Low-Voltage, Single-Supply Multiplexer and Switch

Abstract

General Description The MAX4524/MAX4525 are low-voltage, single-supply CMOS analog switches configured as a 4-channel multiplexer/demultiplexer (MAX4524) and a double-pole/double-throw (DPDT) switch (MAX4525). Both have an inhibit input to simultaneously open all signal paths. These devices operate from a single supply of +2 V to +12 V and are optimized for operation with +3 V or +5 V supplies. On-resistance is 200Ω with a +5 V supply and 500Ω with a +3 V supply. Each switch can handle Rail-to-Rail ${ }^{\circledR}$ analog signals. The off-leakage current is only 2 nA at $+25^{\circ} \mathrm{C}$ or 20 nA at $+85^{\circ} \mathrm{C}$. All digital inputs have 0.8 V to 2.4 V logic thresholds, ensuring TTL/CMOS-logic compatibility when using a single +5 V supply.

\qquad Applications
Battery-Operated Equipment
Audio and Video Signal Routing
Low-Voltage Data-Acquisition Systems
Communications Circuits

- Tiny 10-Pin μ MAX Package
- Single-Supply Operation from +2V to +12V
- 200Ω On-Resistance with +5V Supply
- 500Ω On-Resistance with +3V Supply
- Guaranteed 8Ω On-Resistance Match at +5V
- Guaranteed 2nA Max On-Leakage at +5V
- TTL/CMOS-Logic Compatible

Ordering Information

PART	TEMP. RANGE	PIN-PACKAGE
MAX4524CUB	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$10 \mu \mathrm{MAX}$
MAX4524C/D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice
MAX4524EUB	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$10 \mu \mathrm{MAX}$
MAX4525CUB	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$10 \mu \mathrm{MAX}$
MAX4525C/D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice
MAX4525EUB	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$10 \mu \mathrm{MAX}$

*Contact factory for availability.

Pin Configurations/Functional Diagrams/Truth Tables

Rail-to-Rail is a registered trademark of Nippon Motorola Ltd.

For free samples \& the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800. For small orders, phone 408-737-7600 ext. 3468.

Low-Voltage, Single-Supply Multiplexer and Switch

ABSOLUTE MAXIMUM RATINGS
(Voltages Referenced to GND)
V+
Voltage into any terminal (Note 1
\qquad .-0.3V, +13V
Continuous Current into any Terminal -0.3 V to $(\mathrm{V}++0.3 \mathrm{~V})$
Peak Current, NO, NC or COM (pulsed at $1 \mathrm{~ms}, 10 \%$ duty cycle)
\qquad
ESD per Method 3015.7 >2000V

Continuous Power Dissipation $\left(\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}\right)$ μ MAX (derate $4.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) 330 mW	
Operating Temperature Ranges	
MAX452_C	+
MAX452 E	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Te	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (sol	300

Note 1: Voltages exceeding V+ or GND on any signal terminal are clamped by internal diodes. Limit forward-diode current to maximum current rating

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS-Single +5 V Supply

$\left(\mathrm{V}_{+}=+4.5 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{AH}}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{AL}}=0.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS		TEMP.	MIN	TYP (Note 2)	MAX	UNITS
ANALOG SWITCH								
Analog Signal Range	$\mathrm{V}_{\mathrm{COM}},$ V_{NO}			C, E	V-		V+	V
COM-NO/NC On-Resistance	Ron	$\mathrm{V}_{+}=4.5 \mathrm{~V}, \mathrm{ICOM}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{COM}}=3.5 \mathrm{~V}$		$+25^{\circ} \mathrm{C}$		90	150	Ω
				C, E			200	
COM-NO/NC On-Resistance Match Between Channels (Note 3)	$\Delta \mathrm{RoN}$	$\mathrm{V}+=4.5 \mathrm{~V}, \mathrm{ICOM}=1 \mathrm{~mA}, \mathrm{~V} \mathrm{COM}=3.5 \mathrm{~V}$		$+25^{\circ} \mathrm{C}$		2	10	Ω
				C, E			15	
COM-NO/NC On-Resistance Flatness (Note 4)	Rflat	$\begin{aligned} & \mathrm{V}_{+}=5.5 \mathrm{~V} ; \mathrm{ICOM}=1 \mathrm{~mA} ; \\ & \mathrm{V}_{\mathrm{COM}}=1.5 \mathrm{~V}, 2.5 \mathrm{~V}, 3.5 \mathrm{~V} \end{aligned}$		$+25^{\circ} \mathrm{C}$		5	12	Ω
NO/NC Off-Leakage (Note 5)	INO(OFF), Inc(OFF),	$\mathrm{V}_{+}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{NO}}=1 \mathrm{~V}, 4.5 \mathrm{~V} ; \mathrm{V}_{\text {com }}=4.5 \mathrm{~V}, 1 \mathrm{~V}$		$+25^{\circ} \mathrm{C}$	-1		1	nA
				C, E	-10		10	
COM Off-Leakage (Note 5)	ICOM(OFF)	$\begin{aligned} & \mathrm{V}_{+}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{NO}}=1 \mathrm{~V}, 4.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{COM}}=4.5 \mathrm{~V}, 1 \mathrm{~V} \end{aligned}$	MAX4524	$+25^{\circ} \mathrm{C}$	-2		2	nA
				C, E	-50		50	
			MAX4525	$+25^{\circ} \mathrm{C}$	-1		1	
				C, E	-25		25	
COM On-Leakage (Note 5)	ICOM(ON)	$\mathrm{V}_{+}=5.5 \mathrm{~V} ; \mathrm{V}_{\text {com }}=4.5 \mathrm{~V}, 1 \mathrm{~V}$	MAX4524	$+25^{\circ} \mathrm{C}$	-2		2	nA
				C, E	-50		50	
			MAX4525	$+25^{\circ} \mathrm{C}$	-1		1	
				C, E	-25		25	
DIGITAL I/O								
Logic Input Logic Threshold High	V_{IH}			C, E		1.5	2.4	V
Logic Input Logic Threshold Low	VIL			C, E	0.8	1.5		V
Input Current High	IIH	$\mathrm{V}_{\mathrm{A}}=\mathrm{V}_{\text {INH }}=2.4 \mathrm{~V}$		C, E	-1		1	$\mu \mathrm{A}$
Input Current Low	IIH	$\mathrm{V}_{\mathrm{A}}=\mathrm{V}_{\text {INH }}=0.8 \mathrm{~V}$		C, E	-1		1	$\mu \mathrm{A}$

Low-Voltage, Single-Supply
 Multiplexer and Switch

ELECTRICAL CHARACTERISTICS-Single +5 V Supply (continued)

$\left(\mathrm{V}_{+}=+4.5 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{AH}}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{AL}}=0.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS		TEMP.		TYP (Note 2)	MAX	UNITS
SWITCH DYNAMIC CHARACTERISTICS								
Inhibit Turn-On Time	${ }^{\mathrm{t}}$ (ON)	$\mathrm{V}_{\mathrm{NO}}=3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$, Figure 2		$+25^{\circ} \mathrm{C}$		90	150	ns
				C, E			200	
Inhibit Turn-Off Time	t(OFF)	$\mathrm{V}_{\mathrm{NO}}^{-}=3 \mathrm{~V}, \mathrm{RL}=300 \Omega, \mathrm{CL}=35 \mathrm{pF},$ Figure 2		$+25^{\circ} \mathrm{C}$		40	120	ns
				C, E			180	
Address Transition Time	ttRANS	$\mathrm{V}_{\mathrm{NO}}^{-},=3 \mathrm{~V} / 0 \mathrm{~V}, \mathrm{RL}_{\mathrm{L}}=300 \Omega, \mathrm{CL}_{\mathrm{L}}=35 \mathrm{pF},$ Figure 1		$+25^{\circ} \mathrm{C}$		90	150	ns
				C, E			200	
Break-Before-Make Time	tBBM	$\mathrm{V}_{\text {NO_ }}=3 \mathrm{~V}, \mathrm{RL}=300 \Omega, \mathrm{CL}_{\mathrm{L}}=35 \mathrm{pF}$, Figure 3		$+25^{\circ} \mathrm{C}$	5	20		ns
Charge Injection (Note 6)	Q	$\mathrm{C}=1 \mathrm{nF}, \mathrm{RS}_{\mathrm{S}}=0 \Omega, \mathrm{~V}_{\mathrm{S}}=2.5 \mathrm{~V}$, Figure 4		$+25^{\circ} \mathrm{C}$		0.8	5	pC
NO/NC Off-Capacitance	CNO(OFF)	$\mathrm{V}_{\mathrm{NO}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$, Figure 6		$+25^{\circ} \mathrm{C}$		4		pF
COM Off-Capacitance	Ccom(OFF)	$\mathrm{V}_{\mathrm{NO}_{-}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$, Figure 6	MAX4524	$+25^{\circ} \mathrm{C}$		14		pF
			MAX4525	$+25^{\circ} \mathrm{C}$		6		
COM On-Capacitance	Ccom(ON)	$\mathrm{V}_{\text {NO_ }}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$, Figure 6	MAX4524	$+25^{\circ} \mathrm{C}$		20		pF
			MAX4525	$+25^{\circ} \mathrm{C}$		12		
Off-Isolation	VISO	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{f}=1 \mathrm{MHz}$, Figure 5		$+25^{\circ} \mathrm{C}$		-75		dB
Channel-to-Channel Crosstalk (MAX4525)	VCT	$R \mathrm{~L}=50 \Omega, \mathrm{f}=1 \mathrm{MHz}$, Figure 5		$+25^{\circ} \mathrm{C}$		-74		dB
Total Harmonic Distortion	THD	$\mathrm{RL}=600 \Omega$, $\mathrm{V}_{\mathrm{COM}}=2.5 \mathrm{Vp}-\mathrm{p}, 20 \mathrm{~Hz}$ to 20 kHz		$+25^{\circ} \mathrm{C}$		0.2		\%
POWER SUPPLY								
Power-Supply Range	V+			C, E	2		12	V
Power-Supply Current	$1+$	$\mathrm{V}_{+}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {ADD }}=\mathrm{V}^{\text {INH }}=\mathrm{V}_{+}$or 0 V		$+25^{\circ} \mathrm{C}$	-1		1	$\mu \mathrm{A}$
				C, E	-10		10	

ELECTRICAL CHARACTERISTICS-Single +3V Supply

$\left(\mathrm{V}_{+}=+2.7 \mathrm{~V}\right.$ to $+3.6 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{AH}}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{AL}}=0.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS		TEMP.	MIN	TYP (Note 2)	MAX	UNITS
ANALOG SWITCH								
Analog Signal Range	$\mathrm{V}_{\mathrm{COM}}$, V_{NO}			C, E	V-		V+	V
COM-NO/NC On-Resistance	Ron	$\mathrm{V}_{+}=2.7 \mathrm{~V}, \mathrm{ICOM}=0.1 \mathrm{~mA}, \mathrm{~V}_{\text {COM }}=1.5 \mathrm{~V}$		$+25^{\circ} \mathrm{C}$		190	400	Ω
				C, E			500	
NO/NC Off-Leakage (Note 6)	INO(OFF), INC(OFF)	$\mathrm{V}+=3.6 \mathrm{~V} ; \mathrm{V}_{\mathrm{NO}}=1 \mathrm{~V}, 3 \mathrm{~V} ; \mathrm{V}_{\mathrm{COM}}=3 \mathrm{~V}, 1 \mathrm{~V}$		$+25^{\circ} \mathrm{C}$	-1		1	nA
				C, E	-10		10	
COM Off-Leakage (Note 6)	ICOM(OFF)	$\begin{aligned} & \mathrm{V}_{+}=3.6 \mathrm{~V} ; \mathrm{V}_{\mathrm{NO}}=1 \mathrm{~V}, 3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{COM}}=3 \mathrm{~V}, 1 \mathrm{~V} \end{aligned}$	MAX4524	$+25^{\circ} \mathrm{C}$	-2		2	nA
				C, E	-50		50	
			MAX4525	$+25^{\circ} \mathrm{C}$	-1		1	
				C, E	-25		25	

Low-Voltage, Single-Supply Multiplexer and Switch

$\left(\mathrm{V}_{+}=+2.7 \mathrm{~V}\right.$ to $+3.6 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{AH}}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{AL}}=0.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

Note 2: The algebraic convention is used in this data sheet; the most negative value is shown in the minimum column.
Note 3: $\quad \Delta \mathrm{RON}=\operatorname{Ron}(\mathrm{MAX})-\operatorname{RON}(\mathrm{MIN})$
Note 4: Flatness is defined as the difference between the maximum and minimum value of on-resistance as measured over the specified analog signal ranges; i.e., $\mathrm{V}_{\mathrm{NO}}=3 \mathrm{~V}$ to OV and 0 V to 3 V .
Note 5: Leakage parameters are 100% tested at maximum-rated hot operating temperature, and guaranteed by correlation at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
Note 6: Guaranteed by design, not production tested.

Low-Voltage, Single-Supply Multiplexer and Switch

Typical Operating Characteristics
$\left(\mathrm{V}+=+5 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted.)

Low-Voltage, Single-Supply Multiplexer and Switch

_Typical Operating Characteristics (continued)
$\left(\mathrm{V}+=+5 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted.)

Pin Description

MAX4524	MAX4525	NAME	FUNCTION
1	-	NO2	Analog Switch Normally Open Input 2
-	1	NOA	Analog Switch "A" Normally Open Input
2	-	NO3	Analog Switch Normally Open Input 3
-	2	COMA	Analog Switch "A" Common
3	-	NO1	Analog Switch Normally Open Input 1
-	3	NCA	Analog Switch "A" Normally Closed Input
4	4	INH	Inhibit. Connect to GND for normal operation. Connect to logic-level high to turn all switches off.
5	5	GND	Ground. Connect to digital ground (analog signals have no ground reference, but are limited to V+ and GND). 6
-	-	ADDB	Logic-Level Address Input (see Truth Tables)
7	-	ADDA	Logic-Level Address Input (see Truth Tables)
-	7	NCB	Analog Switch "B" Normally Closed Input Address Input (see Truth Tables)
8	-	NO0	Analog Switch Normally Open Input 0
-	8	NOB	Analog Switch "B" Normally Open Input
9	-	COM	Analog Switch Common
-	9	COMB	Analog Switch "A" Common
10	10	V+	Positive Analog and Digital Supply-Voltage Input

Note: NO, NC, and COM_ analog signal pins are identical and interchangeable. Any may be considered an input or output; signals pass equally well in both directions.

Low－Voltage，Single－Supply Multiplexer and Switch

Applic ations Information

Power－Supply Considerations
The MAX4524／MAX4525＇s construction is typical of most CMOS analog switches．They have two supply pins： V_{+}and GND． V_{+}and GND are used to drive the internal CMOS switches and set the limits of the analog voltage on any switch．Reverse ESD－protection diodes are internally connected between each analog signal pin and both V_{+}and GND．If any analog signal exceeds V_{+}or GND，one of these diodes will conduct． During normal operation，these（and other）reverse－ biased ESD diodes leak，forming the only current drawn from V＋or GND．

Virtually all the analog leakage current comes from the ESD diodes．Although the ESD diodes on a given sig－ nal pin are identical，and therefore fairly well balanced， they are reverse－biased differently．Each is biased by either V_{+}or GND and the analog signal．This means that leakage will vary as the signal varies．The differ－ ence in the two diode leakages to the V_{+}and GND pins constitutes the analog signal－path leakage current． All analog leakage current flows between each pin and one of the supply terminals，not to the other switch ter－ minal．This is why both sides of a given switch can show leakage currents of either the same or opposite polarity．

Figure 1．Address Transition Time

Low-Voltage, Single-Supply Multiplexer and Switch

There is no connection between the analog signal paths and GND. V_{+}and GND power the internal logic and logic-level translators, and set both the input and output logic limits. The logic-level translators convert the logic levels into switched V_{+}and GND signals to drive the gates of the analog signals. This drive signal is the only connection between the logic supplies (and signals) and the analog supplies. V_{+}has an ESD-protection diode to GND.

Low-Voltage Operation

These devices operate from a single supply between +2 V and +12 V . At room temperature, they actually "work" with a single supply at near or below +1.7 V , although as supply voltage decreases, switch on-resistance and switching times become very high.

High-Frequency Performance

 In 50Ω systems, signal response is reasonably flat up to 50 MHz (see Typical Operating Characteristics). Above 20 MHz , the on-response has several minor peaks, which are highly layout dependent. The problem is not turning the switch on, but turning it off. The offstate switch acts like a capacitor, and passes higher frequencies with less attenuation. At 10 MHz , off-isolation is about -50 dB in 50Ω systems, becoming worse (approximately 20dB per decade) as frequency increases. Higher circuit impedances also degrade offisolation. Adjacent channel attenuation is about 3dB above that of a bare IC socket, and is entirely due to capacitive coupling._Test Circuits/Timing Diagrams (continued)

REPEAT TEST FOR EACH SECTION.
Figure 2. Inhibit Switching Times

Low-Voltage, Single-Supply
 Multiplexer and Switch

Test Circ uits/Timing Diagrams (continued)

Figure 3. Break-Before-Make Interval

REPEAT TEST FOREACH SECTION.

VINH

Δ Vout IS THEMEASURED VOLTAGE DUE TO CHARGETRANSFER ERRORQ WHEN THE CHANNEL TURNS OFF.
$Q=\Delta V_{\text {Out }} X C_{L}$

Figure 4. Charge Injection

Low-Voltage, Single-Supply Multiplexer and Switch

MEASUREMENTS ARE STANDARDIZED AGAINST SHORT AT SOCKET TERMINALS.
OFF-ISOLATION IS MEASURED BETWEEN COM AND "OFF" NO TERMINAL ON EACH SWITCH.
ON-LOSS IS MEASURED BETWEEN COM AND "ON" NO TERMINAL ON EACH SWITCH.
CROSSTALK (MAX4524) IS MEASURED FROM ONE CHANNEL (A, B) TO OTHER CHANNEL.
SIGNAL DIRECTION THROUGH SWITCH IS REVERSED; WORST VALUES ARE RECORDED.

Figure 5. Off-Isolation, On-Loss, and Crosstalk

Figure 6. NO/COM Capacitance

Low-Voltage, Single-Supply Multiplexer and Switch

Chip Topographies

N.C. $=$ No Connection

TRANSISTOR COUNT: 219
SUBSTRATE CONNECTED TO V+

Low-Voltage, Single-Supply Multiplexer and Switch

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

12 \qquad Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 © 1998 Maxim Integrated Products

Copyright © Each Manufacturing Company.

All Datasheets cannot be modified without permission.

This datasheet has been download from : www.AllDataSheet.com

100\% Free DataSheet Search Site.

Free Download.
No Register.
Fast Search System.
www.AllDataSheet.com

