-
CBNE ea	ar, #imm8, rel	4	*2	1	0	Branch when byte (ear) ≠ imm8	_	_	_	_	_	*	*	*	*	_
	am, #imm8, rel*10	4+	*3	0	(b)	Branch when byte (eam) \neq imm8	_	_	_	_	_	*	*	*	*	_
	ar, #imm16, rel	5	*4	1	0 0	Branch when word (ear) \neq imm16	_	_	_	_	_	*	*	*	*	_
CWBNE ea	am, #imm16, rel* ¹⁰	5+	*3	0	(c)	Branch when word (eam) \neq imm16	-	—	-	-	-	*	*	*	*	-
DBNZ ea	ar, rel	3	*5	2	0	Branch when byte (ear) = (ear) – 1, and (ear) ≠ 0	_	_	_	_	_	*	*	*	_	-
DBNZ ea	am, rel	3+	*6	2	2× (b)	Branch when byte (eam) = $(eam) - 1$, and $(eam) \neq 0$	-	-	_	_	_	*	*	*	_	*
DWBNZ ea	ar, rel	3	*5	2	0	Branch when word (ear) = (ear) – 1, and (ear) ≠ 0	-	-	_	_	_	*	*	*	_	-
DWBNZ ea	am, rel	3+	*6	2	2× (c)	Branch when word (eam) \neq 0 (eam) – 1, and (eam) \neq 0	-	_	_	_	-	*	*	*	_	*
INT #v	vct8	2	20	0	8× (c)	Software interrupt	_	_	R	S	_	_	_	_	_	_
	ddr16	3	16	0	6× (c)	Software interrupt	_	_	R	S	_	_	_	_	_	_
	ddr24	4	17	0	6× (c)	Software interrupt	—	—	R	S	—	_	_	_	_	-
INT9		1	20	0	8× (c)	Software interrupt	—	—	R	S	—	—	_	_	—	—
RETI		1	15	0	*7	Return from interrupt	-	-	*	*	*	*	*	*	*	-
LINK #iı	imm8	2	6	0	(c)	At constant entry, save old frame pointer to stack, set new frame pointer, and	-	-	-	_	_	_	_	_	_	_
UNLINK		1	5	0	(c)	allocate local pointer area At constant entry, retrieve old frame pointer from stack.	-	_	-	_	_	-	_	_	_	-
RET * ⁸ RETP * ⁹		1 1	4 6	0 0	(c) (d)	Return from subroutine Return from subroutine	-	-	-		-	-				_ _

Table 20 Branch 2 Instructions [19 Instructions]

*1: 5 when branching, 4 when not branching

*2: 13 when branching, 12 when not branching

*3: 7 + (a) when branching, 6 + (a) when not branching

*4: 8 when branching, 7 when not branching

*5: 7 when branching, 6 when not branching

*6: 8 + (a) when branching, 7 + (a) when not branching

*7: Set to $3 \times (b) + 2 \times (c)$ when an interrupt request occurs, and $6 \times (c)$ for return.

*8: Retrieve (word) from stack

*9: Retrieve (long word) from stack

*10: In the CBNE/CWBNE instruction, do not use the RWj+ addressing mode.

PUSHWA 1 4 0 (c) word (SP) \leftarrow (SP) -2 , ((SP)) \leftarrow (A) - <	Mnemonic	#			Р	Operation				-	_		_		-	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		#	~	RG	В	Operation	LH	AH	I	S	Т	Ν	Z	۷	С	RMW
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				-				-	-	—	—	—	-	-	—	-
PUSHW rist 2 **3 *5 *4 $(SP) \leftarrow (SP) - 2n, ((SP)) \leftarrow (rist)$ - -		-	-	-		word (SP) \leftarrow (SP) –2, ((SP)) \leftarrow (AH)			-	-	-		-	-	-	-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-	•	-				-	-	-	-	-	-	-	-	-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	PUSHWIISI	2				$(SP) \leftarrow (SP) - 2\Pi, ((SP)) \leftarrow (\Pi SI)$	_	-	-	_	_	-	-	-	_	-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	POPW A	1	3	0	(c)	word (A) \leftarrow ((SP)), (SP) \leftarrow (SP) +2	_	*	_	_	_	_	_	_	_	_
POPW PS 1 4 0 ic word (PS) (C) (iSP), (SP) (C) (SP) +2 - - + * <td>-</td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td>_</td> <td>_</td> <td>_</td> <td>_</td> <td>_</td> <td>_</td> <td>_</td> <td>_</td>	-	-						_	_	_	_	_	_	_	_	_
POPW rlst 2 **2 **5 *4 (rlst) \leftarrow ((SP)), (SP) \leftarrow (SP) +2n -	-	1	-	-			_	_	*	*	*	*	*	*	*	_
AND CCR, #imm8 2 3 0 0 byte (CCR) \leftarrow (CCR) and imm8 - - *	POPW rlst	2	*2	*5			—	_	_	_	—	—	_	_	_	-
AND CCR, #imm8 2 3 0 0 byte (CCR) \leftarrow (CCR) and imm8 - - *	JCTX @A	1	1/	0	6~ (c)	Context switch instruction	_	_	*	*	*	*	*	*	*	_
AND CCR, #Imm8 2 3 0 0 byte (CCR) \leftarrow (CCR) and minite - - + *	oon en		14	0	0^ (0)	Context Switch instruction										
OR CCR, #imm8 2 3 0 0 byte (CCR) \leftarrow (CCR) or imm8 - - * <td>AND CCR, #imm8</td> <td>2</td> <td>3</td> <td>0</td> <td>0</td> <td>byte (CCR) \leftarrow (CCR) and imm8</td> <td>_</td> <td>_</td> <td>*</td> <td>*</td> <td>*</td> <td>*</td> <td>*</td> <td>*</td> <td>*</td> <td>_</td>	AND CCR, #imm8	2	3	0	0	byte (CCR) \leftarrow (CCR) and imm8	_	_	*	*	*	*	*	*	*	_
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	OR CCR, #imm8	2	3	0	0		-	_	*	*	*	*	*	*	*	-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	MOV/ RP #imm8	2	2	0	0	bvte (RP) ←imm8	_	_	_	_	_	_	_	_	_	_
MOVEA RWi, ear 2 3 1 0 word (RWi) \leftarrow ear -							_	_	_	_	_	_	_	_	_	_
MOVEA RWi, eam $2+$ $2+$ $2+$ $2+$ 1 0 word (RWi) (-eam $ -$		_	-	Ŭ	Ũ	<i></i>										
MOVEA A, ear 2 1 0 0 word(A) \leftarrow ear -<	MOVEA RWi, ear	2	3	1	0	word (RWi) ←ear	_	_	_	_	—	—	_	_	_	-
MOVEA A, eam $2+$ $1+$ (a) 0 0 word (A) \leftarrow eam $ -$	MOVEA RWi, eam		2+ (a)	1	0		_	-	-	-	—	-	-	-	_	-
ADDSP #imm8 2 3 0 0 word (SP) \leftarrow (SP) +ext (imm8) - </td <td>MOVEA A, ear</td> <td></td> <td>-</td> <td>0</td> <td></td> <td></td> <td>-</td> <td>*</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>—</td>	MOVEA A, ear		-	0			-	*	-	-	-	-	-	-	-	—
ADDSP #imm16 3 3 0 0 word (SP) \leftarrow (SP) +imm16 -	MOVEA A, eam	2+	1+ (a)	0	0	word (A) ←eam	-	*	-	-	-	-	-	-	-	-
ADDSP #imm16 3 3 0 0 word (SP) \leftarrow (SP) +imm16 -	ADDSP #imm8	2	3	0	0	word (SP) \leftarrow (SP) +ext (imm8)	_	_	_	_	_	_	_	_	_	_
MOV brg2, A 2 1 0 0 byte (brg2) \leftarrow (Å) - <th< td=""><td>ADDSP #imm16</td><td>3</td><td></td><td></td><td></td><td></td><td>—</td><td>_</td><td>_</td><td>_</td><td>—</td><td>—</td><td>_</td><td>_</td><td>—</td><td>-</td></th<>	ADDSP #imm16	3					—	_	_	_	—	—	_	_	—	-
MOV brg2, A 2 1 0 0 byte (brg2) \leftarrow (Å) - <th< td=""><td></td><td>2</td><td>*1</td><td>0</td><td>0</td><td>$b_{\rm v}$ (Λ) (bral)</td><td>7</td><td>*</td><td></td><td></td><td></td><td>*</td><td>*</td><td></td><td></td><td></td></th<>		2	*1	0	0	$b_{\rm v}$ (Λ) (bral)	7	*				*	*			
NOP 1 1 0 0 No operation -	<i>,</i> 3			-			<u> </u>	_	_	_		*	*	_	_	_
ADB 1 1 0 0 Prefix code for accessing AD space -	NOV DIG2, /(2	1	0	U											
ADB 1 1 0 0 Prefix code for accessing AD space -	NOP	1	1	0	0	No operation	_	_	_	_	_	_	_	_	_	_
PCB 1 1 0 0 Prefix code for accessing PC space -	ADB	1	1	0		Prefix code for accessing AD space	_	_	_	_	_	_	_	_	_	—
SPB 1 1 0 0 Prefix code for accessing SP space -	DTB	1	1	0	0	Prefix code for accessing DT space	_	_	_	_	—	—	_	_	_	—
NCC 1 1 0 0 Prefix code for no flag change	PCB	1	1	0	0	Prefix code for accessing PC space	-	-	_	-	—	-	_	-	_	—
	SPB	1	1	0	0	. .	—	—	-	—	-	-	-	-	—	-
CMR 1 0 0 Prefix code for common register bank -	NCC	1	1	0			—	-	—	—	—	-	—	-	—	-
	CMR	1	1	0	0	Prefix code for common register bank	—	-	-	—	-	-	-	-	—	-

 Table 21
 Other Control Instructions (Byte/Word/Long Word) [28 Instructions]

*1: PCB, ADB, SSB, USB, and SPB : 1 state DTB, DPR

: 2 states

*2: 7 + 3 × (pop count) + 2 × (last register number to be popped), 7 when rlst = 0 (no transfer register)

*3: 29 +3 × (push count) – 3 × (last register number to be pushed), 8 when rlst = 0 (no transfer register)

*4: Pop count \times (c), or push count \times (c)

*5: Pop count or push count.

Mnemonic	#	~	RG	В	Operation	LH	AH	I	s	т	Ν	z	۷	С	RMW
MOVB A, dir:bp MOVB A, addr16:bp MOVB A, io:bp	3 4 3	5 5 4	0 0 0	(b) (b) (b)	byte (A) \leftarrow (dir:bp) b byte (A) \leftarrow (addr16:bp) b byte (A) \leftarrow (io:bp) b	Z Z Z	* * *				* *	* * *			_ _ _
MOVB dir:bp, A MOVB addr16:bp, A MOVB io:bp, A	3 4 3	7 7 6	0 0 0	2× (b) 2× (b) 2× (b)							* * *	* *			* * *
SETB dir:bp SETB addr16:bp SETB io:bp	3 4 3	7 7 7	0 0 0	2× (b) 2× (b) 2× (b)	bit (dir:bp) b \leftarrow 1 bit (addr16:bp) b \leftarrow 1 bit (io:bp) b \leftarrow 1										* * *
CLRB dir:bp CLRB addr16:bp CLRB io:bp	3 4 3	7 7 7	0 0 0	2× (b) 2× (b) 2× (b)											* * *
BBC dir:bp, rel BBC addr16:bp, rel BBC io:bp, rel	4 5 4	*1 *1 *2	0 0 0	(b) (b) (b)	Branch when (dir:bp) $b = 0$ Branch when (addr16:bp) $b = 0$ Branch when (io:bp) $b = 0$							* *			- - -
BBS dir:bp, rel BBS addr16:bp, rel BBS io:bp, rel	4 5 4	*1 *1 *2	0 0 0	(b) (b) (b)	Branch when (dir:bp) $b = 1$ Branch when (addr16:bp) $b = 1$ Branch when (io:bp) $b = 1$							* *			- - -
SBBS addr16:bp, rel	5	*3	0	2× (b)	Branch when (addr16:bp) b = 1, bit = 1	-	_	_	_	_	_	*	_	-	*
WBTS io:bp	3	*4	0	*5	Wait until (io:bp) b = 1	_	_	_	-	_	_	_	_	_	-
WBTC io:bp	3	*4	0	*5	Wait until (io:bp) b = 0	-	_	-	-	_	-	-	_	-	_

Table 22 Bit Manipulation Instructions [21 Instruction
--

*1: 8 when branching, 7 when not branching

*2: 7 when branching, 6 when not branching

*3: 10 when condition is satisfied, 9 when not satisfied

*4: Undefined count

*5: Until condition is satisfied

Note : For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

Table 23	Accumulator Manipulation Instructions (Byte/Word) [6 Instructions]

Mnemonic	#	~	RG	В	Operation	LH	AH	I	s	Т	Ν	z	۷	С	RMW
SWAP	1	3	0	0	byte (A) 0 to $7 \leftrightarrow$ (A) 8 to 15	-	-	-	-		-	-	-	-	-
SWAPW/XCHW A,T	1	2	0	0	word (AH) \leftrightarrow (AL)	—	*	_	—	—	_	—	_	_	—
EXT	1	1	0	0	byte sign extension	Х	_	_	—	—	*	*	_	_	_
EXTW	1	2	0	0	word sign extension	—	Х	_	—	—	*	*	_	_	_
ZEXT	1	1	0	0	byte zero extension	Ζ	_	_	—	—	R	*	_	_	_
ZEXTW	1	1	0	0	word zero extension	-	Ζ	-	-	—	R	*	-	—	-

Mnemonic	#	~	RG	В	Operation	LH	AH	I	s	т	Ν	z	v	С	RMW
MOVS/MOVSI	2	*2	*5	*3	Byte transfer $@AH+ \leftarrow @AL+$, counter = RW0	-	-	-	-	-	-	-	-	_	-
MOVSD	2	*2	*5	*3	Byte transfer $@AH- \leftarrow @AL-$, counter = RW0	-	-	-	-	-	-	-	-	-	-
SCEQ/SCEQI	2	*1	*5	*4		_	_	_	_	_	*	*	*	*	_
SCEQD	2	*1	*5	*4	Byte retrieval (@AH–) – AL, counter = RW0	-	-	-	-	-	*	*	*	*	-
FISL/FILSI	2	6m +6	*5	*3	Byte filling $@AH+ \leftarrow AL$, counter = RW0	-	_	_	-	_	*	*	_	_	-
MOVSW/MOVSWI	2	*2	*8	*6	Word transfer $@AH+ \leftarrow @AL+$, counter = RW0	١	Ι	Ι	I	١	I	Ι	Ι	-	-
MOVSWD	2	*2	*8	*6	Word transfer $@AH- \leftarrow @AL-$, counter = RW0	-	-	-	-	-	-	-	-	-	—
SCWEQ/SCWEQI	2	*1	*8	*7	Word retrieval (@AH+) – AL, counter = RW0	_	_	_	_	_	*	*	*	*	_
SCWEQD	2	*1	*8	*7	Word retrieval (@AH–) – AL, counter = RW0	-	-	-	-	-	*	*	*	*	—
FILSW/FILSWI	2	6m +6	*8	*6	Word filling @AH+ \leftarrow AL, counter = RW0	-	-	-	-	-	*	*	-	-	-

Table 24 String Instructions [10 Instructions]

m: RW0 value (counter value)

n: Loop count

*1: 5 when RW0 is 0, 4 + 7 × (RW0) for count out, and 7 × n + 5 when match occurs

*2: 5 when RW0 is 0, 4 + 8 \times (RW0) in any other case

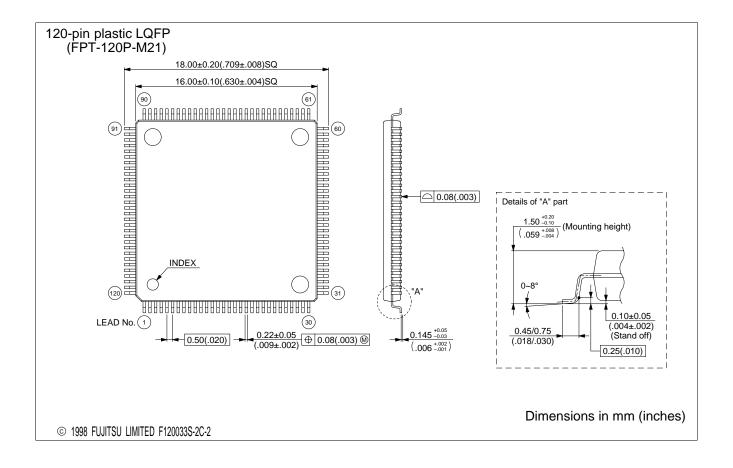
*3: (b) \times (RW0) + (b) \times (RW0) when accessing different areas for the source and destination, calculate (b) separately for each.

*4: (b) × n

*5: 2 × (RW0)

*6: (c) \times (RW0) + (c) \times (RW0) when accessing different areas for the source and destination, calculate (c) separately for each.

*7: (c) × n


*8: 2 × (RW0)

■ ORDERING INFORMATION

Part number	Package	Remarks
MB90573PFF MB90574PFF MB90F574PFF MB90F574APFF	120-pin Plastic LQFP (FPT-120P-M05)	
MB90573PFV MB90574PFV MB90574CPFV MB90F574PFV MB90F574APFV	120-pin Plastic QFP (FPT-120P-M13)	
MB90574CPMT MB90F574APMT	120-pin Plastic LQFP (FPT-120P-M21)	

120-pin plastic LQFP (FPT-120P-M05) 16.00±0.20(.630±.008)SQ 14.00±0.10(.551±.004)SQ (90) 61) (91) (60) 0.08(.003) Details of "A" part $\frac{1.50^{+0.20}_{-0.10}}{(\ .059^{+.008}_{-.004})} \text{ (Mounting height)}$ INDEX (120)= **=**(31) "A' 0~8° LEAD No. (1) (30) 0.10±0.10 (.004±.004) (Stand off) 0.16±0.03 (.006±.001) ⊕ 0.07(.003) ₪ 0.145±0.055 (.006±.002) 0.50±0.20 (.020±.008) 0.40(.016) 0.45/0.75 0.25(.010) (.018/.030) Dimensions in mm (inches) © 1998 FUJITSU LIMITED F120006S-3C-4 120-pin plastic QFP (FPT-120P-M13) 22.60±0.20(.890±.008)SQ 3.85(.152)MAX (Mounting height) 0.05(.002)MIN 20.00±0.10(.787±.004)SQ (90) 61 (STAND OFF) (91) (60) Details of "A" part 14.50 21.60 0.15(.006) (.571) REF (.850) NOM Æ 0.15(.006) INDEX 0.15(.006)MAX 0.40(.016)MAX "A" (120) (31) Details of "B" part (1)-(30) LEAD No. 0.20±0.10 (.008±.004) ⊕ 0.08(.003) ₪ 0.50(.0197) 0.125±0.05 (.005±.002) $0 \sim 10^{\circ}$ 0.50±0.20(.020±.008) 0.10(.004) "B' Dimensions in mm (inches) © 2000 FUJITSU LIMITED F120013S-2C-4

PACKAGE DIMENSIONS

FUJITSU LIMITED

For further information please contact:

Japan

FUJITSU LIMITED Corporate Global Business Support Division Electronic Devices Shinjuku Dai-Ichi Seimei Bldg. 7-1, Nishishinjuku 2-chome, Shinjuku-ku, Tokyo 163-0721, Japan Tel: +81-3-5322-3347 Fax: +81-3-5322-3386

http://edevice.fujitsu.com/

North and South America

FUJITSU MICROELECTRONICS, INC. 3545 North First Street, San Jose, CA 95134-1804, U.S.A. Tel: +1-408-922-9000 Fax: +1-408-922-9179

Customer Response Center *Mon. - Fri.: 7 am - 5 pm (PST)* Tel: +1-800-866-8608 Fax: +1-408-922-9179

http://www.fujitsumicro.com/

Europe

FUJITSU MICROELECTRONICS EUROPE GmbH Am Siebenstein 6-10, D-63303 Dreieich-Buchschlag, Germany Tel: +49-6103-690-0 Fax: +49-6103-690-122

http://www.fujitsu-fme.com/

Asia Pacific

FUJITSU MICROELECTRONICS ASIA PTE. LTD. #05-08, 151 Lorong Chuan, New Tech Park, Singapore 556741 Tel: +65-281-0770 Fax: +65-281-0220

http://www.fmap.com.sg/

Korea

FUJITSU MICROELECTRONICS KOREA LTD. 1702 KOSMO TOWER, 1002 Daechi-Dong, Kangnam-Gu,Seoul 135-280 Korea Tel: +82-2-3484-7100 Fax: +82-2-3484-7111

F0101 © FUJITSU LIMITED Printed in Japan All Rights Reserved.

The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information and circuit diagrams in this document are presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams.

The contents of this document may not be reproduced or copied without the permission of FUJITSU LIMITED.

FUJITSU semiconductor devices are intended for use in standard applications (computers, office automation and other office equipments, industrial, communications, and measurement equipments, personal or household devices, etc.). CAUTION:

Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with FUJITSU sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval.

Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Control Law of Japan, the prior authorization by Japanese government should be required for export of those products from Japan.