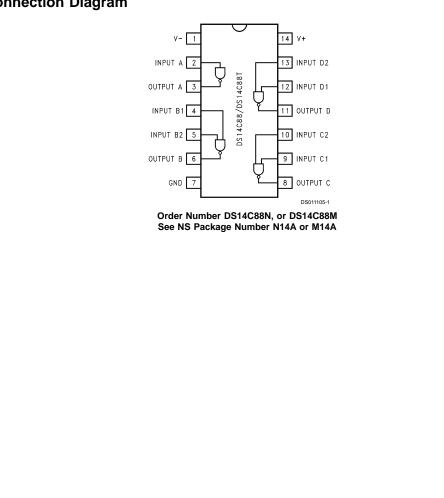
DS14C88 QUAD CMOS Line Driver

National Semiconductor

DS14C88 QUAD CMOS Line Driver

General Description

The DS14C88, pin-for-pin compatible to the DS1488/ MC1488, is a quad line drivers designed to interface data terminal equipment (DTE) with data circuit-terminating equipment (DCE). This device translates standard TTL/ CMOS logic levels to levels conforming to EIA-232-D and CCITT V.28 standards.


The device is fabricated in low threshold CMOS metal gate technology. The device provides very low power consumption compared to its bipolar equivalents: 500 µA (DS14C88) versus 25 mA (DS1488).

The DS14C88 simplifies designs by eliminating the need for external slew rate control capacitors. Slew rate control in accordance with EIA-232D is provided on-chip, eliminating the output capacitors.

Features

- Meets EIA-232D and CCITT V.28 standards
- LOW power consumption
- Wide power supply range: ±5V to ±12V
- Available in SOIC package

Connection Diagram

Absolute Maximum Ratings (Note 1)

.

Supply Voltage

Driver Input Voltage Driver Output Voltage

N Package

M Package Junction Temperature

V⁺ Pin

V⁻ Pin

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Lead Temperature				
(Soldering 4 seconds)	+260°C			
Storage Temperature Range	-65°C to +150°C			
This Product does not meet 2000V ESD rating. (Note 9)				

Recommended Operating Conditions

	Min	Max	Units
V ⁺ Supply (GND = 0V)	+4.5	+12.6	V
V ⁻ Supply (GND = 0V)	-4.5	-12.6	V
Operating Free Air Temp. (T_A)			
DS14C88	0	+75	°C

Electrical Characteristics

Continuous Power Dissipation @+25°C (Note 2)

Over Recommended Operating Conditions, unless otherwise specified

Symbol	Parameter	Conditions		Min	Тур	Max	Units	
I	Maximum Low Input Current	V _{IN} = GND				+10	μA	
I _{IH}	Maximum High Input Current	V _{IN} = V ⁺		-10			μA	
VIL	Low Level Input Voltage	$V^+ \ge +7V, V^- \le -7V$		GND		0.8	V	
		V ⁺ < +7V, V ⁻ > -7V		GND		0.6	V	
V _{IH}	High Level Input Voltage				2.0		V+	V
V _{OL}	Low Level Output Level	t Level $V_{IN} = V_{IH}$ $V^+ = 4.5V, V^- = -4.5V$		′ ⁻ = -4.5V		-4.0	-3.0	V
		$R_L = 3 k\Omega$	V ⁺ = 9V, V ⁻			-8.0	-6.5	V
		or 7 kΩ	V ⁺ = 12V, V	_ = −12V		-10.5	-9.0	V
V _{OH}	High Level Output Level	$V_{IN} = V_{IL}$	V ⁺ = 4.5V, V	′- = -4.5V	3.0	4.0		V
	$R_L = 3 k\Omega$	V ⁺ = 9V, V ⁻	= -9V	6.5	8.0		V	
		or 7 kΩ	V+ = 12V, V	_ = −12V	9.0	10.5		V
I _{OS+}	High Level Output Short Circuit Current (Note 3)	$V_{IN} = 0.8V, V_{C}$	_o = GND	V ⁺ = +12V, V ⁻ = -12V	-45			mA
I _{OS-}	Low Level Output Short Circuit Current (Note 3)	$V_{IN} = 2.0V, V_O = GND$				+45	mA	
R _{OUT}	Output Resistance	$V^+ = V^- = \text{GND} = 0V$		300			Ω	
I _{CC+} Positive Supply Curren	Positive Supply Current		2V (Note 4) (<i>Fig</i> V ⁺ = 4.5V, V				10	μA
		R _L = OPEN	V ⁺ = 9V, V ⁻	= -9V			30	μA
			V ⁺ = 12V, V ⁻ = -12V				60	μA
		V _{IN} = V _{IHmin}	V ⁺ = 4.5V, V	′− = −4.5V			50	μΑ
		R _L = OPEN	V ⁺ = 9V, V ⁻	= -9V			300	μA
			V ⁺ = 12V, V	⁻ = -12V			500	μA
I _{CC-} Negative Supply Cur	Negative Supply Current	V _{IN} = V _{ILmax}	V ⁺ = 4.5V, V	′− = −4.5V			-10	μΑ
		$R_L = OPEN$	V ⁺ = 9V, V ⁻	= -9V			-10	μA
			V+ = 12V, V	- = -12V			-10	μA
		V _{IN} = V _{IHmin}	V ⁺ = 4.5V, V	′− = −4.5V			-30	μΑ
		$R_L = OPEN$	V ⁺ = 9V, V ⁻	= -9V			-30	μA
			V ⁺ = 12V, V	- = -12V			-60	μA

+13V

-13V

1513 mW 1063 mW

+150°C

(V⁺) +0.3V to GND -0.3V

$$\begin{split} |(V^+) - V_O| &\leq 30V \\ |(V^-) - V_O| &\leq 30V \end{split}$$

www.national.com

Symbol	Parameter	Conditions	Min	Тур	Max	Units
t _{PLH}	Propagation Delay	V ⁺ = +4.5V, V ⁻ = -4.5V		1.5	6.0	μs
	Low to High	V ⁺ = +9.0V, V ⁻ = -9.0V		1.2	5.0	μs
		$V^+ = +12V, V^- = -12V$		1.2	4.0	μs
t _{PHL}	Propagation Delay	V ⁺ = +4.5V, V ⁻ = -4.5V		1.5	6.0	μs
	High to Low	V ⁺ = +9.0V, V ⁻ = -9.0V		1.35	5.0	μs
		$V^+ = +12V, V^- = -12V$		1.3	4.0	μs
t _r	Rise Time (Note 7)		0.2	1.0		μs
t _f	Fall Time (Note 7)		0.2	1.0		μs
tsk	Typical Propagation	V ⁺ = +4.5V, V ⁻ = -4.5V		250		ns
	Delay Skew	V ⁺ = +9.0V, V ⁻ = -9.0V		200		ns
		V ⁺ = +12V, V ⁻ = -12V		150		ns
S _R	Output Slew Rate	$R_L = 3 k\Omega$ to 7 k Ω			30	V/µs
	(Note 7)	$C_1 = 15 \text{ pF to } 2500 \text{ pF}$				

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The tables of "Electrical Characteristics" specify conditions for device operation.

Note 2: Derate N Package 12.1 mW/°C, and M Package 8.5 mW/°C above +25°C.

Note 3: I_{OS+} and I_{OS-} values are for one output at a time. If more than one output is shorted simultaneously, the device dissipation may be exceeded.

Note 4: Power supply (V⁺, V⁻) and GND pins are connected to ground for the Output Resistance Test (R₀).

Note 5: AC input test waveforms for test purposes: $t_r = t_f \le 20$ ns, $V_{IH} = 2V$, $V_{IL} = 0.8V$ (0.6V at $V^+ = 4.5V$, $V^- = -4.5V$)

Note 6: Input rise and rall times must not exceed 5 µs.

Note 7: The output slew rate, rise time, and fall time are measured from the +3.0V to the -3.0V level on the output waveform.

Note 8: C_L include jig and probe capacitances.

Note 9: ESD Rating (HBM, 1.5 k\Omega, 100 pF) \ge 1.0 kV.

Parameter Measure Information

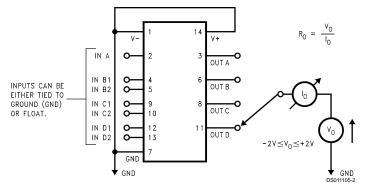


FIGURE 1. Output Resistance Test Circuit (Power-Off)

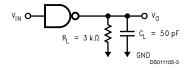
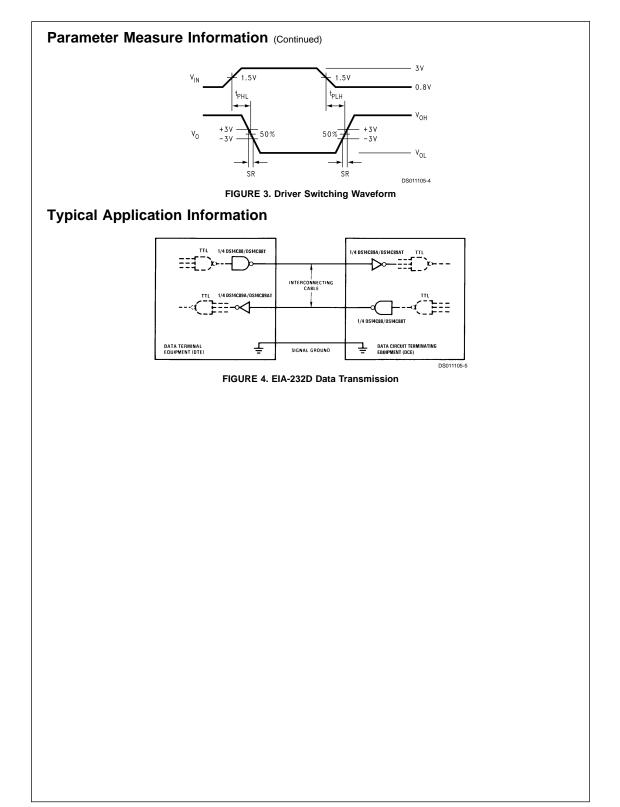
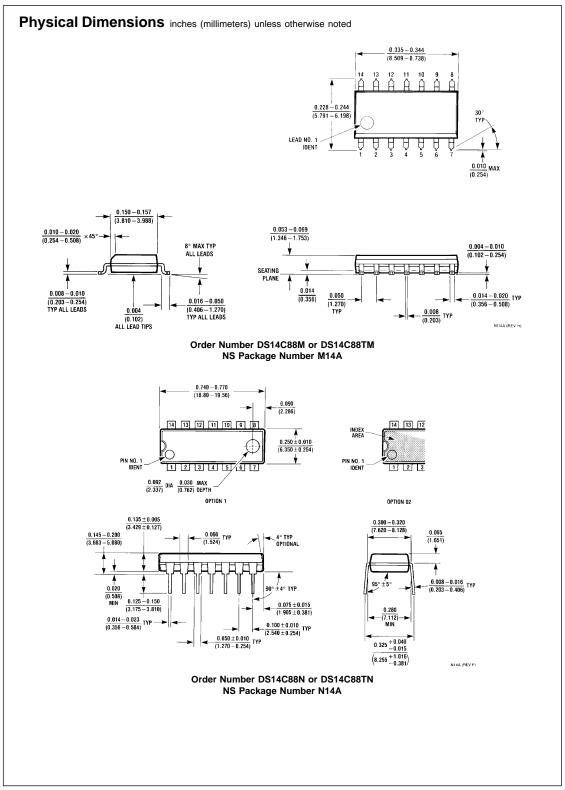




FIGURE 2. Driver Load Circuit (Note 8)

www.national.com

www.national.com

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DE-VICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMI-CONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

N.	National Semiconductor Corporation	National Semiconductor Europe	National Semiconductor Asia Pacific Customer	National Semiconducto Japan Ltd.
	Americas	Fax: +49 (0) 1 80-530 85 86	Response Group	Tel: 81-3-5620-6175
	Tel: 1-800-272-9959	Email: europe.support@nsc.com	Tel: 65-2544466	Fax: 81-3-5620-6179
	Fax: 1-800-737-7018	Deutsch Tel: +49 (0) 1 80-530 85 85	Fax: 65-2504466	
	Email: support@nsc.com	English Tel: +49 (0) 1 80-532 78 32	Email: sea.support@nsc.com	
		Français Tel: +49 (0) 1 80-532 93 58		
/ww.na	ational.com	Italiano Tel: +49 (0) 1 80-534 16 80		

National does not assume any responsibility for use of any circuity described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

Copyright © Each Manufacturing Company.

All Datasheets cannot be modified without permission.

This datasheet has been download from :

www.AllDataSheet.com

100% Free DataSheet Search Site.

Free Download.

No Register.

Fast Search System.

www.AllDataSheet.com