－Quad Bus Buffers

－3－State Outputs

－Separate Control for Each Channel

description

These bus buffers feature three－state outputs that，when enabled，have the low impedance characteristics of a TTL output with additional drive capability at high logic levels to permit driving heavily loaded bus lines without external pullup resistors．When disabled，both output transistors are turned off，presenting a high－impedance state to the bus so the output will act neither as a significant load nor as a driver．The ＇125 and＇LS125A devices＇outputs are disabled when $\overline{\mathrm{G}}$ is high．The＇126 and＇LS126A devices＇ outputs are disabled when G is low．

SN54125，SN54126，SN54LS125A，
SN54LS126A．．．J OR W PACKAGE
SN74125，SN74126 ．．．N PACKAGE
SN74LS125A，SN74LS126A ．．D，N，OR NS PACKAGE （TOP VIEW）

＊ \bar{G} on＇125 and＇LS125A devices； G on 126 and＇LS126A devices

SN54LS125A，SN54LS126A ．．FK PACKAGE （TOP VIEW）

＊ \bar{G} on＇125 and＇LS125A devices； G on 126 and＇LS126A devices NC－No internal connection

ORDERING INFORMATION

T_{A}	PACKAGE \dagger		ORDERABLE PART NUMBER	TOP-SIDE MARKING
$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	PDIP - N	Tube	SN74LS125AN	SN74LS125AN
		Tube	SN74LS126AN	SN74LS126AN
	SOIC - D	Tube	SN74LS125AD	LS125A
		Tape and reel	SN74LS125ADR	
		Tube	SN74LS126AD	LS126A
		Tape and reel	SN74LS126ADR	
	SOP - NS	Tape and reel	SN74LS125ANSR	74LS125A
		Tape and reel	SN74LS126ANSR	74LS126A
$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	CDIP - J	Tube	SN54LS125AJ	SN54LS125AJ
		Tube	SNJ54LS125AJ	SNJ54LS125AJ
	CFP - W	Tube	SNJ54LS125AW	SNJ54LS125AW
	LCCC - FK	Tube	SNJ54LS125AFK	SNJ54LS125AFK

\dagger Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

logic diagram (each gate)

'125, 'LS125A

'126, 'LS126A
G

A
 Y
$Y=A$

The SN54125, SN54126, SN74125, SN74126, and SN54LS126A are obsolete and are no longer supplied.

schematics (each gate)

absolute maximum ratings over operating free-air temperature (unless otherwise noted) \dagger ('125 and '126)

[^0]
schematics (each gate)

'LS126A CIRCUITS

Resistor values shown are nominal.
absolute maximum ratings over operating free-air temperature (unless otherwise noted) \dagger
('LS125A and 'LS126A)
Supply voltage, V_{CC} (see Note 1) ... 7 . 7

Package thermal impedance, θ_{JA} (see Note 2): D package .. $86^{\circ} \mathrm{C} / \mathrm{W}$
N package .. $80^{\circ} \mathrm{C} / \mathrm{W}$
NS package .. $76^{\circ} \mathrm{C} / \mathrm{W}$

[^1]recommended operating conditions

		SN54125 SN54126			SN74125 SN74126			UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	
V_{CC}	Supply voltage	4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High-level input voltage	2			2			V
V_{IL}	Low-level input voltage			0.8			0.8	V
${ }^{\text {IOH }}$	High-level output current			-2			-5.2	mA
${ }^{\text {IOL }}$	Low-level output current			16			16	mA
$\mathrm{T}_{\text {A }}$	Operating free-air temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS \dagger			SN54125 SN54126			SN74125 SN74126			UNIT
				MIN	TYPキ	MAX	MIN	TYPキ	MAX	
$\mathrm{V}_{\text {IK }}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$,	$\boldsymbol{I}=-12 \mathrm{~mA}$				-1.5			-1.5	V
V_{OH}	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V} \end{aligned}$	$\mathrm{V}_{\mathrm{IH}}=2 \mathrm{~V}$,	$\mathrm{IOH}=-2 \mathrm{~mA}$	2.4	3.3					V
			$\mathrm{I}^{\mathrm{OH}}=-5.2 \mathrm{~mA}$				2.4	3.1		
VOL	$\begin{aligned} & \mathrm{V} \mathrm{CC}=\mathrm{MIN}, \\ & \mathrm{IOL}=16 \mathrm{~mA} \end{aligned}$	$\mathrm{V}_{\mathrm{IH}}=2 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V}$,			0.4			0.4	V
Ioz	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MAX} \\ & \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V} \end{aligned}$	$\mathrm{V}_{\mathrm{IH}}=2 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=2.4 \mathrm{~V}$			40			40	$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$			-40			-40	
1	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$,	$\mathrm{V}_{1}=6.5 \mathrm{~V}$				1			1	mA
IIH	$V_{C C}=M A X$,	$\mathrm{V}_{1}=2.4 \mathrm{~V}$				40			40	$\mu \mathrm{A}$
ILL	$\begin{array}{ll}V_{C C}=\mathrm{MAX}, & V_{1}=0.4 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{CC}}=\mathrm{MAX} & \\ V_{C C}=\mathrm{MAX}\end{array}$					-1.6			-1.6	mA
los§				-30		-70	-28		-70	mA
${ }^{\prime} \mathrm{CC}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MAX} \\ & \text { (see Note 3) } \end{aligned}$		'125		32	54		32	54	mA
			'126		36	62		36	62	

\dagger For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
\ddagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\S Not more than one output should be shorted at a time.
NOTE 3: Data inputs $=0 \mathrm{~V}$; output control $=4.5 \mathrm{~V}$ for ' 125 and 0 V for ' 126.
switching characteristics, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (see Figure 1)

PARAMETER	TEST CONDITIONS		SN54125SN74125			SN54126 SN74126			UNIT
			MIN	TYP	MAX	MIN	TYP	MAX	
tPLH	$R_{L}=400 \Omega$,	$C_{L}=50 \mathrm{pF}$		8	13		8	13	ns
tPHL				12	18		12	18	
tPZH	$R_{L}=400 \Omega$,	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		11	17		11	18	ns
tPZL				16	25		16	25	
tPHZ	$\mathrm{R}_{\mathrm{L}}=400 \Omega$,	$C_{L}=5 \mathrm{pF}$		5	8		10	16	ns
tplZ				7	12		12	18	

recommended operating conditions

		SN54LS125A SN54LS126A			SN74LS125A SN74LS126A			UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	
V_{CC}	Supply voltage	4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High-level input voltage	2			2			V
VIL	Low-level input voltage			0.7			0.8	V
${ }^{\mathrm{I} \mathrm{OH}}$	High-level output current			-1			-2.6	mA
IOL	Low-level output current			12			24	mA
$\mathrm{T}_{\text {A }}$	Operating free-air temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS \dagger			$\begin{aligned} & \hline \text { SN54LS125A } \\ & \text { SN54LS126A } \end{aligned}$			$\begin{aligned} & \hline \text { SN74LS125A } \\ & \text { SN74LS126A } \end{aligned}$			UNIT
				MIN	TYP¥	MAX	MIN	TYP \ddagger	MAX	
VIK	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$,	$\mathrm{I}_{\mathrm{I}}=-18 \mathrm{~mA}$				-1.5			-1.5	V
V_{OH}	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V} \\ & \hline \end{aligned}$	$\mathrm{V}_{\mathrm{IL}}=0.7 \mathrm{~V}$,	$\mathrm{IOH}=-1 \mathrm{~mA}$	2.4			2.4			V
		$\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V}$	$\mathrm{I}^{\mathrm{OH}}=-2.6 \mathrm{~mA}$							
VOL	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V} \end{aligned}$	$\mathrm{V}_{\mathrm{IL}}=0.7 \mathrm{~V}, \quad \mathrm{l} \mathrm{OL}^{2}=12 \mathrm{~mA}$			0.25	0.4				V
		$\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V}$,	$\mathrm{IOL}=12 \mathrm{~mA}$					0.25	0.4	
		$\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V}$,	$\mathrm{IOL}=24 \mathrm{~mA}$					0.35	0.5	
Ioz	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \\ & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \end{aligned}$	V IL $=0.7 \mathrm{~V}$	$\mathrm{V}_{\mathrm{O}}=2.4 \mathrm{~V}$			20				$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$			-20				
		$\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V}$	$\mathrm{V}_{\mathrm{O}}=2.4 \mathrm{~V}$						20	
			$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$						-20	
1	$V_{C C}=$ MAX,	$\mathrm{V}_{1}=7 \mathrm{~V}$				0.1			0.1	mA
IIH	$V_{C C}=$ MAX,	$\mathrm{V}_{\mathrm{I}}=2.7 \mathrm{~V}$				20			20	$\mu \mathrm{A}$
IIL	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \\ & \mathrm{~V}_{\mathrm{I}}=0.4 \mathrm{~V} \end{aligned}$	'LS125A-G inputs				-0.2			-0.2	mA
		'LS125A-A inputs; 'LS126A All inputs				-0.4			-0.4	mA
los§	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$			-40		-225	-40		-225	mA
ICC	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MAX} \\ & \text { (see Note 4) } \end{aligned}$		'LS125A		11	20		11	20	mA
			'LS126A		12	22		12	22	

\dagger For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
\ddagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
§ Not more than one output should be shorted at a time, and the duration of the short circuit should not exceed one second.
NOTE 4: Data inputs $=0 \mathrm{~V}$; output control $=4.5 \mathrm{~V}$ for 'LS125A and 0 V for 'LS126A.
switching characteristics, $\mathrm{V}_{\mathbf{C C}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$ (see Figure 1)

PARAMETER	TEST CONDITIONS		$\begin{aligned} & \hline \text { SN54LS125A } \\ & \text { SN74LS125A } \end{aligned}$			SN54LS126A SN74LS126A			UNIT
			MIN	TYP	MAX	MIN	TYP	MAX	
tPLH	$R_{L}=667 \Omega$,	$C_{L}=45 \mathrm{pF}$		9	15		9	15	ns
tPHL				7	18		8	18	
tPZH	$R_{L}=667 \Omega$,	$C_{L}=45 \mathrm{pF}$		12	20		16	25	ns
tPZL				15	25		21	35	
tPHZ	$R_{L}=667 \Omega$,	$C_{L}=5 \mathrm{pF}$			20			25	ns
tpLZ					20			25	

The SN54125, SN54126, SN74125, SN74126, and SN54LS126A are obsolete and are no longer supplied.

PARAMETER MEASUREMENT INFORMATION SERIES 54/74 DEVICES

NOTES: A. C_{L} includes probe and jig capacitance.
B. All diodes are 1N3064 or equivalent.
C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
D. S1 and S2 are closed for tPLH, tPHL, tPHZ, and tpLZ; S1 is open and S2 is closed for tPZH; S1 is closed and S2 is open for tpZL.
E. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 1 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}} \approx 50 \Omega ; \mathrm{t}_{\mathrm{r}}$ and $\mathrm{t}_{\mathrm{f}} \leq 7 \mathrm{~ns}$ for Series $54 / 74$ devices and t_{r} and $\mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$ for Series 54S/74S devices.
F. The outputs are measured one at a time with one input transition per measurement.

Figure 1. Load Circuits and Voltage Waveforms

PARAMETER MEASUREMENT INFORMATION SERIES 54LS/74LS DEVICES

FOR 2-STATE TOTEM-POLE OUTPUTS
FOR OPEN-COLLECTOR OUTPUTS

VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES

VOLTAGE WAVEFORMS
SETUP AND HOLD TIMES

VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES, 3-STATE OUTPUTS

NOTES: A. C_{L} includes probe and jig capacitance.
B. All diodes are 1 N3064 or equivalent.
C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
D. S1 and S2 are closed for tPLH, tPHL, tPHZ, and tPLZ; S1 is open and S2 is closed for tPZH; S1 is closed and S2 is open for tpZL.
E. Phase relationships between inputs and outputs have been chosen arbitrarily for these examples.
F. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 1 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}} \approx 50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 1.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.6 \mathrm{~ns}$.
G. The outputs are measured one at a time with one input transition per measurement.

Figure 2. Load Circuits and Voltage Waveforms
www.ti.com
26-Sep-2005

PACKAGING INFORMATION

Orderable Device	Status ${ }^{(1)}$	Package Type	Package Drawing		Package Qty	$\text { Eco Plan }{ }^{(2)}$	Lead/Ball Finish	MSL Peak Temp ${ }^{(3)}$
JM38510/32301B2A	ACTIVE	LCCC	FK	20	1	TBD	Call TI	Level-NC-NC-NC
JM38510/32301BCA	ACTIVE	CDIP	J	14	1	TBD	Call TI	Level-NC-NC-NC
JM38510/32301BDA	ACTIVE	CFP	W	14	1	TBD	Call TI	Level-NC-NC-NC
JM38510/32301SCA	ACTIVE	CDIP	J	14	1	TBD	Call TI	Level-NC-NC-NC
JM38510/32301SDA	ACTIVE	CFP	W	14	1	TBD	Call TI	Level-NC-NC-NC
SN54126J	OBSOLETE	CDIP	J	14		TBD	Call TI	Call TI
SN54LS125AJ	ACTIVE	CDIP	J	14	1	TBD	Call TI	Level-NC-NC-NC
SN74125N	OBSOLETE	PDIP	N	14		TBD	Call TI	Call TI
SN74125N3	OBSOLETE	PDIP	N	14		TBD	Call TI	Call TI
SN74126N	OBSOLETE	PDIP	N	14		TBD	Call TI	Call TI
SN74LS125AD	ACTIVE	SOIC	D	14	50	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no Sb/Br) } \\ \hline \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN74LS125ADBR	ACTIVE	SSOP	DB	14	2000	$\begin{gathered} \hline \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \\ \hline \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN74LS125ADBRE4	ACTIVE	SSOP	DB	14	2000	$\begin{gathered} \hline \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br}) \\ \hline \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN74LS125ADE4	ACTIVE	SOIC	D	14	50	$\begin{gathered} \hline \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \\ \hline \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN74LS125ADR	ACTIVE	SOIC	D	14	2500	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN74LS125ADRE4	ACTIVE	SOIC	D	14	2500	$\begin{gathered} \hline \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \\ \hline \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN74LS125AN	ACTIVE	PDIP	N	14	25	Pb-Free (RoHS)	CU NIPDAU	Level-NC-NC-NC
SN74LS125AN3	OBSOLETE	PDIP	N	14		TBD	Call TI	Call TI
SN74LS125ANE4	ACTIVE	PDIP	N	14	25	Pb-Free (RoHS)	CU NIPDAU	Level-NC-NC-NC
SN74LS125ANSR	ACTIVE	So	NS	14	2000	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no Sb/Br) } \\ \hline \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN74LS125ANSRE4	ACTIVE	SO	NS	14	2000	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM
SN74LS125ANSRG4	ACTIVE	SO	NS	14	2000	$\begin{gathered} \hline \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br}) \\ \hline \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN74LS126AD	ACTIVE	SOIC	D	14	50	$\begin{gathered} \hline \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \\ \hline \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN74LS126ADE4	ACTIVE	SOIC	D	14	50	$\begin{gathered} \hline \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \\ \hline \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN74LS126ADR	ACTIVE	SOIC	D	14	2500	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM
SN74LS126ADRE4	ACTIVE	SOIC	D	14	2500	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN74LS126AJ	OBSOLETE	CDIP	J	14		TBD	Call TI	Call TI
SN74LS126AN	ACTIVE	PDIP	N	14	25	Pb-Free (RoHS)	CU NIPDAU	Level-NC-NC-NC
SN74LS126ANE4	ACTIVE	PDIP	N	14	25	Pb-Free (RoHS)	CU NIPDAU	Level-NC-NC-NC
SN74LS126ANSR	ACTIVE	SO	NS	14	2000	Green (RoHS \&	CU NIPDAU	Level-1-260C-UNLIM

PACKAGE OPTION ADDENDUM

Orderable Device	Status $^{(1)}$Package Type	Package Drawing	Pins Package Qty	Eco Plan ${ }^{(2)}$	Lead/Ball Finish	MSL Peak Temp ${ }^{(3)}$		
						no Sb/Br)		
SN74LS126ANSRE4	ACTIVE	SO	NS	14	2000	 no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SNJ54126J	OBSOLETE	CDIP	J	14		TBD	Call TI	Call TI
SNJ54126W	OBSOLETE	CFP	W	14		TBD	Call TI	Call TI
SNJ54LS125AFK	ACTIVE	LCCC	FK	20	1	TBD	Call TI	Level-NC-NC-NC
SNJ54LS125AJ	ACTIVE	CDIP	J	14	1	TBD	Call TI	Level-NC-NC-NC
SNJ54LS125AW	ACTIVE	CFP	W	14	1	TBD	Call TI	Level-NC-NC-NC

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but Tl does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
${ }^{(2)}$ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS) or Green (RoHS \& no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb -Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Green (RoHS \& no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
${ }^{(3)}$ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall Tl's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

J ($\mathrm{R}-\mathrm{GDIP}-\mathrm{T} * *$)
CERAMIC DUAL IN-LINE PACKAGE
14 LEADS SHOWN

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. This package is hermetically sealed with a ceramic lid using glass frit.
D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

W (R-GDFP-F14)

CERAMIC DUAL FLATPACK

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. This package can be hermetically sealed with a ceramic lid using glass frit.
D. Index point is provided on cap for terminal identification only.
E. Falls within MIL STD 1835 GDFP1-F14 and JEDEC MO-092AB

FK (S-CQCC-N**)

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. This package can be hermetically sealed with a metal lid.
D. The terminals are gold plated.
E. Falls within JEDEC MS-004

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.

C Falls within JEDEC MS-001, except 18 and 20 pin minimum body length ($\operatorname{Dim} A$).
(D) The 20 pin end lead shoulder width is a vendor option, either half or full width.

D (R-PDSO-G14)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion not to exceed $0.006(0,15)$.
D. Falls within JEDEC MS-012 variation AB.

MECHANICAL DATA

NS (R-PDSO-G**)
PLASTIC SMALL-OUTLINE PACKAGE
14-PINS SHOWN

DIM PINS **	14	16	20	24
A MAX	10,50	10,50	12,90	15,30
A MIN	9,90	9,90	12,30	14,70

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15 .

DB (R-PDSO-G**)
28 PINS SHOWN

DIM PINS **	$\mathbf{1 4}$	$\mathbf{1 6}$	$\mathbf{2 0}$	$\mathbf{2 4}$	$\mathbf{2 8}$	$\mathbf{3 0}$	$\mathbf{3 8}$
A MAX	6,50	6,50	7,50	8,50	10,50	10,50	12,90
A MIN	5,90	5,90	6,90	7,90	9,90	9,90	12,30

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15 .
D. Falls within JEDEC MO-150

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to Tl's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with Tl's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products

Amplifiers	amplifier.ti.com
Data Converters	dataconverter.ti.com
DSP	dsp.ti.com
Interface	interface.ti.com
Logic	logic.ti.com
Power Mgmt	power.ti.com
Microcontrollers	microcontroller.ti.com

Applications

Audio	www.ti.com/audio
Automotive	www.ti.com/automotive
Broadband	www.ti.com/broadband
Digital Control	www.ti.com/digitalcontrol
Military	www.ti.com/military
Optical Networking	www.ti.com/opticalnetwork
Security	www.ti.com/security
Telephony	www.ti.com/telephony
Video \& Imaging	www.ti.com/video
Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments
Post Office Box 655303 Dallas, Texas 75265

[^0]: Supply voltage, V_{CC} (see Note 1) . 7 V Input voltage, V_{I}. 5.5 V Package thermal impedance, $\theta_{\text {JA }}$ (see Note 2): N package . 80̊ C / W Storage temperature range, $T_{\text {stg }}$ $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
 \dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
 NOTES: 1. Voltage values are with respect to network ground terminal.
 2. The package termal impedance is calculated in accordance with JESD 51-7.

[^1]: \dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
 NOTES: 1. Voltage values are with respect to network ground terminal.
 2. The package termal impedance is calculated in accordance with JESD 51-7.

