
查询54AC14供应商

National Semiconductor

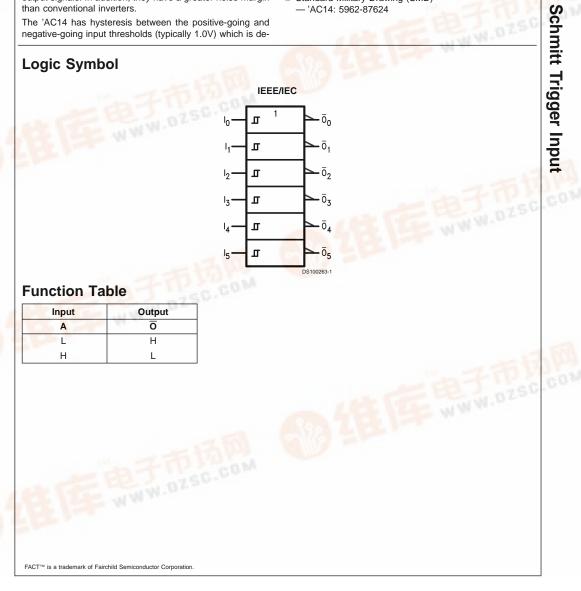
54AC14 Hex Inverter with Schmitt Trigger Input

General Description

The 'AC14 contains six inverter gates each with a Schmitt trigger input. The 'AC14 contains six logic inverters which accept standard CMOS input signals and provide standard CMOS output levels. They are capable of transforming slowly changing input signals into sharply defined, jitter-free output signals. In addition, they have a greater noise margin than conventional inverters.

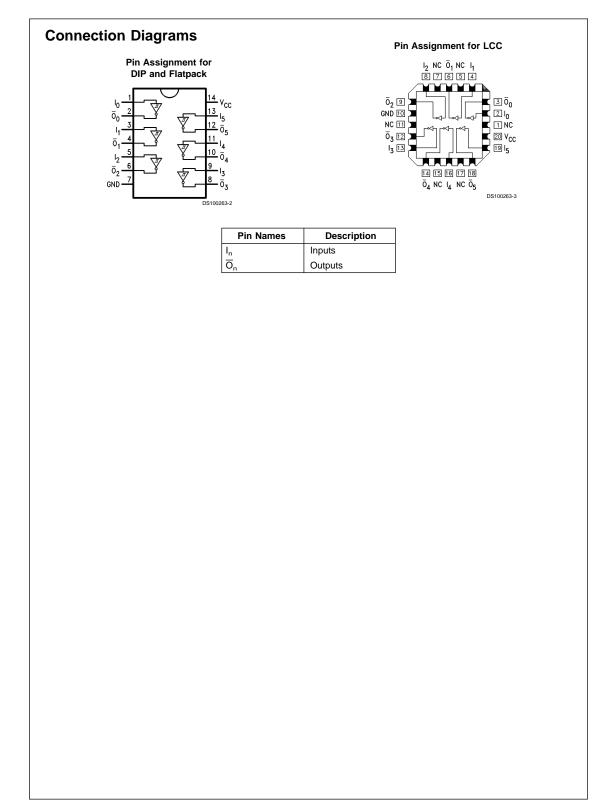
The 'AC14 has hysteresis between the positive-going and negative-going input thresholds (typically 1.0V) which is de-

termined internally by transistor ratios and is essentially insensitive to temperature and supply voltage variations.


54AC14 Hex Inverter with

July 1998

Features


- I_{CC} reduced by 50%
- Outputs source/sink 24 mA
- Standard Military Drawing (SMD) - 'AC14: 5962-87624

dzsc.com

© 1998 National Semiconductor Corporation DS100263

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Supply Voltage (V _{CC}) DC Input Diode Current (I _{IK})	-0.5V to +7.0V
$V_1 = -0.5V$	–20 mA
$V_{I} = V_{CC} + 0.5V$	+20 mA
DC Input Voltage (V _I)	–0.5V to V _{CC} + 0.5V
DC Output Diode Current (I _{OK})	
$V_{O} = -0.5V$	–20 mA
$V_{O} = V_{CC} + 0.5V$	+20 mA
DC Output Voltage (V _O)	–0.5V to V _{CC} + 0.5V
DC Output Source	
or Sink Current (I _O)	±50 mA
DC V _{CC} or Ground Current	
per Output Pin (I_{CC} or I_{GND})	±50 mA

Storage Temperature (T_{STG}) Junction Temperature (T_J) CDIP –65°C to +150°C

175°C

Recommended Operating Conditions

Supply Voltage (V _{CC})	
'AC	2.0V to 6.0V
Input Voltage (V _I)	0V to V_{CC}
Output Voltage (V _O)	0V to V_{CC}
Operating Temperature (T _A)	
54AC	–55°C to +125°C
Note 1: Absolute maximum ratings are those vator to the device may occur. The databook specifical execution to exercise the device that the evictor design is re-	tions should be met, without

exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. National does not recommend operation of FACT™ circuits outside databook specifications.

DC Characteristics for 'AC Family Devices

			54AC		
Symbol	Parameter	V _{cc}	T _A = -55°C to +125°C	Units	Conditions
		(V)			
			Guaranteed Limits		
V _{OH}	Minimum High Level Output	3.0	2.9		Ι _{ΟUT} = -50 μΑ
	Voltage	4.5	4.4	V	
		5.5	5.4		
					(Note 2) $V_{IN} = V_{IL}$ or V_{IH}
		3.0	2.4		–12 mA
		4.5	3.7	V	I _{ОН} –24 mA
		5.5	4.7		–24 mA
V _{OL}	Maximum Low Level Output	3.0	0.1		I _{OUT} = 50 μA
	Voltage	4.5	0.1	V	
		5.5	0.1		
					(Note 2) $V_{IN} = V_{II}$ or V_{IH}
		3.0	0.5		12 mA
		4.5	0.5	V	I _{OI} 24 mA
		5.5	0.5		24 mA
I _{IN}	Maximum Input	5.5	±1.0	μA	$V_1 = V_{CC}, GND$
	Leakage Current				
V _{t+}	Maximum Positive	3.0	2.2		T _A = Worst Case
	Threshold	4.5	3.2	V	
		5.5	3.9		
V _{t-}	Minimum Negative	3.0	0.5		T _A = Worst Case
	Threshold	4.5	0.9	V	
		5.5	1.1		
V _{h(max)}	Maximum Hysteresis	3.0	1.2		T _A = Worst Case
n(max)		4.5	1.4	V	
		5.5	1.6		
V _{h(min)}	Minimum Hysteresis	3.0	0.3		T _A = Worst Case
()		4.5	0.4	v	
		5.5	0.5		

DC Characteristics for 'AC Family Devices (Continued)

			54AC		
Symbol	Parameter	V _{cc} (V)	T _A = -55°C to +125°C	Units	Conditions
		(•)	Guaranteed Limits		
I _{OLD}	(Note 3) Minimum Dynamic	5.5	50	mA	V _{OLD} = 1.65V Max
I _{OHD}	Output Current	5.5	-50	mA	V _{OHD} = 3.85V Min
I _{cc}	Maximum Quiescent	5.5	40.0	μA	$V_{IN} = V_{CC}$
	Supply Current				or GND

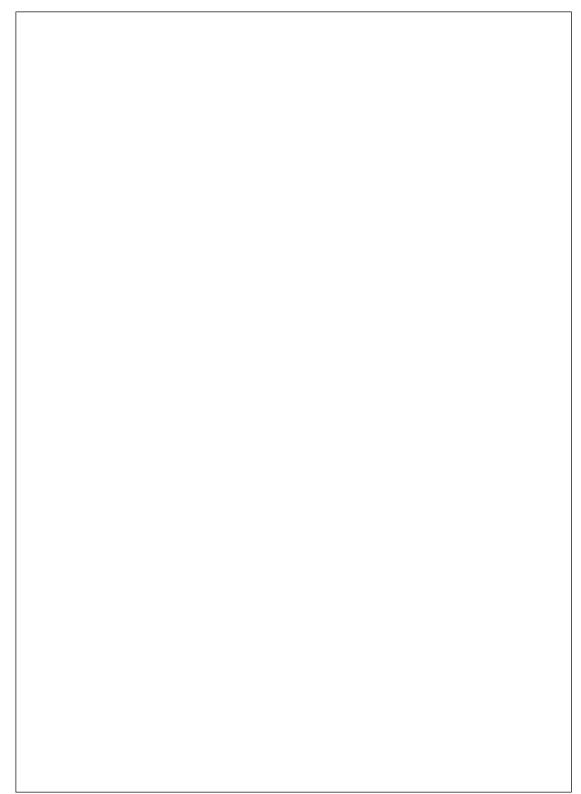
Note 2: All outputs loaded; thresholds on input associated with output under test.

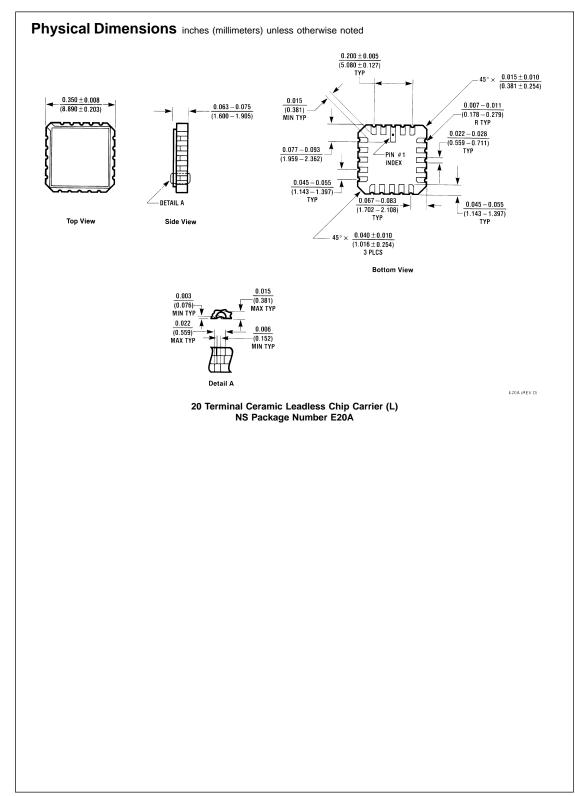
Note 3: Maximum test duration 2.0 ms, one output loaded at a time.

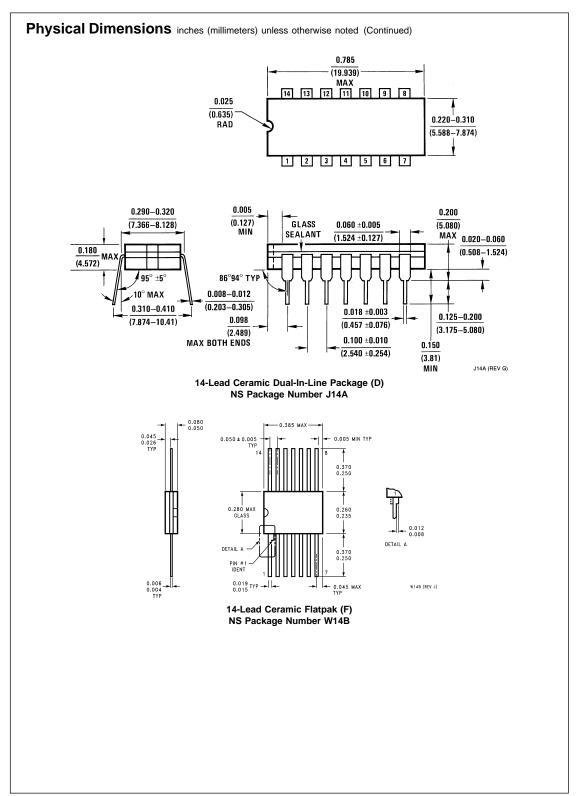
Note 4: $I_{\rm IN}$ and $I_{\rm CC}$ @ 3.0V are guaranteed to be less than or equal to the respective limit @ 5.5V $V_{\rm CC}.$

I_{CC} for 54AC @ 25°C is identical to 74AC @ 25°C.

AC Electrical Characteristics


Symbol	Parameter	V _{cc} (V) (Note 5)	T _A = to +	AC -55°C 125°C 50 pF	Units	Fig. No.
			Min	Max		
t _{PLH}	Propagation Delay	3.3	1.0	16.0	ns	
		5.0	1.0	12.0		
t _{PHL}	Propagation Delay	3.3	1.0	14.0	ns	
		5.0	1.5	10.0		


4


Note 5: Voltage Range 3.3 is $3.3V \pm 0.3V$ Voltage Range 5.0 is $5.0V \pm 0.5V$

Capacitance

Symbol	Parameter	Тур	Units	Conditions
C _{IN}	Input Capacitance	4.5	pF	V _{CC} = OPEN
C _{PD}	Power Dissipation	25.0	pF	$V_{CC} = 5.0V$
	Capacitance			

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DE-VICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMI-CONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation Americas Tei: 1-800-272-9959 Fax: 1-800-737-7018 Email: support@nsc.com www.national.com	National Semiconductor Europe Fax: +49 (0) 1 80-530 85 86 Email: europe.support@nsc.com Deutsch Tel: +49 (0) 1 80-530 85 85 English Tel: +49 (0) 1 80-532 78 32 Français Tel: +49 (0) 1 80-532 93 58 Italiano Tel: +49 (0) 1 80-534 16 80	National Semiconductor Asia Pacific Customer Response Group Tei: 65-2544466 Fax: 65-2504466 Email: sea.support@nsc.com	National Semiconductor Japan Ltd. Tel: 81-3-5620-6175 Fax: 81-3-5620-6179
--	---	---	--

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.