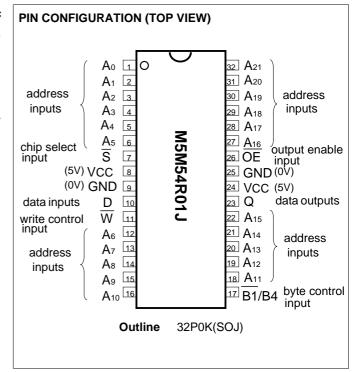
MITSUBISHI LSIS M5M54R01J-12,-15

1997.11.20 Rev.F

4194304-BIT (4194304-WORD BY 1-BIT) CMOS STATIC RAM

DESCRIPTION

The M5M54R01J is a family of 4194304-word by 1-bit static RAMs, fabricated with the high performance CMOS silicon gate process and designed for high speed application.

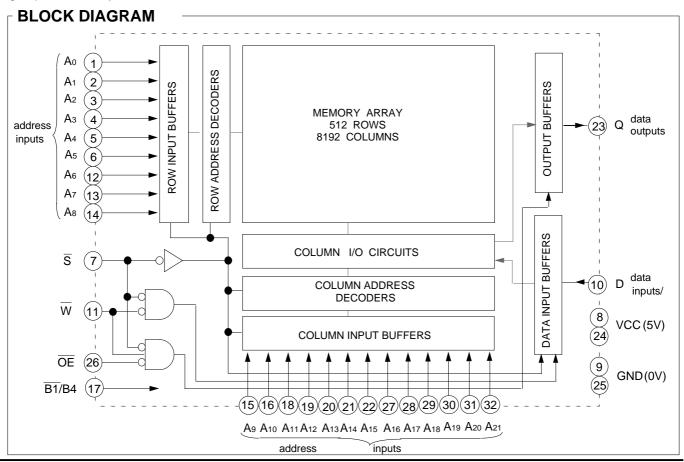

The M5M54R01J is offered in a 32-pin plastic small outline J-lead package(SOJ).

These device operate on a single 5V supply, and are directly

TTL compatible. They include a power down feature as well.

FEATURES

- Fast access time M5M54R01J-12 •••• 12ns(max) M5M54R01J-15 •••• 15ns(max)
- Low power dissipation Active ------- 450mW(typ)
 Stand by ------ 5mW(typ)
- Single +5V power supply
- · Fully static operation : No clocks, No refresh
- · Test mode is available
- Easy memory expansion by S
- Three-state outputs : OR-tie capability
- OE prevents data contention in the I/O bus
- · Directly TTL compatible : All inputs and outputs



APPLICATION

High-speed memory units

PACKAGE

32pin 400mil SOJ

4194304-BIT (4194304-WORD BY 1-BIT) CMOS STATIC RAM

FUNCTION

The operation mode of the M5M54R01J is determined by a combination of the device control inputs \overline{S} , \overline{W} and \overline{OE} . Each mode is summarized in the function table.

A write cycle is executed whenever the low level \overline{W} overlaps with the low level \overline{S} . The address must be set-up before the write cycle and must be stable during the entire cycle.

The data is latched into a cell on the trailing edge of \overline{W} or \overline{S} , whichever occurs first, requiring the set-up and hold time relative to these edge to be maintained. The output enable input \overline{OE} directly controls the output stage. Setting the \overline{OE} at a high level, the output stage is in a high impedance state, and the data bus

contention problem in the write cycle is eliminated.

A read cycle is excuted by setting \overline{W} at a high level and \overline{OE} at a low level while \overline{S} are in an active state (S=L).

When setting \overline{S} at high level, the chip is in a non-selectable mode in which both reading and writing are disable. In this mode, the output stage is in a high-impedance state, allowing OR-tie with other chips and memory expansion by \overline{S} .

Signal- \overline{S} controls the power-down feature. When \overline{S} goes high, power dissapation is reduced extremely. The access time from \overline{S} is equivalent to the address access time.

The RAM works with an organization of 4194304-word by 1 bit,when $\overline{B1}/B4$ is low of floating. And an organization of 1048 576-word by 4bit is also obtained for reducing the test time, when $\overline{B1}/B4$ is high.

FUNCTION TABLE

S	W	ŌE	Mode	D	Q	Icc
Н	Х	Χ	Non selection	High-impedance	High-impedance	Stand by
L	L	Х	Write	Din	High-impedance	Active
L	Н	L	Read	High-impedance	Dout	Active
L	Н	Η		High-impedance	High-impedance	Active

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Ratings	Unit
V cc	Supply voltage		-3.5 ~ 7	V
Vı	Input voltage	With respect to GND	-3.5 * ~ VCC+0.3	V
Vo	Output voltage		-3.5 * ~ VCC+0.3	V
Pd	Power dissipation	Ta=25 ℃	1000	mW
Topr	Operating temperature		0 ~ 70	c
Tstg(bias)	Storage temperature (bias)		-10 ~ 85	Ĉ
T _{stg}	Storage temperature		-65 ~ 150	Ĉ

^{*}Pulse width ≤ 20ns, In case of DC:-0.5V

DC ELECTRICAL CHARACTERISTICS (Ta=0 ~ 70 °C, Vcc=5V±10% unless otherwise noted)

Cymbal	Parameter Condition		Limits			I India		
Symbol	Parameter	Condition			Min	Тур	Max	Unit
V _{IH}	High-level input voltage				2.2		Vcc+0.3	V
V _{IL}	Low-level input voltage				-0.3		0.8	V
Voн	High-level output voltage	Iон =-4mA			2.4			V
Vol	Low-level output voltage	IOL= 8mA					0.4	V
H	Input current	V _I = 0~Vcc					2	μΑ
I OZ	Output current in off-state	V _I (S)= V _I H Vo= 0~Vcc					10	μА
	Active supply current (TTL level)	V _I (S)= V _I L other inputs V _I H or V _I L Output-open(duty 100%)	AC -	12ns cycle			160	
I _{CC1}				15ns cycle			150	mA
			DC			90	100	
	Stand by current (TTL level)	Vı (s)= VIH	AC	12ns cycle			75	
I _{CC2}				15ns cycle			70	mA
			DC				50	
I _{CC3}	Stand by current	V _I (S)= Vcc≥0.2V other inputs V _I ≤0.2V or V _I ≥Vcc-0.2V				1	10	mA

CAPACITANCE (Ta=0 ~ 70 °C, Vcc=5V±10% unless otherwise noted)

Cymbal	Doromotor	Toot Condition	Limit			1 1 1:4
Symbol	Parameter	Test Condition	Min	Тур	Max	Unit
Сі	Input capacitance	V _I =GND, V _I =25mVrms,f=1MHz			8	pF
Co	Output capacitance	V _O =GND, V _O =25mVrms,f=1MHz			8	pF

Note 1: Direction for current flowing into an IC is positive (no mark).

- 2: Typical value is Vcc=5V,Ta=25 C
- 3: CI,Co are periodically sampled and are not 100% tested.

AC ELECTRICAL CHARACTERISTICS (Ta=0 ~ 70 °C, Vcc=5V±10% unless otherwise noted)

(1)MEASUREMENT CONDITION

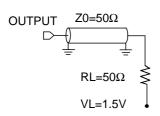


Fig.1 Output load

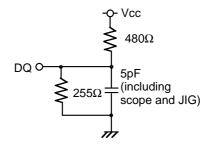
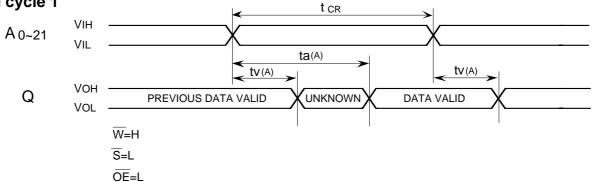


Fig.2 Output load for ten, t dis

(2)READ CYCLE

	Parameter		Limits				
Symbol		M5M54	R01J -12	M5M54R01J -15		Unit	
		Min	Max	Min	Max		
t cr	Read cycle time	12		15		ns	
ta(A)	Address access time		12		15	ns	
ta(s)	Chip select access time		12		15	ns	
ta(OE)	Output enable access time		6		8	ns	
tdis(s)	Output disable time after S high	0	6	0	7	ns	
tdis (OE)	Output disable time after OE high	0	6	0	7	ns	
ten(S)	Output enable time after S low	0		0		ns	
ten (OE)	Output enable time after OE low	0		0		ns	
tv _(A)	Data valid time after address change	3		3		ns	
tPU	Power-up time after chip selection	0		0		ns	
tPD	Power-down time after chip selection		12		15	ns	

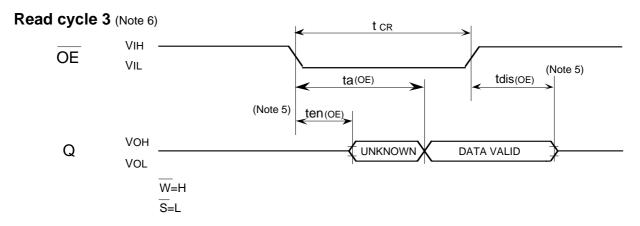

(3)WRITE CYCLE

Symbol	Parameter		Limits				
		M5M54	M5M54R01J -12		M5M54R01J -15		
-			Max	Min	Max	Unit	
t _{CW}	Write cycle time	12		15		ns	
tw(W)	Write pulse width	10		12		ns	
tsu(A)1	Address setup time(W)	0		0		ns	
tsu(A)2	Address setup time(\overline{S})	0		0		ns	
tsu(S)	Chip select setup time	10		12		ns	
tsu(D)	Data setup time	6		7		ns	
th(D)	Data hold time	0		0		ns	
trec(W)	Write recovery time	1		1		ns	
tdis(W)	Output disable time after W low	0	6	0	7	ns	
tdis (OE)	Output disable time after OE high	0	6	0	7	ns	
ten (W)	Output enable time after W high	0		0		ns	
ten(OE)	Output enable time after OE low	0		0		ns	
tsu(A-WH)	Address to W High	10		12		ns	



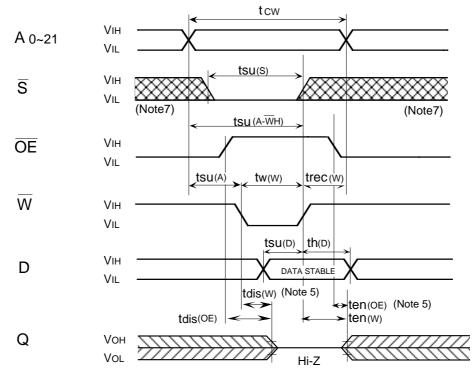
(4)TIMING DIAGRAMS

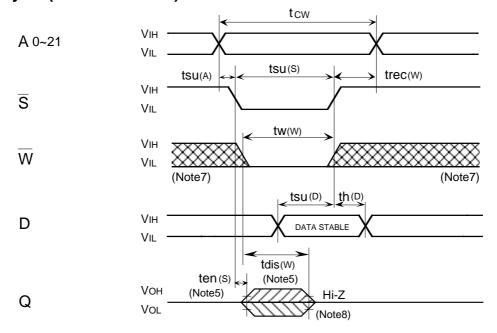
Read cycle 1



Read cycle 2 (Note 4)

Note 4. Addresses valid prior to or coincident with S transition low.


5. Transition is measured ±500mv from steady state voltage with specified loading in Figure 2.


Note 6. Addresses and S valid prior to OE transition low by (ta(A)-ta(OE)), (ta(S)-ta(OE))

Write cycle (W control mode)

Write cycle (S control mode)

Note 7: Hatching indicates the state is don't care.

- 8: When the falling edge of \overline{W} is simultaneous or prior to the falling edge of \overline{S} , the output is maintained in the high impedance.
- 9: ten,tdis are periodically sampled and are not 100% tested.

