SM5852DS

NIPPON PRECISION CIRCUITS INC.

Digital Audio Processor LSI

OVERVIEW

The SM5852DS is a digital signal processor IC that performs XBS (extra bass system), LIVE (pseudosound field) and ASC (train position) processing for use in digital audio reproduction equipment. It is designed for use with a 44.1 kHz sampling frequency.

FEATURES

- 2-channel processing
- XBS/LIVE functions
- XBS/LIVE processing bypass mode
- ASC function ON/OFF switching
- Input-level dependent dynamic gain characteristics
- Serial input/output interface
 2s complement, MSB first, 16-bit
- 384fs system clock
- 23 \times 23-bit multiplier/30-bit high-precision accumulator
- TTL-compatible input/output
- 3.2 to 5.5 V operating voltage range
- 16-pin SOP
- Molybdenum-gate CMOS

ORDERING INFOMATION

SM5852DS	and the second se
	16pin SOP
18 9	

PINOUT

PACKAGE DIMENSIONS

16-pin SOP (Unit: mm)

BLOCK DIAGRAM

PIN DESCRIPTION

Number	Name	I/0 ¹	Description
1	LRCI	lp	Input data sample rate (fs) clock input
2	BCKI	lp	Bit clock input
3	DI	lp	Serial data input
4	CLK	Ι	Clock input
5	VSS	-	Ground
6	RSTN	lp	System reset initialization. Reset when LOW.
7	TESTN	lp	Test mode input. Testing when LOW.
8	MUTEN	lp	Mute input. Muting when LOW.
9	DOUT	0	Serial data output
10	ВСКО	0	Bit clock output
11	LRCO	0	Output data sample rate (fs) clock output
12	VDD	-	3.2 to 5.5 V supply
13	OPT	lp	ASC ON/OFF switch control. OFF when HIGH, and ON when LOW.
14	MOD1	lp	XBS/LIVE low-pass gain select inputs. The XBS/LIVE function is bypassed when both MOD1
15	MOD2	lp	and MOD2 are HIGH.
16	DB/DS	lp	LIVE ON/OFF switch control. OFF when HIGH, and ON when LOW. The LIVE function is bypassed when both MOD1 and MOD2 are HIGH.

1. Ip = Input pin with pull-up resistor. Accordingly, they can be left open for HIGH-level input.

SPECIFICATIONS

Absolute Maximum Ratings

 $V_{SS} = 0 V$

Parameter	Symbol	Condition	Rating	Unit
Supply voltage	V _{DD}		-0.3 to 7.0	V
Input voltage	V _{IN}		V_{SS} – 0.3 to V_{DD} + 0.3	V
Storage temperature	T _{stg}		-55 to 125	°C
Power dissipation	PD		250	mW
Soldering temperature	T _{sld}		255	°C
Soldering time	t _{sld}		10	s

Recommended Operating Conditions

 $V_{SS} = 0 V$

Parameter	Symbol	Condition	Rating	Unit
Supply voltage	V _{DD}		3.2 to 5.5	V
Operating temperature	T _{opr}		-20 to 80	°C

DC Characteristics

Standard voltage: $V_{DD} = 4.5$ to 5.5 V, $V_{SS} = 0$ V, $T_a = -20$ to 80 °C

Parameter	Symbol	Condition	Rating			Unit
raianicici	Symbol	Condition	min	typ	max	Unit
Current consumption ¹	I _{DD}	V _{DD} = 5.0 V	-	16	23	mA
Input voltage for all inputs ²	V _{IH}		2.4	-	-	V
	V _{IL}		-	-	0.5	V
Output voltage for all outputs ³	V _{OH}	I _{OH} = -0.4 mA	2.5	-	-	V
Output voltage for all outputs	V _{OL}	I _{OL} = 1.6 mA	-	_	0.4	V
Input leakage current for all inputs ¹	I _{LH}	V _{IN} = V _{DD}	-	-	1.0	μΑ
CLK input leakage current	ILL	V _{IN} = 0 V	-	_	1.0	μΑ
Input current for all inputs except CLK	կլ	V _{IN} = 0 V	-	-	20	μΑ

1. f_{CLK} = 384fs = 16.9344 MHz, no output load, input data conformance with NPC test pattern 2. LRCI, BCKI, DI,RSTN, TESTN, MUTEN, OPT, MOD1, MOD2, DB / DS

3. LRCO, BCKO, DOUT

Low voltage: V_{DD} = 3.2 to 4.5 V, V_{SS} = 0 V, T_a = -20 to 70 °C

Parameter	Symbol	Condition	Rating			Unit	
raiameter	Symbol	Condition	min	typ	max	Gint	
Current consumption ¹	I _{DD}	V _{DD} = 3.4 V	-	7	10	mA	
Input voltage for all inputs ²	V _{IH}		2.4	-	-	V	
input voltage for all inputs	V _{IL}		-	-	0.5	V	
Output voltage for all outputs ³	V _{OH}	I _{OH} = -0.2 mA	2.5	-	-	V	
Output voltage for all outputs	V _{OL}	I _{OL} = 0.8 mA	-	-	0.4	V	
Input leakage current for all inputs	I _{LH}	V _{IN} = V _{DD}	-	-	1.0	μΑ	
CLK input leakage current	ILL	V _{IN} = 0 V	-	-	1.0	μA	
Input current for all inputs except CLK	IIL	V _{IN} = 0 V	-	-	12	μΑ	

1. f_{CLK} = 384fs = 16.9344 MHz, no output load, input data conformance with NPC test pattern 2. LRCI, BCKI, DI,RSTN, TESTN, MUTEN, OPT, MOD1, MOD2, DB / DS

3. LRCO, BCKO, DOUT

AC Characteristics

Standard voltage: $V_{DD} = 4.5$ to 5.5 V, $V_{SS} = 0$ V, $T_a = -20$ to 80 °C

Low voltage: V_{DD} = 3.2 to 4.5 V, V_{SS} = 0 V, T_a = -20 to 70 °C

CLK (384fs)

Parameter	Symbol	Condition	Rating			Unit
Parameter	Symbol	Condition	min	typ	max	Unit
Clock pulsewidth	t _{CW}		24	-	500	ns
Clock cycle time	t _{CY}		55	59	1000	ns

RSTN

Parameter	Symbol	Symbol Condition		Rating			
Farancici			min	typ	max	Unit	
Reset LOW-level pulsewidth	toot	At power-ON	1	-	-	μs	
	RST At all other times		50	-	1000	ns	

RSTN should be set LOW at power-ON and after reacquiring synchronization. Note that if RSTN is LOW for longer than 1 μ s, a through-current flows in the internal dynamic circuits because the internal clock is stopped. The through-current has no rated value, so the reset pulse should be kept as short as possible at all times other than at power-ON.

SM5852DS

Serial input timing

Parameter	Symbol Condition	Rating			Unit	
		min	typ	max	Onit	
BCKI pulsewidth	t _{BCIW}		100	-	-	ns
BCKI cycle time	t _{BCIY}		200	-	-	ns
DI setup time	t _{DIS}		75	-	-	ns
DI hold time	t _{DIH}		75	-	-	ns
LRCI setup time	t _{LIS}		75	-	-	ns
LRCI hold time	t _{LIH}		75	-	_	ns

DB/DS, OPT

Parameter	Parameter Symbol		Rating			Unit
Falametei	Symbol	Condition	min	typ	max	onin
Minimum pulsewidth	t _W		2/fs	-	-	ns

When DB/DS or OPT change state, the input level must be constant for a minimum of 2/fs (2 × LRCI cycle time). Input levels of duration less than 2/fs may be ignored.

SM5852DS

Serial output timing

Parameter	Symbol	Symbol Condition		Rating		
raianicici			min	typ	max	Unit
BCKO pulsewidth	t _{BCOW}	15 pF load	180	1/96fs	-	ns
BCKO cycle time	t _{BCOY}	15 pF load	400	1/48fs	-	ns
DOUT, LRCO output delay time	t _{DHL}	15 pF load	-20	-	60	ns
	t _{DLH}	15 pF load	-20	-	60	ns

Filter Characteristics

ASC filter frequency response (theoretical)

XBS Gain Characteristics

DB/DS = HIGH

L ch. = R ch. = -35dB same phase data input

XBS frequency response (DB/DS = HIGH)

FUNCTIONAL DESCRIPTION

Signal Flow

ASC Function

The ASC (train position) function uses a 7 kHz bandlimited filter to cut-off sound leakage from headphones. The ASC function is OFF when OPT is HIGH, and ON when OPT is LOW.

LIVE Function

The LIVE (pseudo-sound field) function emphasizes the extent of the sound field by adding an inverse phase component from the opposite channel of the input signal. When used with the XBS function, lowfrequency components of the spectrum are further emphasized.

The LIVE function is OFF when DB/DS is HIGH, and ON when DB/DS is LOW. Note that the function is also OFF when both MOD1 and MOD2 are HIGH.

XBS Function

The XBS (extra bass system) function emphasizes the low-frequency end of the spectrum by changing the gain for low-frequency components of the input signal. The XBS gain is set by the states of MOD1 and MOD2. Note that the gain changes when the XBS function is used together with the LIVE function.

DB/DS	MOD1	MOD2	Maximum gain	Mode
LOW	LOW	LOW	+13 dB	XBS + LIVE
LOW	LOW	HIGH	0 dB	LIVE
LOW	HIGH	LOW	+4 dB	XBS + LIVE
LOW	HIGH	HIGH	0 dB	Off
HIGH	LOW	LOW	+10 dB	XBS
HIGH	LOW	HIGH	+13 dB	XBS
HIGH	HIGH	LOW	+6 dB	XBS
HIGH	HIGH	HIGH	0 dB	Off

Soft Muting

Soft muting is active when MUTEN is LOW. When MUTEN is LOW, the attenuation changes smoothly from 0 to $-\infty$ dB in 1024/fs, or approximately 23.2 ms.

When MUTEN goes HIGH, soft muting is released and the attenuation changes smoothly from $-\infty$ to 0 dB, again taking approximately 23.2 ms.

Also, if a MUTEN transition occurs while the attenuation is changing, the attenuation then changes smoothly in the direction specified by the new level of MUTEN.

DB/DS, OPT Switching Shock Noise

The soft muting function is also activated to eliminate switching shock noise when DB/DS or OPT change state. When DB/DS or OPT change state, the attenuation changes to $-\infty$ dB, the internal circuit settings are activated and then soft muting is released. Therefore, a maximum time of approximately 46.4 ms is required to change the compression mode. Of course, if the attenuation is already $-\infty$ dB after soft muting using MUTEN, then no time is required to change compression mode.

Reset Initialization

RSTN should be set LOW at power-ON and after reacquiring synchronization. Note that if RSTN is LOW for longer than 1 μ s, a through-current flows in the LSI's internal dynamic circuits because the internal clock is stopped. The through-current has no rated value, so the reset pulse should be kept as short as possible at all times other than at power-ON.

When RSTN goes from LOW to HIGH, initialization hold is released and the initialization routine first resets the internal data over an interval of 4fs. During the initialization routine, the output data is forcibly muted so that there is no output signal. SM5852DS

INPUT/OUTPUT TIMING

Input Timing

There must be a minimum of 16 BCKI clock cycles to read in a single word of data.

Data on DI is input in sync with the falling edge of BCKI in 16-bit serial, MSB first, 2s complement format.

Output Timing

Shaded areas represent intervals of invalid data.

APPLICATON CIRCUIT

NIPPON PRECISION CIRCUITS INC. reserves the right to make changes to the products described in this data sheet in order to improve the design or performance and to supply the best possible products. Nippon Precision Circuits Inc. assumes no responsibility for the use of any circuits shown in this data sheet, conveys no license under any patent or other rights, and makes no claim that the circuits are free from patent infringement. Applications for any devices shown in this data sheet are for illustration only and Nippon Precision Circuits Inc. makes no claim or warranty that such applications will be suitable for the use specified without further testing or modification. The products described in this data sheet are not intended to use for the apparatus which influence human lives due to the failure or malfunction of the products. Customers are requested to comply with applicable laws and regulations in effect now and hereinafter, including compliance with export controls on the distribution or dissemination of the products. Customers shall not export, directly or indirectly, any products without first obtaining required licenses and approvals from appropriate government agencies.

NIPPON PRECISION CIRCUITS INC.

4-3, Fukuzumi 2 chome Koto-ku, Tokyo 135-8430, Japan Telephone: 03-3642-6661 Facsimile: 03-3642-6698

NC9624AE 1997.03