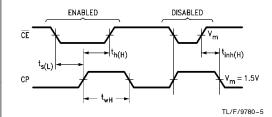
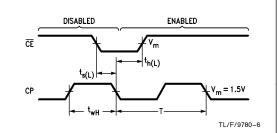


Absolute Maximum Ratings (Note)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. Supply Voltage 7V

Input Voltage	5.5V
Operating Free Air Temperature Range	
54	-55°C to +125°C
DM74	$0^{\circ}C$ to $+70^{\circ}C$
Storage Temperature Range	-65°C to +150°C


Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for acutual device operation.


Recommended Operating Conditions

Symbol	Parameter		5497			Units				
Symbol	Farameter		Min	Nom	Nom Max		Nom	Мах	Units	
V _{CC}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V		
V _{IH}	High Level Input Voltage		2			2			V	
V _{IL}	Low Level Input Voltage			0.8			0.8	V		
I _{OH}	High Level Output Current				-0.4	-		-0.4	mA	
I _{OL}	Low Level Output Current				16			16	mA	
Τ _Α	Free Air Operating Temper	rature	-55		125	0		70	°C	
t _s (L)	Setup Time LOW, CE to CF	P Rising	25			25			ns	
t _h (H)	Hold Time HIGH, CE to CP	Rising	0			0			ns	
t _h (L)	Hold Time LOW, CE to CP	Falling	0			0			ns	
t _w (H)	CP Pulse Width HIGH		20			20			ns	
t _w (L)	CP Pulse Width LOW		20						ns	
t _w (H)	MR Pulse Width HIGH		15			15			ns	
Electri	cal Characteristic	S Over rec	commende	d operatir	ng free air te	emperature		otherwise	noted)	
		S Over red			ng free air te		Тур			
Symbol	Parameter		Condi	itions	ng free air te	emperature Min		Max	Unit	
Symbol V _I	Parameter Input Clamp Voltage	V _{CC} =	Condi Min, I _I = -	itions - 12 mA	ng free air te		Тур			
Symbol V _I	Parameter	V _{CC} =	Condi Min, I _I = - Min, I _{OH} =	itions - 12 mA	ng free air te		Тур	Max	Unit	
Symbol V _I V _{OH}	Parameter Input Clamp Voltage High Level Output	$V_{CC} =$ $V_{CC} =$ $V_{IL} = 1$	Condi Min, $I_I = -$ Min, $I_{OH} =$ Max Min, $I_{OL} =$	itions 12 mA = Max,	ng free air te	Min	Typ (Note 1)	Max	Unit V	
Symbol V _I V _{OH} V _{OL}	Parameter Input Clamp Voltage High Level Output Voltage Low Level Output	$V_{CC} =$ $V_{CC} =$ $V_{IL} = I$ $V_{CC} =$ $V_{IH} = I$	Condi Min, $I_I = -$ Min, $I_{OH} =$ Max Min, $I_{OL} =$	itions 12 mA = Max, Max,	ng free air te	Min	Typ (Note 1) 3.4	Max - 1.5	Unit V V	
Symbol V _I V _{OH} V _{OL}	Parameter Input Clamp Voltage High Level Output Voltage Low Level Output Voltage Input Current @ Max	$V_{CC} =$ $V_{CC} =$ $V_{IL} = I$ $V_{CC} =$ $V_{IH} = I$ $V_{CC} =$	Condi Min, $I_1 = -$ Min, $I_{OH} =$ Max Min, $I_{OL} =$ Min	- 12 mA 12 mA Max, Max, 5.5V	ng free air te	Min	Typ (Note 1) 3.4	Max -1.5	Unit V V mA	
Symbol V _I V _{OH} V _{OL}	Parameter Input Clamp Voltage High Level Output Voltage Low Level Output Voltage Input Current @ Max Input Voltage	$V_{CC} =$ $V_{CC} =$ $V_{IL} = I$ $V_{CC} =$ $V_{IH} = I$ $V_{CC} =$	Condi Min, $I_1 = -$ Min, $I_{OH} =$ Max Min, $I_{OL} =$ Min Max, $V_1 =$	- 12 mA 12 mA Max, Max, 5.5V		Min	Typ (Note 1) 3.4	Max 1.5 0.4 1	Unit V V mA	
Symbol V _I V _{OH} V _{OL} I _I	Parameter Input Clamp Voltage High Level Output Voltage Low Level Output Voltage Input Current @ Max Input Voltage	$V_{CC} =$ $V_{CC} =$ $V_{IL} = I$ $V_{CC} =$ $V_{IH} =$ $V_{CC} =$ $V_{CC} =$ $Clock II$	Condi Min, $I_1 = -$ Min, $I_{OH} =$ Max Min, $I_{OL} =$ Min Max, $V_1 =$	itions - 12 mA = Max, = Max, 5.5V 2.4V	DM74	Min	Typ (Note 1) 3.4	Max 1.5 0.4 1 40	tinU V V Mm Αμ	
Symbol V _I V _{OH} V _{OL} I _I	Parameter Input Clamp Voltage High Level Output Voltage Low Level Output Voltage Input Current @ Max Input Voltage High Level Input Current	$V_{CC} =$ $V_{CC} =$ $V_{IL} = I$ $V_{CC} =$ $V_{IH} =$ $V_{CC} =$ $V_{CC} =$ $Clock II$	Condi Min, $I_1 = -$ Min, $I_{OL} =$ Max, $I_{OL} =$ Min Max, $V_1 =$ Max, $V_1 =$ Max, $V_1 =$	itions - 12 mA = Max, = Max, 5.5V 2.4V	DM74 54	Min	Typ (Note 1) 3.4	Max 1.5 0.4 1 40 80	tinU V V Mm Αμ	
Symbol V _I V _{OH} V _{OL} I _I I _{IH}	Parameter Input Clamp Voltage High Level Output Voltage Low Level Output Voltage Input Current @ Max Input Voltage High Level Input Current Low Level Input Current Short Circuit	$V_{CC} =$ $V_{CC} =$ $V_{IL} =$ $V_{CC} =$ $V_{IH} =$ $V_{CC} =$ $Clock II$ $V_{CC} =$ $Clock II$ $V_{CC} =$	Condi $ \begin{array}{r} \text{Min, } I_{I} = - \\ \text{Min, } I_{OH} = \\ \text{Max, } I_{OL} = \\ \begin{array}{r} \text{Min, } I_{OL} = \\ \text{Max, } V_{I} = \\ \text{Max, } V_{I} = \\ \text{mputs} \\ \begin{array}{r} \text{Max, } V_{I} = \\ \text{Max, } V_{I} = \\ \text{Max, } V_{I} = \\ \end{array} $	itions - 12 mA = Max, = Max, 5.5V 2.4V	DM74 54 DM74	Min	Typ (Note 1) 3.4	Max -1.5 0.4 1 40 80 -1.6	Unit V V MA - μA - mA	
	Parameter Input Clamp Voltage High Level Output Voltage Low Level Output Voltage Input Current @ Max Input Voltage High Level Input Current Low Level Input Current	$V_{CC} =$ $V_{CC} =$ $V_{IL} =$ $V_{CC} =$ $V_{IH} =$ $V_{CC} =$ $Clock II$	Condi $ \begin{array}{r} \text{Min, } I_{I} = - \\ \text{Min, } I_{OH} = \\ \text{Max, } I_{OL} = \\ \begin{array}{r} \text{Min, } I_{OL} = \\ \text{Max, } V_{I} = \\ \text{Max, } V_{I} = \\ \text{mputs} \\ \begin{array}{r} \text{Max, } V_{I} = \\ \text{Max, } V_{I} = \\ \text{Max, } V_{I} = \\ \end{array} $	itions - 12 mA = Max, = Max, 5.5V 2.4V	DM74 54 DM74 54	Min 2.4	Typ (Note 1) 3.4	Max -1.5 0.4 1 40 80 -1.6 -3.2	Unit V V	

		54	497	DM	7497	
Symbol	Parameter		15 pF 400Ω	C _L = R _L =	Units	
		Min	Max	Min	Max	
f _{max}	Maximum Clock Frequency	25		25		MHz
t _{PLH} t _{PHL}	Propagation Delay \overline{E}_Z to \overline{O}_Z		18 23		18 23	ns
t _{PLH} t _{PHL}	Propagation Delay \overline{E}_Z to O _Y		30 33		30 33	ns
t _{PLH} t _{PHL}	Propagation Delay E_Y to O_Y		14 10		14 10	ns
t _{PLH} t _{PHL}	Propagation Delay S_n to O_Y		23 23		23 23	ns
t _{PLH} t _{PHL}	Propagation Delay S_n to \overline{O}_Z		14 14		14 14	ns
t _{PLH} t _{PHL}	Propagation Delay CP to O _Y		39 30		39 30	ns
t _{PLH} t _{PHL}	Propagation Delay CP to O _Z		18 26		18 26	ns
t _{PLH} t _{PHL}	Propagation Delay CP to TC		35 33		30 33	ns
t _{PLH} t _{PHL}	Propagation Delay CE to TC		25 21		20 21	ns
t _{PLH}	Propagation Delay MR to O _Y		43		36	ns

Timing Diagrams

Functional Description

The '97 contains six JK flip-flops connected as a synchronous modulo-64 binary counter. A LOW signal on the Count Enable (CE) input permits counting, with all state changes initiated simultaneously by the rising edge of the clock. When the count reaches maximum (63), with all Qs HIGH, the Terminal Count (TC) output will be LOW if CE is LOW. A HIGH signal on Master Reset (MR) resets the flip-flops and prevents counting, although output pulses can still occur if the clock is running, \overline{E}_Z is LOW and S5 is HIGH.

The flip-flop outputs are decoded by a 6-wide AND-OR-IN-VERT gate. Each AND gate also contains the buffered and inverted CP and Z-enable (\overline{E}_Z) functions, as well as one of the Select (S0–S5) inputs. The Z output, \overline{O}_Z is normally HIGH and goes LOW when CP and \overline{E}_Z are LOW and any of the AND gates has its other inputs HIGH. The AND gates are enabled by the counter at different times and different rates relative to the clock. For example, the gate to which S5 is connected is enabled during every other clock period, assuming S5 is HIGH. Thus, during one complete cycle of the counter (64 clocks) the S5 gate is enabled 32 times and can therefore gate 32 clocks per cycle to the output. The S4 gate is enabled 16 times per cycle, the S3 gate 8 times per cycle, etc. The output pulse rate thus depends on the clock rate and which of the S0–S5 inputs is HIGH.

$$f_{out} = \frac{m}{64} \bullet f_{ir}$$

Where: m = S5 • 2⁵ + S4 • 2⁴ + S3 • 2₃ + S2 • 2² + S1 • 2¹ + S0 • 2⁰

Thus by appropriate choice of signals applied to the S0–S5 inputs, the output pulse rate can range from $\frac{1}{64}$ to $\frac{63}{64}$ of the clock rate, as suggested in Rate Select Table. There is no output pulse when the counter is in the "all ones" condition. When m is 1, 2, 4, 8, 16 or 32, the output pulses are evenly spaced, assuming that the clock frequency is constant. For any other value of m the output pulses are not evenly spaced, since the pulse train is formed by interleav-

ing pulses passed by two or more of the AND gates. The Pulse Pattern Table indicates the output pattern for several values of m. In each row, a one means that the \overline{O}_Z output will be HIGH during that entire clock period, while a zero means that \overline{O}_Z will be LOW when the clock is LOW in that period. The first column in the output field coincides with the "all zeroes" condition of the counter, while the last column represents the "all ones" condition. The pulse pattern for any particular value of m can be deduced by factoring it into the sum of appropriate powers of two (e.g. 19 = 16 + 2 + 1) and combining the pulses (i.e., the zeroes) shown for each for the relevant powers of two (e.g. for m = 16, 2 and 1).

The Y output O_Y is the complement of \overline{O}_Z and is thus normally LOW. A LOW signal on the Y-enable input, E_Y, disables O_y. To expand the multiplier to 12-bit rate select, two packages can be cascaded as shown in *Figure A*. Both circuits operate from the basic clock, with the \overline{TC} output of the first acting to enable both counting and the output pulses of the second package. Thus the second counter advances at only $\frac{1}{64}$ the rate of the first and a full cycle of the two counters combined requires 4096 clocks. Each rate select input of the first package has 64 times the weight of its counter-part in the second package.

$$f_{out} = \frac{m_1 + m_2}{64 \bullet 64} \bullet f_{in}$$

 $\begin{array}{l} \mbox{Where: } m_1 = S5 \bullet 2^{11} + S4 \bullet 2^{10} + S3 \bullet 2^9 + S2 \bullet 2^8 + \\ S1 \bullet 2^7 + S0 \bullet 2^6 \mbox{ (first package)} \\ m_2 = S5 \bullet 2^5 + S4 \bullet 2^4 + S3 \bullet 2^3 + S2 \bullet 2_2 + \end{array}$

 $S1 \bullet 2^1 + S0 \bullet 2^0$ (second package)

Combined output pulses are obtained in *Figure A* by letting the Z output of the first circuit act as the Y-enable function for the second, with the interleaved pulses obtained from the Y output of the second package being opposite in phase to the clock.

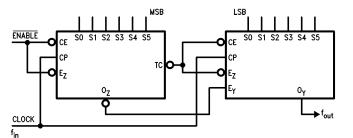


FIGURE A. Cascading for 12-Bit Rate Select

TL/F/9780-3

	Mode and Rate Select Table (Note 1)													
Inputs								Clock	Outputs				Notes	
MR	CE	Ēz	S 5	S 4	S 3	S 2	S1	S0	Pulses	Eγ	Ο _Υ	ο _z	тс	Notes
н	x	н	x	Х	Х	х	х	Х	x	н	L	н	н	2
L	L	L	L	L	L	L	L	L	64	н	L	Н	1	3
L	L	L	L	L	L	L	L	Н	64	н	1	1	1	3
L	L	L	L	L	L	L	н	L	64	н	2	2	1	3
L	L	L	L	L	L	Н	L	L	64	н	4	4	1	3
L	L	L	L	L	Н	L	L	L	64	н	8	8	1	3
L	L	L	L	н	L	L	L	L	64	н	16	16	1	3
L	L	L	н	L	L	L	L	L	64	н	32	32	1	3
L	L	L	н	н	н	н	н	н	64	н	63	62	1	3
L	L	L	н	н	Н	Н	Н	Н	64	L	н	63	1	4
L	L	L	н	L	L	L	L	L	64	н	40	40	1	5

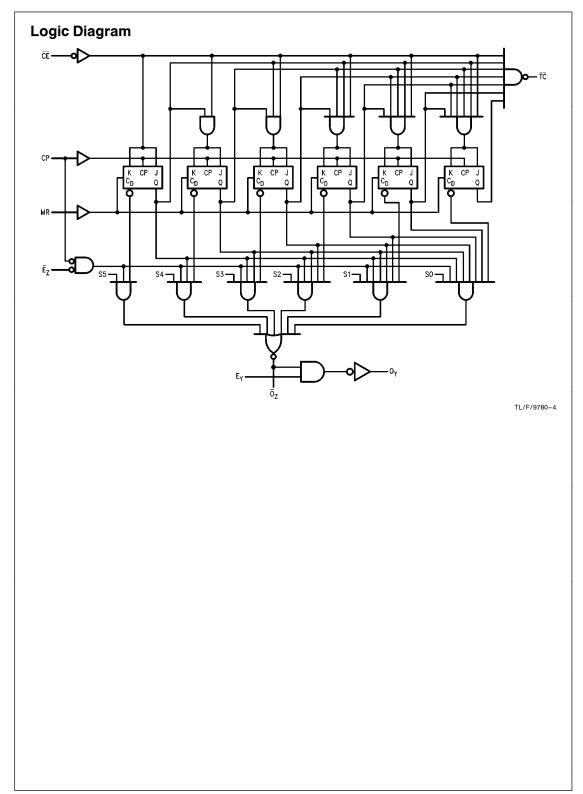
H = HIGH Voltage Level

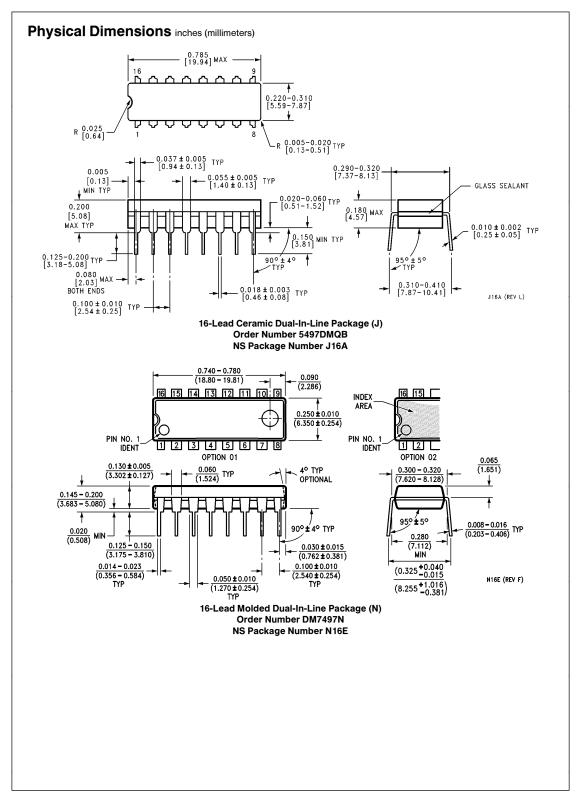
L = LOW Voltage Level

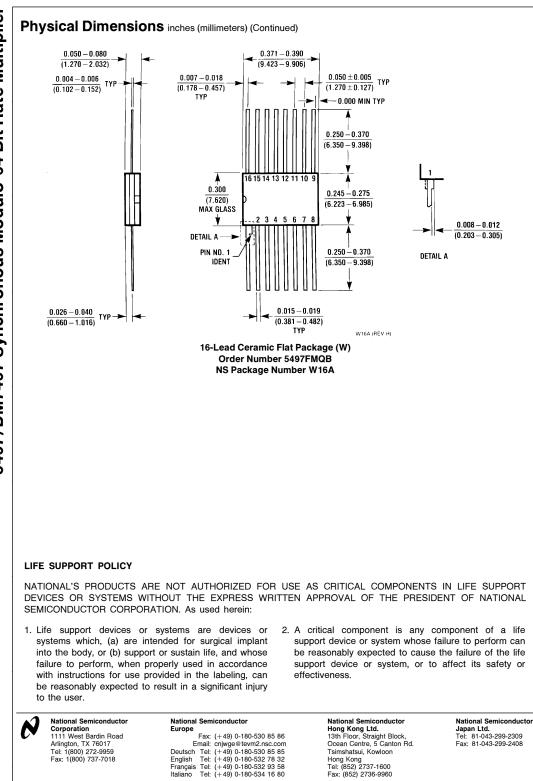
X = Immaterial

Note 1: Numerals indicate number of pulses per cycle.

Note 2: This is a simplified illustration of the clear function. CP and \overline{E}_Z also affect the logic level of O_Y and \overline{O}_Z . A LOW signal on E_Y will cause O_Y to remain HIGH.


Note 3: Each rate illustrated assumes S0-S5 are constant throughout the cycle; however, these illustrations in no way prohibit variablerate operation.


Note 4: E_Y is used to inhibit output Y.


 $\textbf{Note 5:} \ \textbf{f}_{out} = \textbf{m} \bullet \frac{\textbf{f}_{in}}{64} = \frac{(32 \, + \, 8)}{64} \ \textbf{f}_{in}}{64} = \frac{40 \ \textbf{f}_{in}}{64} = 0.625 \ \textbf{f}_{in}$

Pulse Pattern Table

m	Output Pulse Pattern at \overline{O}_Z
1	111111111111111111111111111111111111111
2	111111111111111101111111111111111111111
3	111111111111111111111111111111111111111
4	111111101111111111111111111111111111111
5	111111101111111111111111011111110111111
6	111111101111111011111110111111111111111
8	1110111111101111111011111110111111101111
10	1110111111101111111011111110111111101111
12	11101110111011111111011101110111111110111011101111
14	111011101110111011101110111011111111001110000
16	101110111011101110111011101110111011101110111011101110111011101110111011101
20	10111010101110111011101010111011101110111010
24	101010111010101110101011101010111010101111
28	1010101010101011101010101010101010101010
32	010101010

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.