MOTOROLA SC 2000 0000 TOF

Designer's Data Sheet 5-Watt Surmetic 40 Silicon Zener Diodes

... a complete series of 5 Watt Zener Diodes with tight limits and better operating characteristics that reflect the superior capabilities of silicon-oxide-passivated junctions. All this in an axial-lead, transfer-molded plastic package offering protection in all common environmental conditions.

Up to 180 Watt Surge Rating @ 8.3 ms

Maximum Limits Guaranteed on Seven Electrical Parameters

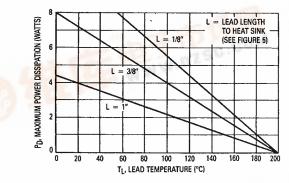
Offered in 10%, 5%, 2% and 1% Vz Tolerance

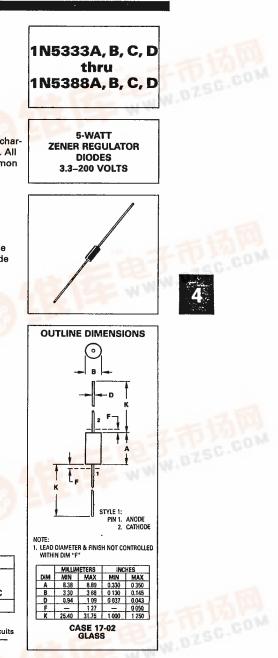
Mechanical Characteristics:

CASE: Void-free, transfer-molded, thermosetting plastic

FINISH: All external surfaces are corrosion resistant and leads are readily solderable POLARITY: Cathode indicated by color band. When operated in zener mode, cathode will be positive with respect to anode

MOUNTING POSITION: Any WEIGHT: 0.7 gram (approx)




Figure 1. Power-Temperature Derating Curve

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
DC Power Dissipation @ TL = 75°C Lead Length = 3/8"	PD	5	Watts
Derate above 75°C		40	mW/°C
Operating and Storage Junction Temperature Range	Tj, T _{sta}	-65 to +200	°C

Designer's Data for "Worst Case" Conditions — The Designer's Data Sheet permits the design of most circuits entirely from the information presented. Limit curves — representing boundaries on device characteristics are given to facilitate "worst case" design.

WWW.02 4-51

٩.

4小时加急出货

T-11-15

63建名书5专业的多时样工作,

TSE D

MOTOROLA SC {DIODES/OPTO}T-11-15 12E D 6367255 0079860 4

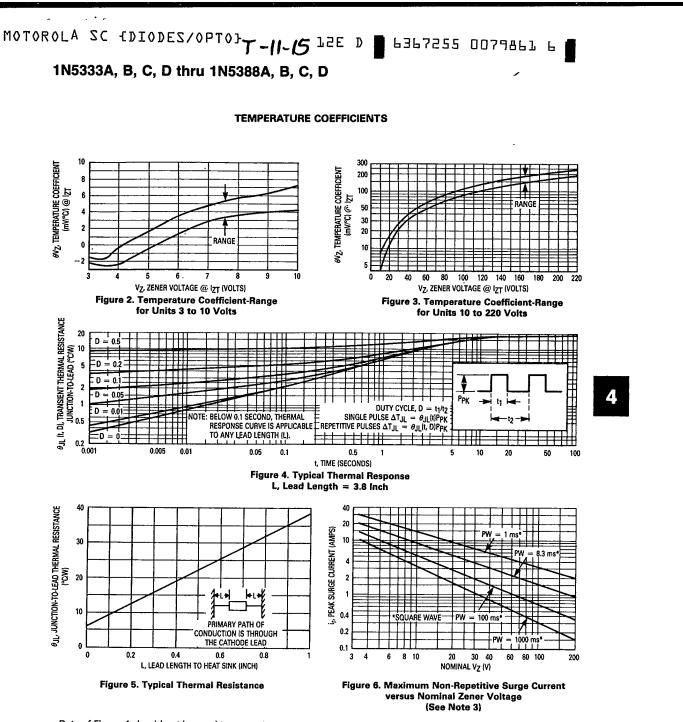
1N5333A, B, C, D thru 1N5388A, B, C, D

			Max Zener Impedance A & B Suffix Only		Max Reverse Leakage Current			Applies to all Suffix	A & B Suffix Only	
Zener Voltage	Voltage	Test Current	Zzī @ ¹ Zī	ZzK @ IzK = 1 mA	^I R @ μΑ		V _R Volts	Max Surge Current	Max Voltage Regulation	Maximum Regulator Current IZM
Type No. (Note 1)	Vz @ ^I ZT Volts (Note 2)		Ohms (Note 2)	Ohms (Note 2)		Non & A Suffix	B-Suffix	i _r , Amps (Note 3)	ΔVZ, Volts (Note 4)	mA (Note 5)
1N5333A 1N5334A 1N5335A	3.3 3.6 3.9	380 350 320	3 2.5 2 2	400 500 500	300 150 50	1 1 1	1 1	20 18.7 17.6	0.85 0.8 0.54	1440 1320 1220
1N5336A 1N5337A	4.3 4.7	290 260	2 2	500 450	10 5	1	1	16.4 15.3	0.49 0.44	1100 1010
1N5338A 1N5339A 1N5340A 1N5341A 1N5342A	5.1 5.6 6 6.2 6.8	240 220 200 200 175	1.5 1 1 1	400 400 300 200 200	1 1 1 10	1 2 3 4 4.9	1 2 3 3 5,2	14.4 13.4 12.7 12.4 11.5	0.39 0.25 0.19 0.1 0.15	930 865 790 765 700
1N5343A 1N5344A 1N5345A 1N5346A 1N5347A	7.5 8.2 8.7 . 9.1 10	175 150 150 150 150 125	1.5 1.5 2 2 2 2	200 200 200 150 125	10 10 10 7.5 5	5.4 5.9 6.3 6.6 7.2	5.7 6.2 6.6 6.9 7.6	10.7 10 9.5 9.2 8.6	0.15 0.2 0.2 0.22 0.22	630 580 545 520 475
1N5348A 1N5349A 1N5350A 1N5351A	10 11 12 13 14 15	125 100 100 100 75	2.5 2.5 2.5 2.5 2.5 2.5 2.5	125 125 125 100 75 75	5 2 1 1	8 8.6 9.4 10.1 10.8	8.4 9.1 9.9 10.6 11.5	8 7.5 7 6.7 6.3	0.25 0.25 0.25 0.25 0.25 0.25	430 395 365 340 315
1N5352A 1N5353A 1N5355A 1N5355A 1N5356A	16 17 18 19	75 70 65 65 65	2.5 2.5 2.5 2.5 3 3	75 75 75 75 75 75 75	1 0.5 0.5 0.5 0.5	11.5 12.2 13 13.7 14.4	12.2 12.9 13.7 14.4 15.2	6 5.8 5.5 5.3 5.1	0.3 0.35 0.4 0.4 0.4	295 280 265 250 237
1N5357A 1N5358A 1N5359A 1N5360A 1N5361A	20 22 24 25 27	50 50 50 50	3.5 3.5 4 5	75 100 110 120 130	0.5 0.5 0.5 0.5 0.5 0.5	15.8 17.3 18 19.4 20.1	16.7 18.2 19 20.6 21.2	4.7 4.4 4.3 4.1 3.9	0.45 0.55 0.55 0.6 0.6	216 198 190 176 170
1N5362A 1N5363A 1N5364A 1N5365A 1N5366A	28 30 33 36 39 43	50 40 40 30 30 30 30	6 8 10 11 14 20	140 150 160 170 190	0.5 0.5 0.5 0.5 0.5 0.5	21.6 23.8 25.9 28.1 31	22.8 25.1 27.4 29.7 32.7	3.7 3.5 3.3 3.1 2.8	0.6 0.6 0.65 0.65 0.7	158 144 132 122 110
1N5367A 1N5368A 1N5369A 1N5370A 1N5371A 1N5372A	43 47 51 56 60 62	25 25 20 20 20	20 25 27 35 40 42	210 230 280 350 400	0.5 0.5 0.5 0.5 0.5	33.8 36.7 40.3 43 44.6	35.8 38.8 42.6 42.5 47.1	2.7 2.5 2.3 2.2 2.1	0.8 0.9 1 1.2 1.35	100 93 86 79 76
1N5373A 1N5374A 1N5375A 1N5376A 1N5376A 1N5377A	68 75 82 87 91	20 20 15 15 15	44 45 65 75 75	500 620 720 760 760	0.5 0.5 0.5 0.5 0.5	49 54 59 63 65.5	51.7 58 62.2 66 69.2	2 1.9 1.8 1.7 1.6	1.5 1.6 1.8 2 2.2	70 63 58 54.5 52.5
1N5378A 1N5379A 1N5380A 1N5381A 1N5382A	100 110 120 130 140	12 12 10 10 8	90 125 170 190 230	800 1000 1150 1250 1500	0.5 0.5 0.5 0.5 0.5	72 79.2 86.4 93.6 101	76 83.6 91.2 98.8 106	1.5 1.4 1.3 1.2 1.2	2.5 2.5 2.5 2.5 2.5 2.5	47.5 43 39.5 36.6 34
1N5383A 1N5384A 1N5385A 1N5386A 1N5387A 1N5388A	150 160 170 180 190 200	8 8 5 5 5	330 350 380 430 450 480	1500 1650 1750 - 1750 1850 1850	0.5 0.5 0.5 0.5 0.5 0.5	108 115 122 130 137 144	114 122 129 137 144 152	1.1 1.1 1 0.9 0.9	3 3 4 5 5	31.6 29.4 28 26.4 25 23.6

۰. ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted, V_F = 1.2 Max @ I_F = 1 A for all types).

NOTES: (1) TOLERANCE AND VOLTAGE DESIGNATION — The JEDEC type numbers shown indicate a tolerance of \pm 10% with guaranteed limits on only V2, Iq, Ir, and VF as shown in the electrical characteristics table. Units with guaranteed limits on all seven parameters are indicated by suffix "A" for \pm 10% tolerance and suffix "B" for \pm 5%, C for \pm 2% and D for \pm 1%.

tor $\pm 5\%$, C for $\pm 7\%$ and D for $\pm 7\%$. (2) ZENEN VOLTAGE (V2) AND IMPEDANCE (Z_{ZT} & Z_{ZK}) — Test conditions for Zener voltage and impedance are as follows: I_Z is applied 40 \pm 10 ms prior to reading. Mounting contacts are located 3% to 1/2" from the lode dege of mounting clips to the body of the diode. (T_A = 25°C $\frac{+8}{-2}$ °C).


(3) SURGE CURRENT (i_f) — Surge current is specified as the maximum allowable peak, non-recurrent square-wave current with a pulse width, PW, of 8.3 ms. The data given in Figure 6 may be used to find the maximum surge current for a square wave of any pulse width between 1 ms and 1000 ms by plotting the

applicable points on logarithmic paper. Examples of this, using the 3 3 V and 200 V zeners, are shown in Figure 7. Mounting contact located as specified in Note 3. (T_A = 25°C $+\frac{8}{2}$ °C). (4) VOLTAGE REGULATION (Δ V₂) — Test conditions for voltage regulation are as follows: Vy measurements are made at 10% and then at 50% of the 12 max value listed in the electroal characteristics table. The test currents are the same for the 5% and 10% tolerance devices. The test current time duration for each Vy measurements 40 ± 10 ms. (T_A = 25°C $+\frac{8}{2}$ °C). Mounting contact located as specified in Note 2.

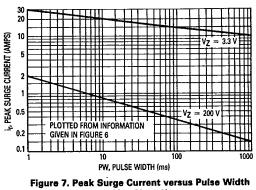
(6) MAXIMUM REGULATOR CURRENT (izy) — The maximum current shown is based on the maximum voltage of a 5% type unit, therefore, it applies only to the 9-uffix device. The actual izy for any device may not exceed the value of 8 watts divided by the actual Vz of the device. T_L = 75°C at 36° maximum from the device body.

:

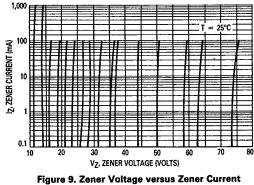
7

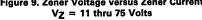
Data of Figure 4 should not be used to compute surge capability. Surge limitations are given in Figure 6. They are lower than would be expected by considering only junction temperature, as current crowding effects cause

Ŧ


temperatures to be extremely high in small spots resulting in device degradation should the limits of Figure 6 be exceeded.

.

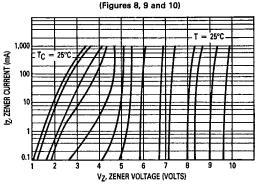

r


MOTOROLA SC {DIODES/OPTO} T-11-15 LZE D 📕 6367255 0079862 8

1N5333A, B, C, D thru 1N5388A, B, C, D

APPLICATION NOTE

Since the actual voltage available from a given zener diode is temperature dependent, it is necessary to determine junction temperature under any set of operating conditions, in order to calculate its value. The following procedure is recommended:


Lead Temperature, TL, should be determined from: $T_L = \theta_{LA} P_D + T_A$

 θ_{LA} is the lead-to-ambient thermal resistance and PD is the power dissipation.

 $T_J = T_L + \Delta T_{JL}$

 ΔT_{JL} is the increase in junction temperature above the lead temperature and may be found from Figure

ZENER VOLTAGE versus ZENER CURRENT

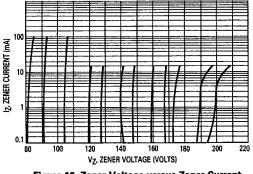


Figure 10. Zener Voltage versus Zener Current $V_Z = 82$ thru 200 Volts

4 for a train of power pulses or from Figure 5 for dc power.

$\Delta T_{JL} = \theta_{JL} P_D$

For worst-case design, using expected limits of I_Z, limits of P_D and the extremes of T_J (Δ T_J) may be estimated. Changes in voltage, V_Z, can then be found from:

$\Delta V = \theta_{VZ} \Delta T_J$

 θ_{VZ} , the zener voltage temperature coefficient, is found from Figures 2 and 3.

۲

Under high power-pulse operation, the zener voltage will vary with time and may also be affected significantly by the zener resistance. For best regulation, keep current excursions as low as possible.

4-54