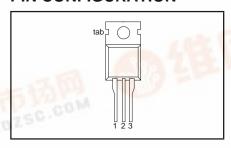
Thyristors

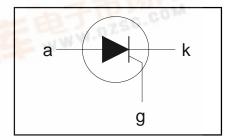
BT145 series

GENERAL DESCRIPTION

Glass passivated thyristors in a plastic envelope, intended for use in applications requiring high bidirectional blocking voltage capability and high thermal cycling performance. Typical applications include motor control, industrial and domestic lighting, heating and static switching.


QUICK REFERENCE DATA

SYMBOL	PARAMETER	MAX.	MAX.	MAX.	UNIT
.,	BT145-	500R	600R	800R	
V_{DRM} , V_{RRM}	Repetitive peak off-state voltages	500	600	800	V
T(AV)	Average on-state current RMS on-state current	16 25	16 25	16 25	A A
I _{T(RMS)}	Non-repetitive peak on-state current	300	300	300	A


PINNING - TO220AB

PIN	DESCRIPTION
1	cathode
2	anode
3	gate
tab	anode

PIN CONFIGURATION

SYMBOL

LIMITING VALUES

Limiting values in accordance with the Absolute Maximum System (IEC 134).

DEZG.WWW

SYMBOL	PARAMETER	CONDITIONS	MIN.	da-	MAX.	0.00	UNIT
V_{DRM}, V_{RRM}	Repetitive peak off-state voltages		TE.	-500R 500 ¹	-600R 600 ¹	-800R 800	>
I _{T(AV)} I _{T(RMS)} I _{TSM}	Average on-state current RMS on-state current Non-repetitive peak on-state current	half sine wave; $T_{mb} \le 101$ °C all conduction angles half sine wave; $T_j = 25$ °C prior to surge	-	16 25		A A	
I ² t dI _T /dt	I ² t for fusing Repetitive rate of rise of on-state current after	t = 10 ms t = 8.3 ms t = 10 ms $I_{TM} = 50 \text{ A}; I_G = 0.2 \text{ A};$ $dI_G/dt = 0.2 \text{ A}/\mu\text{s}$	-	-ta=	300 330 450 200		Α Α Α²s Α/μs
$\begin{matrix} I_{GM} \\ V_{GM} \\ V_{RGM} \\ P_{GM} \\ P_{G(AV)} \\ T_{stg} \\ T_{j} \end{matrix}$	triggering Peak gate current Peak gate voltage Peak reverse gate voltage Peak gate power Average gate power Storage temperature Operating junction temperature	over any 20 ms period	- - -40	ww	5 5 5 20 0.5 150 125		0,0% 8 8 8 8 8

Philips Semiconductors Product specification

Thyristors BT145 series

THERMAL RESISTANCES

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
R _{th j-mb}	Thermal resistance junction to mounting base		1	1	1.0	K/W
R _{th j-a}	Thermal resistance junction to ambient	in free air	-	60	-	K/W

STATIC CHARACTERISTICS

 $T_j = 25$ °C unless otherwise stated

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
I _{GT}	Gate trigger current	$V_D = 12 \text{ V}; I_T = 0.1 \text{ A}$	-	5	35	mΑ
I _L	Latching current	$V_{\rm D} = 12 \text{ V}; I_{\rm GT} = 0.1 \text{ A}$	-	25	80	mΑ
I _H	Holding current	$V_D = 12 \text{ V}; I_{GT} = 0.1 \text{ A}$	-	20	60	mΑ
Ϊ́Τ	On-state voltage	$I_{T} = 30 \text{ A}$	-	1.1	1.5	V
V _{GT}	Gate trigger voltage	$\dot{V}_{D} = 12 \text{ V}; I_{T} = 0.1 \text{ A}$	-	0.6	1.0	V
		$V_{\rm D} = V_{\rm DRM(max)}$; $I_{\rm T} = 0.1 \text{ A}$; $T_{\rm i} = 125 ^{\circ}\text{C}$	0.25	0.4	-	V
I_D, I_R	Off-state leakage current	$V_D = V_{DRM(max)}$; $V_R = V_{RRM(max)}$; $T_j = 125$ °C	-	0.2	1.0	mA

DYNAMIC CHARACTERISTICS

 $T_i = 25$ °C unless otherwise stated

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
dV _D /dt	Critical rate of rise of off-state voltage	$V_{DM} = 67\% V_{DRM(max)}; T_j = 125 °C;$ exponential waveform; gate open circuit	200	500	1	V/µs
t _{gt}	Gate controlled turn-on time	$I_{TM} = 40 \text{ A}; V_D = V_{DRM(max)}; I_G = 0.1 \text{ A}; dI_G/dt = 5 \text{ A}/\mu\text{s}$	-	2	-	μs
t _q	Circuit commutated turn-off time	$V_D^{\rm c} = 67\% \ V_{\rm DRM(max)}^{\rm C}; \ T_j = 125 \ ^{\circ}{\rm C}; \ I_{\rm TM} = 50 \ A; \ V_R = 25 \ V; \ dI_{\rm TM}/dt = 30 \ A/\mu s; \ dV_D/dt = 50 \ V/\mu s$	-	70	-	μs

Philips Semiconductors Product specification

Thyristors BT145 series

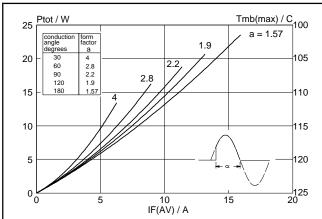


Fig.1. Maximum on-state dissipation, P_{tot} , versus average on-state current, $I_{T(AV)}$, where a = form factor = $I_{T(RMS)}$ / $I_{T(AV)}$.

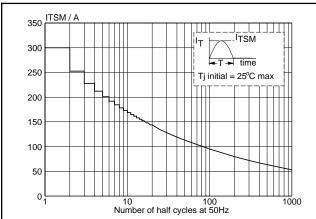


Fig.4. Maximum permissible non-repetitive peak on-state current I_{TSM} , versus number of cycles, for sinusoidal currents, f = 50 Hz.

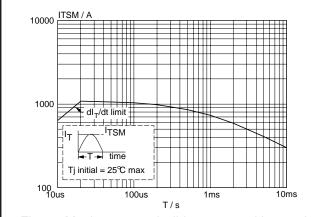


Fig.2. Maximum permissible non-repetitive peak on-state current I_{TSM} , versus pulse width t_p , for sinusoidal currents, $t_p \le 10$ ms.

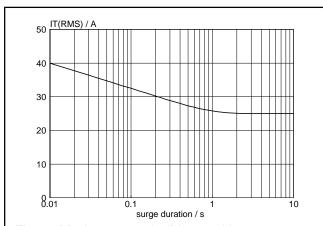


Fig.5. Maximum permissible repetitive rms on-state current $I_{T(RMS)}$, versus surge duration, for sinusoidal currents, f = 50 Hz; $T_{mb} \le 101$ °C.

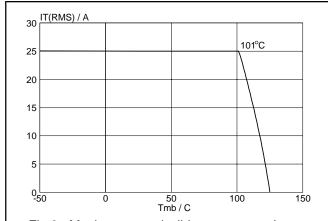


Fig.3. Maximum permissible rms current $I_{T(RMS)}$, versus mounting base temperature T_{mb} .

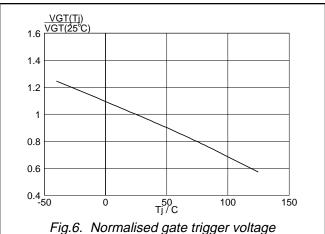
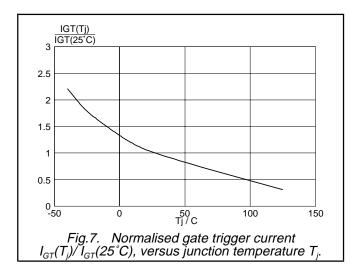



Fig.6. Normalised gate trigger voltage $V_{GT}(T_j)/V_{GT}(25^{\circ}C)$, versus junction temperature T_j .

Philips Semiconductors Product specification

Thyristors BT145 series

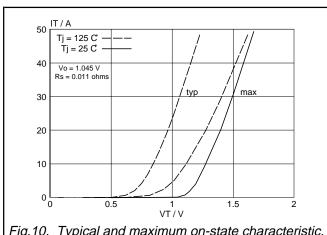
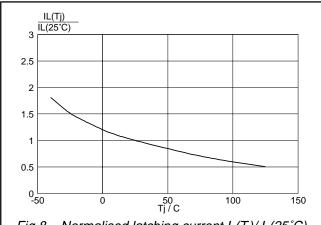



Fig. 10. Typical and maximum on-state characteristic.

Normalised latching current $I_L(T_i)/I_L(25^{\circ}C)$, versus junction temperature T_j .

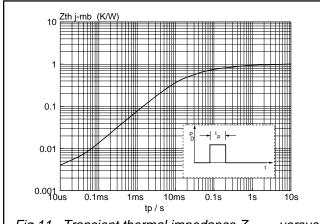


Fig.11. Transient thermal impedance $Z_{th i-mb}$, versus pulse width to.

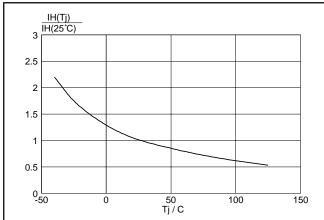


Fig.9. Normalised holding current $I_H(T_i)/I_H(25^{\circ}C)$, versus junction temperature T_i .

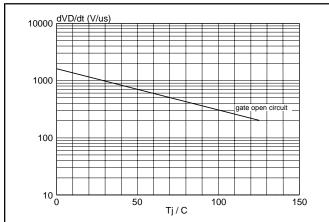
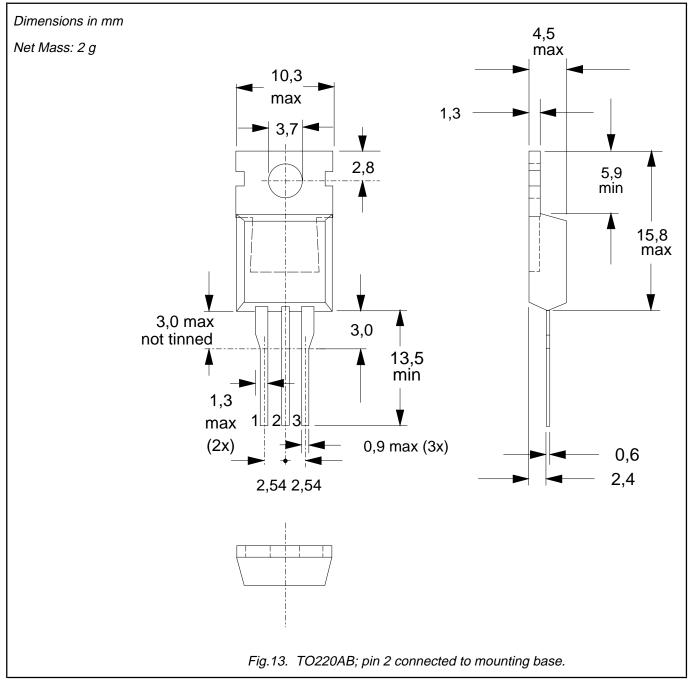



Fig.12. Typical, critical rate of rise of off-state voltage, dV_D/dt versus junction temperature $T_{j\cdot}$

Philips Semiconductors Product specification

Thyristors BT145 series

MECHANICAL DATA

- Notes
 1. Refer to mounting instructions for TO220 envelopes.
 2. Epoxy meets UL94 V0 at 1/8".

Philips Semiconductors Product specification

Thyristors BT145 series

DEFINITIONS

Data sheet status					
Objective specification	This data sheet contains target or goal specifications for product development.				
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published later.				
Product specification	This data sheet contains final product specifications.				

Limiting values

Limiting values are given in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of this specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information

Where application information is given, it is advisory and does not form part of the specification.

© Philips Electronics N.V. 1997

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.

The information presented in this document does not form part of any quotation or contract, it is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent or other industrial or intellectual property rights.

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.