

SEMICONDUCTOR

October 1986 Revised March 2000 M74ALS652 Octal 3-STATE Bus

Transceiver and Register

DM74ALS652 Octal 3-STATE Bus Transceiver and Register

General Description

This device incorporates an octal transceiver and an octal D-type register configured to enable transmission of data from bus to bus or internal register to bus.

This bus transceiver features totem-pole 3-STATE outputs designed specifically for driving highly-capacitive or relatively low-impedance loads. The high-impedance state and increased high level logic drive provide this device with the capability of being connected directly to and driving the bus lines in a bus organized system without need for interface or pull-up components. They are particularly attractive for implementing buffer registers, I/O ports, bidirectional bus drivers, and working registers.

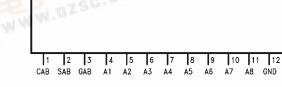
The registers in the DM74ALS652 are edge-triggered Dtype flip-flops. On the positive transition of the clock (CAB or CBA), the input data is stored into the appropriate register. The CAB input controls the transfer of data into the A register and the CBA input controls the B register.

The SAB and SBA control pins are provided to select whether real-time data or stored data is transferred. A LOW input level selects real-time data and a HIGH level selects stored data. The select controls have a "make before break" configuration to eliminate a glitch which would normally occur in a typical multiplexer during the transition between stored and real-time data.

The enable (GAB and $\overline{G}BA$) control pins provide four modes of operation: real-time data transfer from bus A to B, real-time data transfer from bus B to A, real-time bus A and/or B data transfer to internal storage, or internal stored data transfer to bus A and/or B.

Features

- Switching specifications at 50 pF
- Switching specifications guaranteed over full temperature and V_{CC} range
- Advanced oxide-isolated, ion-implanted Schottky TTL process
- 3-STATE buffer-type outputs drive bus lines directly
- Independent registers and enables for A and B buses
- Multiplexed real-time and stored data


~	A NUM W	725C.COM
C	ode:	
	Package Number	Package Description
М	M24B	24-Lead Small Outline Integrated Circuit (SOIC)

DM74ALS652WM	M24B	24-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300 Wide
DM74ALS652NT	N24C	24-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-100, 0.300 Wide
Devices also available in	n Tape and Reel. Specify	by appending the suffix letter "X" to the ordering code.

Connection Diagram

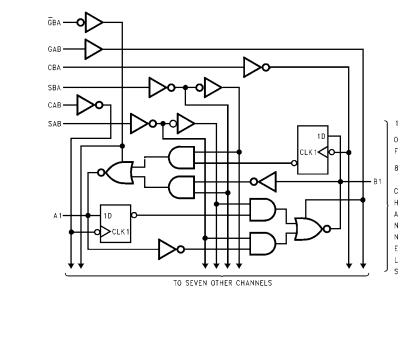
Order Number

/_{CC} CBA SBA GBA B1 B2 B<mark>3</mark> B4 B5 B6 B7 B8 |24 |23 |22 |21 |20 |19 |18 |17 |16 |15 |14 |13

DM74ALS652

Inputs						Data I/O	(Note 1)	Onenstien en Franstien	
GAB	GBA	CAB	СВА	SAB	SBA	A1 thru A8	B1 thru B8	Operation or Function	
Х	Н	↑	H/L	Х	Х	Input	Not Specified	Store A, Hold B	
L	Х	H/L	Ŷ	Х	Х	Not Specified	Input	Store B, Hold A	
L	Н	↑	↑	Х	Х	Input	Input	Store A and B Data	
L	Н	H/L	H/L	Х	Х	Input	Input	Isolation, Hold Storage	
L	L	Х	Х	Х	L	Output	Input	Real-Time B Data to A Bus	
L	L	Х	H/L	Х	Н	Output	Input	Stored B Data to A Bus	
Н	Н	Х	Х	L	Х	Input	Output	Real-Time A Data to B Bus	
Н	Н		Ŷ	Х	Х	Input	Output	Stored A Data to B Bus	
Н	Н	Ŷ	Ŷ	X (Note 2)	Х	Input	Output	Store A in both Registers	
L	L	Ť	Ŷ	Х	X (Note 2)	Output	Input	Store B in both Registers	
Н	L	H or L	H or L	Н	Н	Output	Output	Stored A Data to B Bus and Stored B Data to A Bus	

H


H = HIGH Logic Level L = LOW Logic Level X = Don't Care (Either LOW or HIGH Logic Levels, including transitions) H/L = Either LOW or HIGH Logic Level excluding transitions ↑ = Positive-going edge of pulse

Note 1: The data output functions may be enabled or disabled by various signals at the G and DIR inputs. Data input functions are always enabled, i.e., data at the bus pins will be stored on every LOW-to-HIGH transition on the clock inputs.

Note 2: Select control = L; clocks can occur simultaneously

Select control = H; clocks must be staggered in order to load both registers.

Logic Diagram

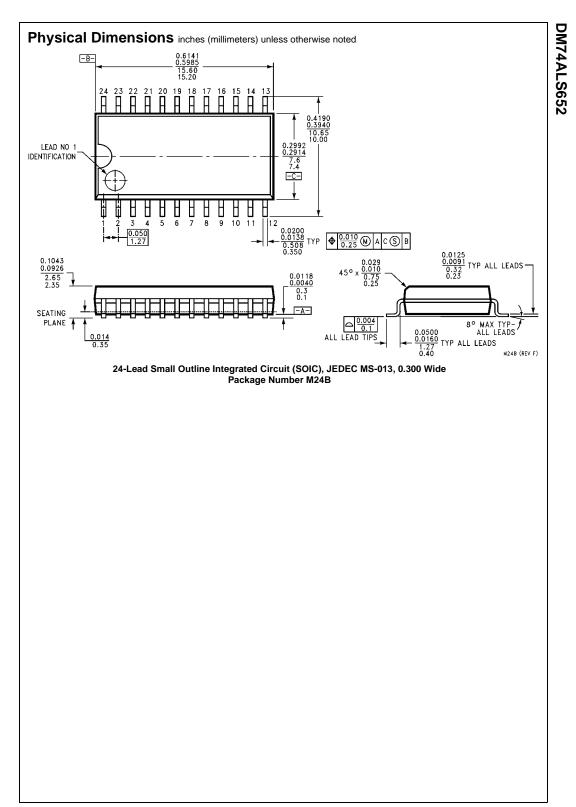
Absolute Maximum Ratings(Note 3)

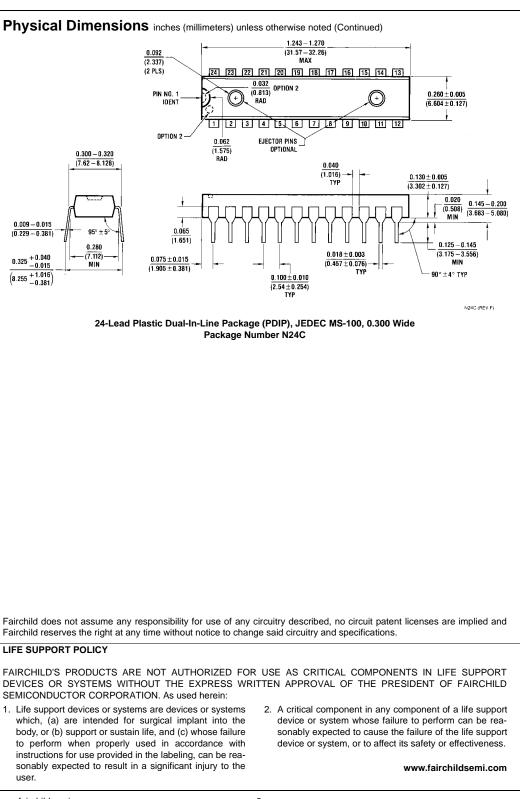
Supply Voltage	7V
Input Voltage	
Control Inputs	7V
I/O Ports	5.5V
Operating Free-Air Temperature Range	$0^{\circ}C$ to $+70^{\circ}C$
Storage Temperature Range	–65°C to +150°C
Typical θ _{JA}	
N Package	44.5°C/W
M Package	80.5°C/W

Note 3: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	Min	Nom	Max	Units
V _{CC}	Supply Voltage	4.5	5	5.5	V
V _{IH}	HIGH Level Input Voltage	2			V
V _{IL}	LOW Level Input Voltage			0.8	V
он	HIGH Level Output Current			-15	mA
I _{OL}	LOW Level Output Current			24	mA
CLK	Clock Frequency	0		40	MHz
Ŵ	Pulse Duration, Clocks Low or High	12.5			ns
^t su	Data Setup Time, A before CAB or B before CBA (Note 4)	10↑			ns
H	Data Hold Time, A after CAB or B after CBA (Note 4)	0↑			ns
T _A	Free Air Operating Temperature	0		70	°C


Note 4: ↑ = with reference to the LOW-to-HIGH transition of the respective clock.


Electrical Characteristics

Symbol	Parameter	Test C	Test Conditions		Тур	Max	Units	
V _{IK}	Input Clamp Voltage	$V_{CC} = Min, I_I = -18 \text{ mA}$				-1.2	V	
V _{OH}	HIGH Level	$V_{CC} = 4.5V$ to 5.5V	I _{OH} = -0.4 mA	V _{CC} – 2				
	Output Voltage	$V_{CC} = Min$	I _{OH} = -3 mA	2.4	3.2		V	
			I _{OH} = Max	2				
V _{OL}	LOW Level	V _{CC} = Min	I _{OL} = 12 mA		0.25	0.4		
	Output Voltage		I _{OL} = 24 mA		0.35	0.5	V	
			I _{OL} = 48 mA		0.35	0.5		
l _l	Input Current at Maximum	V _{CC} = Max	I/O Ports, V _I = 5.5V			100	μA	
	Input Voltage		Control Inputs, VI = 7V			100	μΑ	
I _{IH}	HIGH Level Input Current	V _{CC} = Max, V _I = 2.7V, (N	lote 5)			20	μA	
I _{IL}	LOW Level	V _{CC} = Max,	Control Inputs			-200		
	Input Current	V _I = 0.4V (Note 5)	I/O Ports			-200	μA	
I _O	Output Drive Current	$V_{CC} = Max, V_O = 2.25V$	•	-30		-112	mA	
I _{CC}	Supply Current	V _{CC} = Max	Outputs HIGH		47	76		
			Outputs LOW		55	88	mA	
			Outputs Disabled		55	88		

Note 5: For I/O ports the 3-STATE output currents (I_{OZH} and I_{OZL}) are included in the I_{IH} and I_{IL} parameters.

	Parameter	ure range (Note 6) Conditions	From (Input) To (Output)	Min	Max	Unit
t _{PLH}	Propagation Delay Time	$V_{CC} = 4.5V$ to 5.5V,	CBA or CAB	10	30	ns
	LOW-to-HIGH Level Output	C _L = 50 pF,	to A or B	10	30	115
t _{PHL}	Propagation Delay Time	$R_1 = R_2 = 500\Omega$,	CBA or CAB	5	17	ns
	HIGH-to-LOW Level Output	$T_A = Min to Max$	to A or B	5	17	115
t _{PLH}	Propagation Delay Time		A or B to	5	18	ns
	LOW-to-HIGH Level Output		B or A	5	10	115
t _{PHL}	Propagation Delay Time		A or B to	3	12	ns
	HIGH-to-LOW Level Output		B or A			
t _{PLH}	Propagation Delay Time					
	LOW-to-HIGH Level Output		SBA or SAB	12	35	ns
	(with A or B LOW) (Note 6)		to A or B			
t _{PHL}	Propagation Delay Time					
	HIGH-to-LOW Level Output		SBA or SAB	6	20	ns
	(with A or B LOW) (Note 6)		to A or B			
t _{PLH}	Propagation Delay Time					
	LOW-to-HIGH Level Output		SBA or SAB	6	25	ns
	(with A or B HIGH) (Note 6)		to A or B			
t _{PHL}	Propagation Delay Time					
	HIGH-to-LOW Level Output		SBA or SAB	5	20	ns
	(with A or B HIGH) (Note 6)		to A or B			
t _{PZH}	Output Enable Time		GBA to	2	47	
	to HIGH Level Output		А	3	17	ns
t _{PZL}	Output Enable Time		GBA to	_	40	
	to LOW Level Output		А	5	18	ns
t _{PHZ}	Output Disable Time		GBA to			
	from HIGH Level Output		А	1	10	ns
t _{PLZ}	Output Disable Time		GBA to			
F LZ	from LOW Level Output		А	2	16	ns
t _{PZH}	Output Enable Time		GAB to			
1211	to HIGH Level Output		В	6	22	ns
t _{PZL}	Output Enable Time		GAB to			
	to LOW Level Output		В	6	18	ns
t _{PHZ}	Output Disable Time		GAB to			
	from HIGH Level Output		В	1	10	ns
t _{PLZ}	Output Disable Time		GAB to			
	from LOW Level Output		В	2	16	ns

www.fairchildsemi.com