


©1995 National Semiconductor Corporation TL/F/9786

RRD-B30M115/Printed in U. S. A.



## Absolute Maximum Ratings (Note)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. Supply Voltage 7V

| 5.5V                                |
|-------------------------------------|
|                                     |
| -55°C to +125°C                     |
| $0^{\circ}C$ to $+70^{\circ}C$      |
| $-65^{\circ}$ C to $+150^{\circ}$ C |
|                                     |

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

## **Recommended Operating Conditions**

| Symbol          | Parameter                      |     | 54283 |      |      | DM74283 |      | Units |
|-----------------|--------------------------------|-----|-------|------|------|---------|------|-------|
| Cymbol          | ratameter                      | Min | Nom   | Max  | Min  | Nom     | Max  | onito |
| V <sub>CC</sub> | Supply Voltage                 | 4.5 | 5     | 5.5  | 4.75 | 5       | 5.25 | V     |
| V <sub>IH</sub> | High Level Input Voltage       | 2   |       |      | 2    |         |      | V     |
| V <sub>IL</sub> | Low Level Input Voltage        |     |       | 0.8  |      |         | 0.8  | V     |
| I <sub>OH</sub> | High Level Output Current      |     |       | -0.4 |      |         | -0.4 | mA    |
| I <sub>OL</sub> | Low Level Output Current       |     |       | 16   |      |         | 16   | mA    |
| T <sub>A</sub>  | Free Air Operating Temperature | -55 |       | 125  | 0    |         | 70   | °C    |

## **Electrical Characteristics**

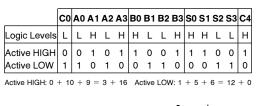
Over recommended operating free air temperature range (unless otherwise noted)

| Symbol          | Parameter                            | Con                                   | ditions             | Min | Typ<br>(Note 1) | Мах  | Units |
|-----------------|--------------------------------------|---------------------------------------|---------------------|-----|-----------------|------|-------|
| VI              | Input Clamp Voltage                  | $V_{CC} = Min, I_{I}$                 | = -12 mA            |     |                 | -1.5 | V     |
| V <sub>OH</sub> | High Level Output Voltage            | $V_{CC} = Min, I_O$<br>$V_{IL} = Max$ | <sub>H</sub> = Max  | 2.4 | 3.4             |      | v     |
| V <sub>OL</sub> | Low Level Output Voltage             | $V_{CC} = Min, I_O$<br>$V_{IH} = Min$ | <sub>L</sub> = Max  |     | 0.2             | 0.4  | v     |
| lj –            | Input Current @ Max<br>Input Voltage | V <sub>CC</sub> = Max, V              | <sub>I</sub> = 5.5V |     |                 | 1    | mA    |
| IIH             | High Level Input Current             | V <sub>CC</sub> = Max, V              | <sub>I</sub> = 2.4V |     |                 | 40   | μΑ    |
| IIL             | Low Level Input Current              | V <sub>CC</sub> = Max, V              | <sub>I</sub> = 0.4V |     |                 | -1.6 | mA    |
| I <sub>OS</sub> | Short Circuit                        | V <sub>CC</sub> = Max                 | 54                  | -20 |                 | -55  | mA    |
|                 | Output Current at S <sub>n</sub>     | (Note 2)                              | DM74                | -20 |                 | -55  | ША    |
| los             | Short Circuit                        | Circuit V <sub>CC</sub> = Max         | 54                  | -20 |                 | -70  | mA    |
|                 | Output Current at C4                 | (Note 2)                              | DM74                | -18 |                 | -70  | IIIA  |
| ICCH            | Supply Current with                  | V <sub>CC</sub> = Max                 | 54                  |     |                 | 99   | mA    |
|                 | Outputs High                         |                                       | DM74                |     |                 | 110  | mA    |

Note 1: All typicals are at  $V_{CC} = 5V$ ,  $T_A = 25^{\circ}C$ .

Note 2: Not more than one output should be shorted at a time.

| Symbol                               | Parameter -                                                             | C <sub>L</sub> = 15 pF | Units    |       |
|--------------------------------------|-------------------------------------------------------------------------|------------------------|----------|-------|
| - •                                  |                                                                         | Min                    | Max      | Units |
| t <sub>PLH</sub><br>t <sub>PHL</sub> | Propagation Delay<br>C0 or S <sub>n</sub>                               |                        | 21<br>21 | ns    |
| t <sub>PLH</sub><br>t <sub>PHL</sub> | Propagation Delay<br>A <sub>n</sub> or B <sub>n</sub> to S <sub>n</sub> |                        | 24<br>24 | ns    |
| t <sub>PLH</sub><br>t <sub>PHL</sub> | Propagation Delay<br>C0 to C4                                           |                        | 14<br>16 | ns    |


## **Functional Description**

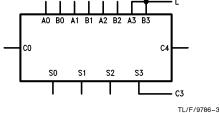
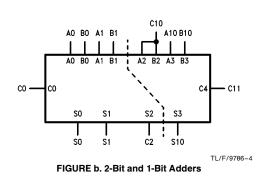
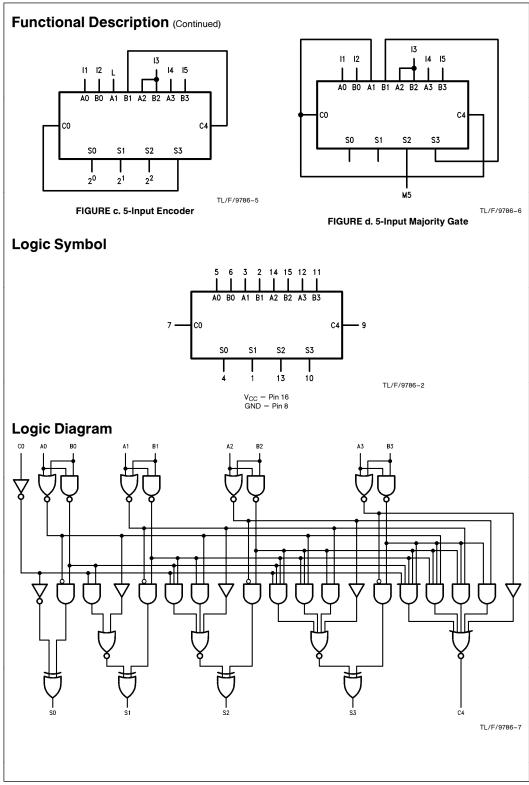
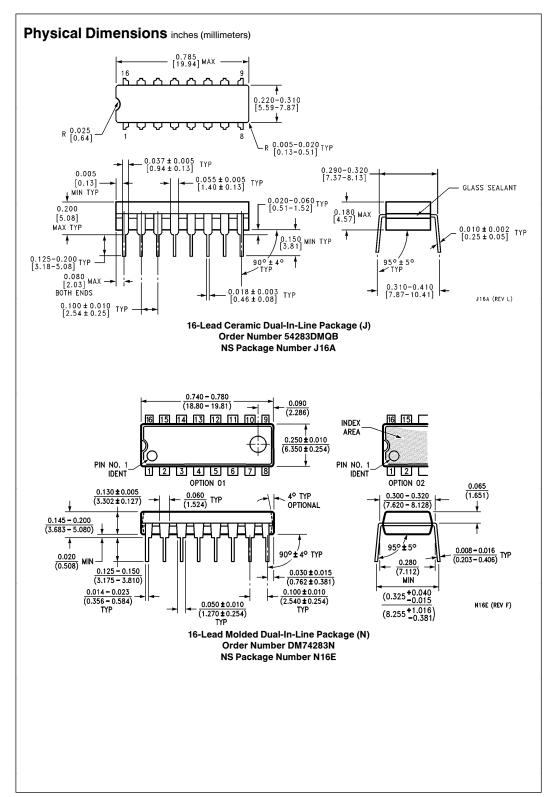
The '283 adds two 4-bit binary words (A plus B) plus the incoming carry C0. The binary sum appears on the Sum (S0–S3) and outgoing carry (C4 outputs. The binary weight of the various inputs and outputs is indicated by the subscript numbers, representing powers of two.

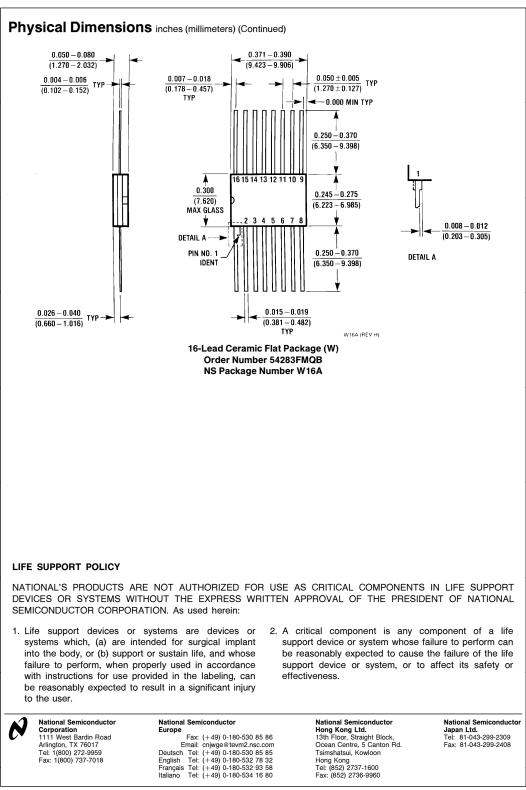
 $2^{0}$  (A0 + B0 + C0) +  $2^{1}$  (A1 + B1) +  $2^{2}$  (A2 + B2) +  $2^{3}$  (A3 + B3) = S0 + 2S1 + 4S2 + 8S3 + 16C4 Where (+) = plus

Interchanging inputs of equal weight does not affect the operation. Thus CO, AO, BO can be arbitrarily assigned to pins 5, 6 and 7. Due to the symmetry of the binary add function, the '283 can be used either with all inputs and outputs active HIGH (positive logic) or with all inputs and outputs active LOW (negative logic). Note that if CO is not used it must be tied LOW for active HIGH logic or tied HIGH for active LOW logic.

Example:





FIGURE a. 3-Bit Adder

Due to pin limitations, the intermediate carries of the '283 are not brought out for use as inputs or outputs. However, other means can be used to effectively insert a carry into, or bring a carry out from, an intermediate stage. Figure a shows a way of making a 3-bit adder. Tying the operand inputs of the fourth adder (A3, B3) LOW makes S3 dependent ony on, and equal to, the carry from the third adder. Using somewhat the same principle, Figure b shows a way of dividing the '283 into a 2-bit and a 1-bit adder. The third stage adder (A2, B2, S2) is used merely as a means of getting a carry (C10) signal into the fourth stage (via A2 and B2) and bringing out the carry from the second stage on S2. Note that as long as A2 and B2 are the same, whether HIGH or LOW, they do not infuence S2. Similarly, when A2 and B2 are the same the carry into the third stage does not influence they carry out of the third stage. Figure c shows a method of implementing a 5-input encoder, where the inputs are equally weighted. The outputs S0, S1 and S2 present a binary number equal to the number of inputs I1-I5 that are true. Figure d shows one method of implementing a 5-input majority gate. When three or more of the inputs I1-I5 are true, the output M5 is true.









National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.