DATA SHEET

74LV251 8-input multiplexer (3-State)

FEATURES

- Optimized for low voltage applications: 1.0 to 3.6 V
- Accepts TTL input levels between $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}$
- Typical $\mathrm{V}_{\mathrm{OLP}}$ (output ground bounce) $<0.8 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$, $T_{\text {amb }}=25^{\circ} \mathrm{C}$
- Typical $\mathrm{V}_{\mathrm{OHV}}$ (output V_{OH} undershoot) $>2 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$, $T_{\text {amb }}=25^{\circ} \mathrm{C}$
- True and complement outputs
- Both outputs are 3-State for further multiplexer expansion
- Multifunction capability
- Permits multiplexing from n-lines to one line
- Output capability: standard
- ICC category: MSI

DESCRIPTION

The 74LV251 is a low-voltage Si-gate CMOS device and is pin and function compatible with $74 \mathrm{HC} / \mathrm{HCT} 251$.

The 74LV251 is an 8-input multiplexer with 8 binary inputs (I_{0} to I_{7}), an output enable input ($\overline{\mathrm{OE}}$) and three select inputs $\left(\mathrm{S}_{0}, \mathrm{~S}_{1}, \mathrm{~S}_{2}\right)$. One of the eight binary inputs is selected by the select inputs and is routed to the outputs $(\overline{\mathrm{Y}}, \mathrm{Y})$. Both outputs are in the high impedance OFF-state (Z) when the output enable input is HIGH , allowing multiplexer expansion by tying the outputs.

QUICK REFERENCE DATA

GND $=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$

SYMBOL	PARAMETER	CONDITIONS	TYPICAL	UNIT
tphL/tPLH	Propagation delay I_{n} to Y I_{n} to Y S_{n} to Y S_{n} to Y	$\begin{aligned} & C_{\mathrm{L}}=15 \mathrm{pF} ; \\ & \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 14 \\ & 16 \\ & 19 \\ & 20 \\ & \hline \end{aligned}$	ns
C_{1}	Input capacitance		3.5	pF
$\mathrm{C}_{\text {PD }}$	Power dissipation capacitance per gate	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{GND} \text { to } \mathrm{V}_{\mathrm{CC}}{ }^{1} \end{aligned}$	44	pF

NOTE:

1. $\mathrm{C}_{P D}$ is used to determine the dynamic power dissipation (P_{D} in $\mu \mathrm{W}$)
$P_{D}=C_{P D} \times V_{C C}{ }^{2} \times f_{i}+\sum\left(C_{L} \times V_{C C}{ }^{2} \times f_{0}\right)$ where:
$\mathrm{f}_{\mathrm{i}}=$ input frequency in MHz ; $\mathrm{C}_{\mathrm{L}}=$ output load capacitance in pF ;
$\mathrm{f}_{\mathrm{O}}=$ output frequency in $\mathrm{MHz} ; \mathrm{V}_{\mathrm{CC}}=$ supply voltage in V ;
$\sum\left(C_{L} \times V_{C C}{ }^{2} \times f_{0}\right)=$ sum of the outputs.
ORDERING INFORMATION

PACKAGES	TEMPERATURE RANGE	OUTSIDE NORTH AMERICA	NORTH AMERICA	PKG. DWG. \#
16-Pin Plastic DIL	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	74 LV 251 N	74 LV 251 N	SOT38-4
16-Pin Plastic SO	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	74 LV 251 D	74 LV 251 D	SOT109-1
16-Pin Plastic SSOP Type II	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	74 LV 251 DB	74 LV 251 DB	SOT338-1
16-Pin Plastic TSSOP Type I	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	74 LV 251 PW	74 LV 251 PW DH	SOT403-1

PIN CONFIGURATION

	16 $\mathrm{~V}_{\mathrm{CC}}$ 15 I_{4}

LOGIC SYMBOL

PIN DESCRIPTION

PIN NUMBER	SYMBOL	FUNCTION
$4,3,2,1,15$, $14,13,12$	I_{0} to I_{7}	Multiplexer inputs
5	Y	Multiplexer output
6	Y	Complementary multiplexer output
7	OE	3-State output enable input (active LOW)
8	GND	Ground (0 V)
$11,10,9$	$\mathrm{~S}_{0}$ to S_{2}	Select inputs
16	$\mathrm{~V}_{\mathrm{CC}}$	Positive supply voltage

LOGIC SYMBOL (IEEE/IEC)

FUNCTIONAL DIAGRAM

8-input multiplexer (3-State)

FUNCTION TABLE

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{12}{|c|}{INPUTS} \& \multicolumn{2}{|l|}{OUTPUTS}

\hline OE \& S_{2} \& S_{1} \& S_{0} \& I_{0} \& I_{1} \& I_{2} \& I_{3} \& I_{4} \& I_{5} \& I_{6} \& I_{7} \& P \& Y

\hline H \& X \& Z \& Z

\hline $$
\begin{aligned}
& L \\
& L \\
& L \\
& L
\end{aligned}
$$ \& $$
\begin{aligned}
& \mathrm{L} \\
& \mathrm{~L} \\
& \mathrm{~L} \\
& \mathrm{~L}
\end{aligned}
$$ \& L
L
L \& $$
\begin{aligned}
& \mathrm{L} \\
& \mathrm{~L} \\
& \mathrm{H} \\
& \mathrm{H}
\end{aligned}
$$ \& L
H
X
X \& X
X
L
H \& X
X
X
X \& X
X
X
X \& X
X
X
X \& H
L
H
L \& L
H
L
H

\hline $$
\begin{aligned}
& \mathrm{L} \\
& \mathrm{~L} \\
& \mathrm{~L} \\
& \mathrm{~L}
\end{aligned}
$$ \& L
L \& H
H
H
H \& $$
\begin{aligned}
& \hline \mathrm{L} \\
& \mathrm{~L} \\
& \mathrm{H} \\
& \mathrm{H}
\end{aligned}
$$ \& X
X
X
X \& X
X
X
X \& L
H
X
X \& X
X
L
H \& X
X
X
X \& H
L
H
L \& L
H
L
H

\hline $$
\begin{aligned}
& \mathrm{L} \\
& \mathrm{~L} \\
& \mathrm{~L} \\
& \mathrm{~L}
\end{aligned}
$$ \& H
H
H
H \& L
L
L
L \& L
L
H
H \& X
X
X
X \& L

X
X \& X
X
L
H \& X
X
X
X \& X
X
X
X \& H
L
H \& L
H
L
H

\hline L
L
L
L \& H
H
H
H \& H
H
H
H \& L
L
H
H \& X
X
X
X \& L
H
X
X \& X
X
L
H \& H
L
H \& L
H
L
H

\hline
\end{tabular}

NOTES:
$\mathrm{H}=\mathrm{HIGH}$ voltage level
$\mathrm{L}=$ LOW voltage level
X = don't care
Z = high impedance OFF-state

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNIT
V_{CC}	DC supply voltage	See Note 1	1.0	3.3	3.6	V
V_{1}	Input voltage		0	-	$\mathrm{V}_{\text {CC }}$	V
V_{O}	Output voltage		0	-	V_{CC}	V
$\mathrm{T}_{\text {amb }}$	Operating ambient temperature range in free air	See DC and AC characteristics	$\begin{aligned} & -40 \\ & -40 \end{aligned}$		$\begin{array}{r} +85 \\ +125 \end{array}$	${ }^{\circ} \mathrm{C}$
$\mathrm{t}_{\mathrm{r}}, \mathrm{tf}_{\mathrm{f}}$	Input rise and fall times	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=1.0 \mathrm{~V} \text { to } 2.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=2.0 \mathrm{~V} \text { to } 2.7 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=2.7 \mathrm{~V} \text { to } 3.6 \mathrm{~V} \end{aligned}$	-	-	$\begin{aligned} & 500 \\ & 200 \\ & 100 \end{aligned}$	ns/V

NOTE:

1. The LV is guaranteed to function down to $\mathrm{V}_{\mathrm{CC}}=1.0 \mathrm{~V}$ (input levels $G N D$ or V_{CC}); DC characteristics are guaranteed from $\mathrm{V}_{\mathrm{CC}}=1.2 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$.

ABSOLUTE MAXIMUM RATINGS ${ }^{1,2}$

In accordance with the Absolute Maximum Rating System (IEC 134).
Voltages are referenced to GND (ground $=0 \mathrm{~V}$).

SYMBOL	PARAMETER	CONDITIONS	RATING	UNIT
$\mathrm{V}_{\text {CC }}$	DC supply voltage		-0.5 to +4.6	V
$\pm \mathrm{I}_{\text {IK }}$	DC input diode current	$\mathrm{V}_{1}<-0.5$ or $\mathrm{V}_{1}>\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$	20	mA
$\pm \mathrm{l}_{\text {OK }}$	DC output diode current	$\mathrm{V}_{\mathrm{O}}<-0.5$ or $\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$	50	mA
± 10	DC output source or sink current - standard outputs	$-0.5 \mathrm{~V}<\mathrm{V}_{\mathrm{O}}<\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$	25	mA
$\begin{aligned} & \pm \mathrm{I}_{\mathrm{GND}}, \\ & \pm \mathrm{I}_{\mathrm{CC}} \end{aligned}$	DC $V_{C C}$ or GND current for types with - standard outputs		50	mA
$\mathrm{T}_{\text {stg }}$	Storage temperature range		-65 to +150	${ }^{\circ} \mathrm{C}$
Ptot	Power dissipation per package - plastic DIL - plastic mini-pack (SO) - plastic shrink mini-pack (SSOP and TSSOP)	for temperature range: -40 to $+125^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$ derate linearly with $12 \mathrm{~mW} / \mathrm{K}$ above $+70^{\circ} \mathrm{C}$ derate linearly with $8 \mathrm{~mW} / \mathrm{K}$ above $+60^{\circ} \mathrm{C}$ derate linearly with $5.5 \mathrm{~mW} / \mathrm{K}$	$\begin{aligned} & 750 \\ & 500 \\ & 400 \end{aligned}$	mW

NOTES:

1. Stresses beyond those listed may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
2. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

DC ELECTRICAL CHARACTERISTICS

Over recommended operating conditions. Voltages are referenced to GND (ground = 0 V).

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS					UNIT
			$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$		
			MIN	TYP ${ }^{1}$	MAX	MIN	MAX	
V_{IH}	HIGH level Input voltage	$\mathrm{V}_{\mathrm{CC}}=1.2 \mathrm{~V}$	0.9			0.9		V
		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$	1.4			1.4		
		$\mathrm{V}_{\mathrm{CC}}=2.7$ to 3.6 V	2.0			2.0		
VIL	LOW level Input voltage	$\mathrm{V}_{\mathrm{CC}}=1.2 \mathrm{~V}$			0.3		0.3	V
		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$			0.6		0.6	
		$\mathrm{V}_{\mathrm{CC}}=2.7$ to 3.6 V			0.8		0.8	
V_{OH}	HIGH level output voltage; all outputs	$\mathrm{V}_{\mathrm{CC}}=1.2 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$ or $\mathrm{V}_{\mathrm{IL} ;}-\mathrm{l}_{\mathrm{O}}=100 \mu \mathrm{~A}$		1.2				V
		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$ or $\mathrm{V}_{\mathrm{IL} ;}-\mathrm{l}_{\mathrm{O}}=100 \mu \mathrm{~A}$	1.8	2.0		1.8		
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$ or $\mathrm{V}_{\mathrm{IL} ;}-\mathrm{l}_{\mathrm{O}}=100 \mu \mathrm{~A}$	2.5	2.7		2.5		
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$ or $\mathrm{V}_{\mathrm{IL} ;}-\mathrm{l}_{\mathrm{O}}=100 \mu \mathrm{~A}$	2.8	3.0		2.8		
V_{OH}	HIGH level output voltage; STANDARD outputs	$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$ or $\mathrm{V}_{\text {IL }} ;-\mathrm{l}_{\mathrm{O}}=6 \mathrm{~mA}$	2.40	2.82		2.20		V
$\mathrm{V}_{\text {OL }}$	LOW level output voltage; all outputs	$\mathrm{V}_{\mathrm{CC}}=1.2 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$ or $\mathrm{V}_{\mathrm{IL}} ; \mathrm{I}_{\mathrm{O}}=100 \mu \mathrm{~A}$		0				V
		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {IH }}$ or $\mathrm{V}_{\text {IL; }} \mathrm{I} \mathrm{I}=100 \mu \mathrm{~A}$		0	0.2		0.2	
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$ or V_{IL}; $\mathrm{I}_{\mathrm{O}}=100 \mu \mathrm{~A}$		0	0.2		0.2	
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {IH }}$ or V_{IL}; $\mathrm{I}_{\mathrm{O}}=100 \mu \mathrm{~A}$		0	0.2		0.2	
VoL	LOW level output voltage; STANDARD outputs	$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$ or $\mathrm{V}_{\mathrm{IL}} ; \mathrm{lO}=6 \mathrm{~mA}$		0.25	0.40		0.50	V

DC ELECTRICAL CHARACTERISTICS (Continued)

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS					UNIT
			$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$		
			MIN	TYP ${ }^{1}$	MAX	MIN	MAX	
1	Input leakage current	$\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {CC }}$ or GND			1.0		1.0	$\mu \mathrm{A}$
Icc	Quiescent supply current; MSI	$\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or GND; $\mathrm{I}_{\mathrm{O}}=0$			20.0		160	$\mu \mathrm{A}$
$\Delta_{\text {l }} \mathrm{CC}$	Additional quiescent supply current per input	$\mathrm{V}_{C C}=2.7 \mathrm{~V}$ to 3.6 $\mathrm{V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{C C}-0.6 \mathrm{~V}$			500		850	$\mu \mathrm{A}$

NOTE:

1. All typical values are measured at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.

AC CHARACTERISTICS

$G N D=0 \mathrm{~V} ; \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=2.5 \mathrm{~ns} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=1 \mathrm{~K} \Omega$

SYMBOL	PARAMETER	WAVEFORM	$\frac{\text { CONDITION }}{\mathrm{V}_{\mathrm{cc}}(\mathrm{~V})}$	LIMITS					UNIT
				-40 to $+85{ }^{\circ} \mathrm{C}$			-40 to $+125^{\circ} \mathrm{C}$		
				MIN	TYP ${ }^{1}$	MAX	MIN	MAX	
tPHLIPLH	Propagation delay I_{n} to Y	Figure 1	1.2		90				ns
			2.0		31	58		70	
			2.7		23	43		51	
			3.0 to 3.6		17^{2}	34		41	
tPhLIPLH	Propagation delay I_{n} to Y	Figure 2	1.2		100				ns
			2.0		34	65		77	
			2.7		25	48		56	
			3.0 to 3.6		19^{2}	38		45	
tPhLItPLH	Propagation delay S_{n} to Y	Figure 1	1.2		120				ns
			2.0		41	77		92	
			2.7		30	56		68	
			3.0 to 3.6		23^{2}	45		54	
tphLtPLH	Propagation delay S_{n} to Y	Figure 2	1.2		125				ns
			2.0		43	82		97	
			2.7		31	60		71	
			3.0 to 3.6		24^{2}	48		57	
$\mathrm{t}_{\text {PZH/tPZL }}$	3-State output disable time OE to Y, Y	Figure 2	1.2		65				ns
			2.0		22	43		51	
			2.7		16	31		38	
			3.0 to 3.6		12^{2}	25		30	
tphzitpLZ	3-State output disable time OE to Y, Y	Figure 2	1.2		60				ns
			2.0		22	39		48	
			2.7		17	29		36	
			3.0 to 3.6		13^{2}	24		29	

NOTES:

1. Unless otherwise stated, all typical values are measured at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$
2. Typical values are measured at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$.

AC WAVEFORMS

$\mathrm{V}_{\mathrm{M}}=1.5 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}} \geq 2.7 \mathrm{~V}$
$\mathrm{V}_{\mathrm{M}}=0.5 \mathrm{~V} \times \mathrm{V}_{\mathrm{CC}}$ at $\mathrm{V}_{\mathrm{CC}}<2.7 \mathrm{~V}$
V_{OL} and V_{OH} are the typical output voltage drop that occur with the output load.
$\mathrm{V}_{\mathrm{X}}=\mathrm{V}_{\mathrm{OL}}+0.3 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}} \geq 2.7 \mathrm{~V}$
$\mathrm{V}_{\mathrm{X}}=\mathrm{V}_{\mathrm{OL}}+0.1 \times \mathrm{V}_{\mathrm{CC}}$ at $\mathrm{V}_{\mathrm{CC}}<2.7 \mathrm{~V}$
$\mathrm{V}_{\mathrm{Y}}=\mathrm{V}_{\mathrm{OH}}-0.3 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}} \geq 2.7 \mathrm{~V}$
$\mathrm{V}_{\mathrm{Y}}=\mathrm{V}_{\mathrm{OH}}-0.1 \times \mathrm{V}_{\mathrm{CC}}$ at $\mathrm{V}_{\mathrm{CC}}<2.7 \mathrm{~V}$

Figure 1. Multiplexer input $\left(I_{n}\right)$ and select input $\left(S_{n}\right)$ to output (Y) propagation delays.

Figure 2. Multiplexer input $\left(I_{n}\right)$ and the select input $\left(S_{n}\right)$ to output $(\overline{\mathrm{Y}})$ propagation delays.

Figure 3. 3-State enable and disable times
TEST CIRCUIT

Test Circuit for switching times

DEFINITIONS

$\mathrm{R}_{\mathrm{T}}=$ Termination resistance should be equal to $\mathrm{Z}_{\mathrm{OUT}}$ of pulse generators.
$R_{L}=$ Load resistor
$C_{L}=$ Load capacitance includes jig and probe capacitance

| TEST | |
| :---: | :---: | :---: |
| $\mathrm{t}_{\text {PLH }} / \mathrm{TPHL}$ | |
| V_{CC} | $\mathrm{V}_{\mathbf{I}}$ |
| $<2.7 \mathrm{~V}$ | $\mathrm{~V}_{\mathrm{CC}}$ |
| $2.7-3.6 \mathrm{~V}$ | 2.7 V |

SV00776

Figure 4. Load circuitry for switching times.

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	$\underset{\max }{A}$	A_{1} min.	A_{2} max.	b	b_{1}	b_{2}	c	$D^{(1)}$	$E^{(1)}$	e	e_{1}	L	M_{E}	\mathbf{M}_{H}	w	$\begin{gathered} \mathbf{Z}^{(1)} \\ \text { max } . \end{gathered}$
mm	4.2	0.51	3.2	$\begin{aligned} & 1.73 \\ & 1.30 \end{aligned}$	$\begin{aligned} & 0.53 \\ & 0.38 \end{aligned}$	$\begin{aligned} & 1.25 \\ & 0.85 \end{aligned}$	$\begin{aligned} & 0.36 \\ & 0.23 \end{aligned}$	$\begin{aligned} & 19.50 \\ & 18.55 \end{aligned}$	$\begin{aligned} & 6.48 \\ & 6.20 \end{aligned}$	2.54	7.62	$\begin{aligned} & 3.60 \\ & 3.05 \end{aligned}$	$\begin{aligned} & 8.25 \\ & 7.80 \end{aligned}$	$\begin{gathered} 10.0 \\ 8.3 \end{gathered}$	0.254	0.76
inches	0.17	0.020	0.13	$\begin{aligned} & 0.068 \\ & 0.051 \end{aligned}$	$\begin{aligned} & 0.021 \\ & 0.015 \end{aligned}$	$\begin{aligned} & 0.049 \\ & 0.033 \end{aligned}$	$\begin{aligned} & 0.014 \\ & 0.009 \end{aligned}$	$\begin{aligned} & 0.77 \\ & 0.73 \end{aligned}$	$\begin{aligned} & 0.26 \\ & 0.24 \end{aligned}$	0.10	0.30	$\begin{aligned} & 0.14 \\ & 0.12 \end{aligned}$	$\begin{aligned} & 0.32 \\ & 0.31 \end{aligned}$	$\begin{aligned} & 0.39 \\ & 0.33 \end{aligned}$	0.01	0.030

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	EIAJ		
SOT38-4				\cdots	$\begin{aligned} & 92-11-17 \\ & 95-01-14 \end{aligned}$

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	$\begin{gathered} \mathrm{A} \\ \max . \end{gathered}$	A_{1}	A_{2}	A_{3}	b_{p}	c	$\mathrm{D}^{(1)}$	$E^{(1)}$	e	H_{E}	L	L_{p}	Q	v	w	y	$\mathbf{Z}^{(1)}$	θ
mm	1.75	$\begin{aligned} & 0.25 \\ & 0.10 \end{aligned}$	$\begin{aligned} & 1.45 \\ & 1.25 \end{aligned}$	0.25	$\begin{aligned} & 0.49 \\ & 0.36 \end{aligned}$	$\begin{aligned} & 0.25 \\ & 0.19 \end{aligned}$	$\begin{gathered} 10.0 \\ 9.8 \end{gathered}$	$\begin{aligned} & 4.0 \\ & 3.8 \end{aligned}$	1.27	$\begin{aligned} & 6.2 \\ & 5.8 \end{aligned}$	1.05	$\begin{aligned} & 1.0 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 0.7 \\ & 0.6 \end{aligned}$	0.25	0.25	0.1	$\begin{aligned} & 0.7 \\ & 0.3 \end{aligned}$	$\begin{aligned} & 8^{\circ} \\ & 0^{\circ} \end{aligned}$
inches	0.069	$\begin{array}{\|l\|} \hline 0.0098 \\ 0.0039 \end{array}$	$\begin{aligned} & 0.057 \\ & 0.049 \end{aligned}$	0.01	$\begin{aligned} & 0.019 \\ & 0.014 \end{aligned}$	$\begin{array}{\|l\|} \hline 0.0098 \\ 0.0075 \end{array}$	$\begin{aligned} & 0.39 \\ & 0.38 \end{aligned}$	$\begin{aligned} & 0.16 \\ & 0.15 \end{aligned}$	0.050	$\begin{aligned} & 0.24 \\ & 0.23 \end{aligned}$	0.041	$\begin{aligned} & 0.039 \\ & 0.016 \end{aligned}$	$\begin{aligned} & 0.028 \\ & 0.020 \end{aligned}$	0.01	0.01	0.004	$\begin{aligned} & 0.028 \\ & 0.012 \end{aligned}$	

Note

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	EIAJ		
SOT109-1	076E07S	MS-012AC			$\begin{aligned} & 94-08-13 \\ & 95-01-23 \end{aligned}$

detail X

DIMENSIONS (mm are the original dimensions)

UNIT	\mathbf{A} max.	$\mathbf{A}_{\mathbf{1}}$	$\mathbf{A}_{\mathbf{2}}$	$\mathbf{A}_{\mathbf{3}}$	$\mathbf{b}_{\mathbf{p}}$	\mathbf{c}	$\mathbf{D}^{(1)}$	$\mathbf{E}^{(1)}$	\mathbf{e}	$\mathbf{H}_{\mathbf{E}}$	\mathbf{L}	$\mathbf{L}_{\mathbf{p}}$	\mathbf{Q}	\mathbf{v}	\mathbf{w}	\mathbf{y}	$\mathbf{Z}^{(1)}$	$\boldsymbol{\theta}$
mm	2.0	0.21	1.80	0.25	0.38	0.20	6.4	5.4	0.65	7.9	1.25	1.03	0.9	0.2	0.13	0.1	$\mathbf{1 . 0 0}$	8°
	0.65	1.65	0.25	0.09	6.0	5.2	0.65	7.6	1.2	0.63	0.7	0.2	0.13	0°				

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	EIAJ		
SOT338-1		MO-150AC		- ¢	$\begin{aligned} & 94-01-14 \\ & 95-02-04 \end{aligned}$

DIMENSIONS (mm are the original dimensions)

UNIT	$\underset{\max .}{A}$	A_{1}	A_{2}	A_{3}	b_{p}	c	$\mathrm{D}^{(1)}$	$E^{(2)}$	e	HE_{E}	L	L_{p}	Q	v	w	y	$\mathbf{Z}^{(1)}$	θ
mm	1.10	$\begin{aligned} & 0.15 \\ & 0.05 \end{aligned}$	$\begin{aligned} & 0.95 \\ & 0.80 \end{aligned}$	0.25	$\begin{aligned} & 0.30 \\ & 0.19 \end{aligned}$	$\begin{aligned} & 0.2 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 5.1 \\ & 4.9 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.3 \end{aligned}$	0.65	$\begin{aligned} & 6.6 \\ & 6.2 \end{aligned}$	1.0	$\begin{aligned} & 0.75 \\ & 0.50 \end{aligned}$	$\begin{aligned} & 0.4 \\ & 0.3 \end{aligned}$	0.2	0.13	0.1	$\begin{aligned} & 0.40 \\ & 0.06 \end{aligned}$	8 0°

Notes

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	EIAJ		
SOT403-1		MO-153		- ($\begin{aligned} & \hline-94-07-12 \\ & 95-04-04 \end{aligned}$

DEFINITIONS		
Data Sheet Identification	Product Status	Definition
Objective Specification	Formative or in Design	This data sheet contains the design target or goal specifications for product development. Specifications may change in any manner without notice.
Preliminary Specification	Preproduction Product	This data sheet contains preliminary data, and supplementary data will be published at a later date. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.
Product Specification	Full Production	This data sheet contains Final Specifications. Philips Semiconductors reserves the right to make changes at any time without notice, in order to improve design and supply the best possible product.

Philips Semiconductors and Philips Electronics North America Corporation reserve the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified. Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

LIFE SUPPORT APPLICATIONS
Philips Semiconductors and Philips Electronics North America Corporation Products are not designed for use in life support appliances, devices, or systems where malfunction of a Philips Semiconductors and Philips Electronics North America Corporation Product can reasonably be expected to result in a personal injury. Philips Semiconductors and Philips Electronics North America Corporation customers using or selling Philips Semiconductors and Philips Electronics North America Corporation Products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors and Philips Electronics North America Corporation for any damages resulting from such improper use or sale.

Philips Semiconductors
811 East Arques Avenue
P.O. Box 3409

Sunnyvale, California 94088-3409
Telephone 800-234-7381
© Copyright Philips Electronics North America Corporation 1998
All rights reserved. Printed in U.S.A.
print code Date of release: 05-96
Document order number:
9397-750-04439

Let's make things better.

