

N-Channel Field Effect Transistor

4N600(3600)

Description

The Bay Linear n-channel power field effect transistors are produced using high cell density DMOS technology, These devices are particularly suited for high voltage applications such as automotive and other battery powered circuits where fast switching, low in-line power loss and resistance to transistors are needed.

The TO-220 is offered in a 3-pin is universally preferred for all commercial-industrial applications at power dissipation level to approximately to 50 watts. Also, available in a D² surface mount power package with a power dissipation up to 2 Watts

Features

- Critical DC Electrical parameters specified at elevated Temp.
- Rugged internal source-drain diode can eliminate the need for external Zener diode transient suppresser
- Super high density cell design for extremely low R_{DS(ON)}

extremely low
$$R_{DS(ON)}$$

$$V_{DSS} = 600V$$

$$R_{DS (ON)} = 1.9 \Omega$$

$$I_D = 4.0A$$

Ordering Information

Device	Package	Temp.
4N600T	TO-220	0 to 150°C
4N600S	$TO-263 (D^2)$	0 to 150°C
	- ch-T	LC COM
	W. T.	

Absolute Maximum Rating

A
A
V
W
W/°C
°C
COM

Electrical Characteristics ($T_C = 25$ °C unless otherwise specified)

Symbol	Parameter	Conditions	Min	Typ	Max	Units
I_{DSS}	Zero Gate Voltage Drain Currer	nt $\begin{vmatrix} V_{DS}=600V \\ V_{GS}=0V \end{vmatrix}$			100	μA
V	Drain-to-Source Breakdown	$I_D=100\mu A, V_{GS}=0$	600	-	-	V
$V_{GS(TH)}$	Gate Threshold Voltage	$V_{DS}=V_{GS}$ $I_{D}=250\mu A$	2		4	V
R _{DS(ON)}	Static Drain Voltage	V_{GS} =10V, I_D =2.4A	-	-	1.9	Ω
I_{GSS}	Gate-to-Source Forward Leakag Gate-to-Source Reverse Leakag				100 -100	NA
\mathbf{g}_{fs}	Forward Tranconductance	V_{DS} =100V, I_{D} =2.4A	2.9			S
C _{ISS}	Input Capacitance	V_{DS} = 25V, V_{GS} =0V		800		pF
Coss	Output Capacitance	F=1.0 MHZ		110		pF
C_{RSS}	Reverse Tras. Capacitance	1-1.0 MHZ		20		pF
$t_{D(ON)}$	Turn-ON Delay Time	$V_{DD} = 300V$		12		NS NS
$\mathbf{t_r}$	Turn-ON Rise Time	$I_D=2.4A, R_{GEN}=12\Omega$		18		
$t_{d(off)}$	Turn-OFF Delay Time	$= R_{D}=74\Omega$		53		
$\mathbf{t_F}$	Turn-OFF Fall Time	N _D -/452		19		
I_S	Maxim Continuous Drain source Diode Forward Current				4.0	A
V _{DS} (note)	Drain Source Diode Forward Voltage	$V_{GS}=0V$ $I_{S}=4A$			1.50	v
THERMAI	CHRACTERISTICS		•	'		
\mathbf{R}_{JC}	Thermal Resistance, Junction to Case				5	°C/W
\mathbf{R}_{JC}	Thermal Resistance, Junction to Ambient				100	°C/W

Note: Pulse Test: Pulse With $\leq 300 \mu S$, Duty Cycle $\leq 2.0\%$

Advance Information- These data sheets contain descriptions of products that are in development. The specifications are based on the engineering calculations, computer simulations and/ or initial prototype evaluation.

Preliminary Information- These data sheets contain minimum and maximum specifications that are based on the initial device characterizations. These limits are subject to change upon the completion of the full characterization over the specified temperature and supply voltage ranges.

The application circuit examples are only to explain the representative applications of the devices and are not intended to guarantee any circuit design or permit any industrial property right to other rights to execute. Bay Linear takes no responsibility for any problems related to any industrial property right resulting from the use of the contents shown in the data book. Typical parameters can and do vary in different applications. Customer's technical experts must validate all operating parameters including "Typical" for each customer application.

LIFE SUPPORT AND NUCLEAR POLICY

Bay Linear products are not authorized for and should not be used within life support systems which are intended for surgical implants into the body to support or sustain life, in aircraft, space equipment, submarine, or nuclear facility applications without the specific written consent of Bay Linear President.