专业PCB打样工厂

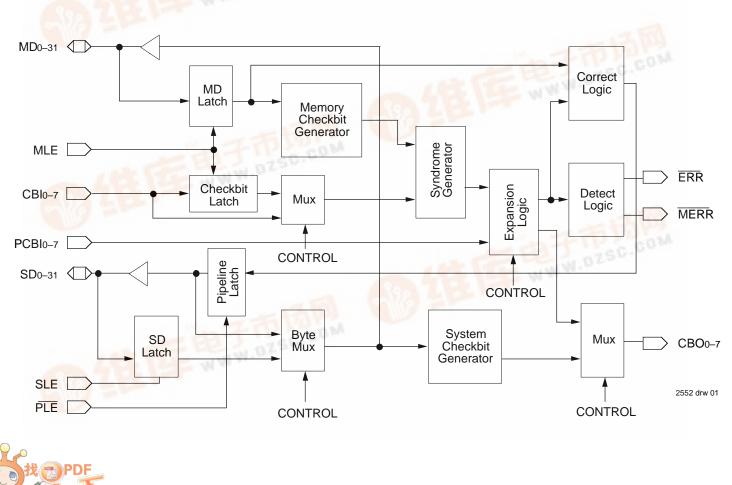
32-BIT FLOW-THRU ERROR DETECTION AND CORRECTION UNIT

IDT49C465 IDT49C465A

Integrated Device Technology, Inc.

FEATURES

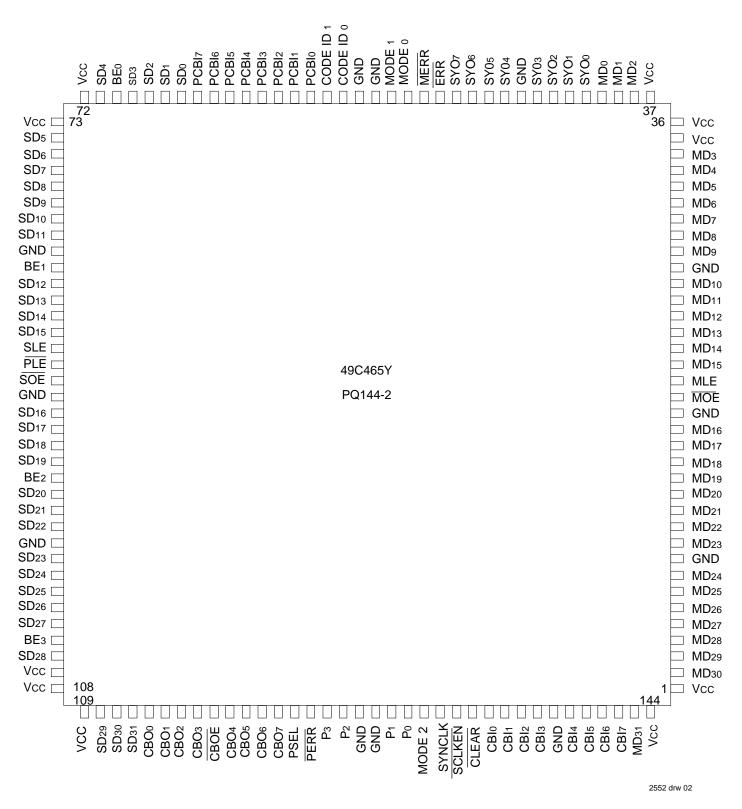
- 32-bit wide Flow-thruEDC[™] unit, cascadable to 64 bits •
- Single-chip 64-bit Generate Mode
- Separate system and memory buses
- On-chip pipeline latch with external control
- Supports bidirectional and common I/O memories
- Corrects all single-bit errors
- Detects all double-bit errors, some multiple-bit errors
- Error Detection Time 12ns
- Error Correction Time 14ns •
- On chip diagnostic registers.
- Parity generation and checking on system data bus
- Low power CMOS 100mA typical at 20MHz
- 144-pin PGA and PQFP packages
- Military product compliant to MIL-STD 883, Class B


SIMPLIFIED FUNCTIONAL BLOCK DIAGRAM

DESCRIPTION

The IDT49C465/A is a 32-bit, two-data bus, Flow-thruEDC unit. The chip provides single-error correction and two and three bit error detection of both hard and soft memory errors. It can be expanded to 64-bit widths by cascading 2 units, without the need for additional external logic. The FlowthruEDC has been optimized for speed and simplicity of control.

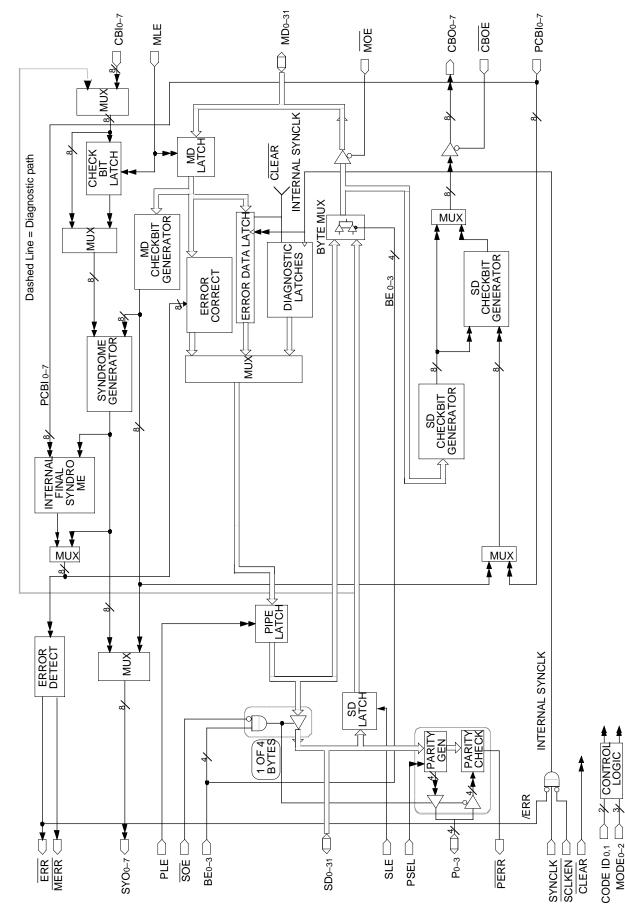
The EDC unit has been designed to be used in either of two configurations in an error correcting memory system. The bidirectional configuration is most appropriate for systems using bidirectional memory buses. A second system configuration utilizes external octal buffers, and is well suited for systems using memory with separate I/O buses.


The IDT49C465/A supports partial word writes, pipelining and error diagnostics. It also provides parity protection for data on the system side.

logo is a recistered trademark and Flow-thruEDC is a trademarkof Integrated Device Technology Inc.

MILITARY AND COMMERCIAL TEMPERATURE RANGES

PIN CONFIGURATION



MILITARY AND COMMERCIAL TEMPERATURE RANGES

PIN CONFIGURATION

						CODE	CODE	MODE							
15	Vcc	SD 2	PCBI 6	PCBI 5		ID 1	ID 0	1	MERR	ERR	SYO 5	SYO 3	SYO 1	MD 1	Vcc
14	SD 6	SD 4	SD 1	PCBI 7	PCBI 4	PCBI 1	PCBI 0	MODE 0	SYO 6	SYO 4	SYO 2	MD 0	MD 2	Vcc	MD 5
13	SD 9	SD 5	BE 0	SD 3	SD 0	PCBI 2	GND	GND	SYO 7	GND	SYO 0	Vcc	MD 3	MD 6	MD 9
12	SD 11	SD 7	Vcc										MD 4	MD 8	GND
11	SD 12	SD 10	SD 8											MD 10	MD 11
10	SD 15	BE 1	GND										MD 12	MD 13	MD 15
9	SLE	SD 13	SD 14											MD 14	MLE
8	SOE	PLE	GND		G144-2								GND	MD 17	MD 16
7	SD 17	SD 19	SD 16										MD 20	MD 21	MD 18
6	SD 18	BE 2	SD 20										GND	MD 23	MD 19
5	SD 21	SD 22	SD 25										MD 27	MD 25	MD 22
4	GND	SD 24	BE 3	●NC*									Vcc	MD 28	MD 24
3	SD 23	SD 26	SD 28	Vcc	CB0 0	CBOE	CB0 7	GND	GND	SCLK EN	GND	CB1 6	CB1 7	MD 30	MD 26
2	SD 27	Vcc	SD 29	SD 31	CB0 2	CB0 4	CB0 6	Рз	MODE 2	SYN- CLK	CB1 0	CB1 3	CB1 4	MD 31	MD 29
1	Vcc	SD 30	CB0 1	СВ0 з	CB0 5	PSEL	PERR	P2	P1	Po	CLEAR	CB1 1	CB1 2	CB1 5	Vcc
	A	В	С	D	E	F	G	Н	J	К	L	М	N	Р	R
*1	ied to Vo	c interna	lly												
								> A \/IT\							25

PGA (CAVITY UP) TOP VIEW

DETAILED FUNCTIONAL BLOCK DIAGRAM

SYSTEM CONFIGURATIONS

The IDT49C465 EDC unit can be used in various configurations in an EDC system. The basic configurations are shown below.

Figure 1 illustrates a bidirectional configuration, which is most appropriate for systems using bidirectional memory buses. It is the simplest configuration to understand and use. During a correction cycle, the corrected data word can be simultaneously output on both the system bus and memory bus. Logically, no other parts are required for the correction function. During partial-word-write operations, the new bytes are internally combined with the corrected old bytes for checkbit generation and writing to memory.

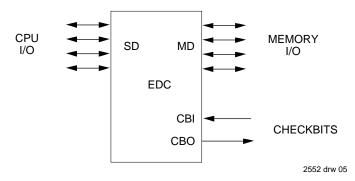


Figure 1. Common I/O Configuration

Figure 2 illustrates a separate I/O configuration. This is appropriate for systems using separate I/O memory buses. This configuration allows separate input and output memory buses to be used. Corrected data is output on the SD outputs for the system and for re-write to memory. Partial word-write bytes are combined externally for writing and checkbit generation.

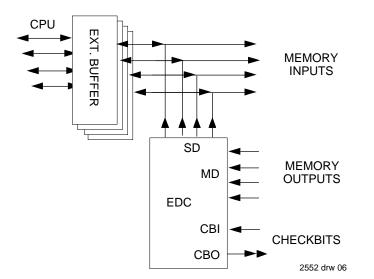


Figure 2. Separate I/O Configuration

Figure 3 illustrates a third configuration which utilizes external buffers and is also well suited for systems using memory with separate I/O buses. Since data from memory does not need to pass through the part on every cycle, the EDC system may operate in "bus-watch" mode. As in the separate I/O configuration, corrected data is output on the SD outputs.

Figure 3. Bypassed Separate I/O Configuration

Figure 4 illustrates the single-chip generate-only mode for very fast 64-bit checkbit generation in systems that use separate checkbit-generate and detect-correct units. If this is not desired, 64-bit checkbit generation and correction can be done with just 2 EDC units. 64-bit correction is also straightforward, fast and requires no extra hardware for the expansion.

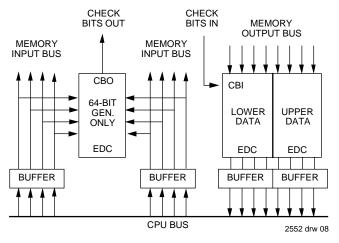


Figure 4. Separate Generate/Correction Units with 64-Bit Checkbit Generation

FUNCTIONAL DESCRIPTION

The error detection/correction codes consist of a modified Hamming code; it is identical to that used in the IDT49C460.

32-BIT MODE (CODE ID 1,0=00)

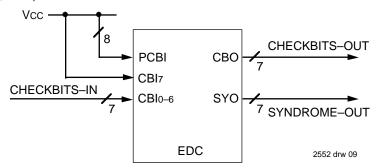


Figure 5. 32-Bit Mode

64-BIT MODE (CODE ID 1,0=10 & 11)

The expansion bus topology is shown in Figure 6. This topology allows the syndrome bits used by the correction logic to be generated simultaneously in both parts used in the expansion. During a 64-bit detection or correction operation,

"Partial-Checkbit" data and "Partial-Syndrome" data is simultaneously exchanged between the two EDC units in opposite directions on dedicated expansion buses. This results in very short 64-bit detection and correction times.

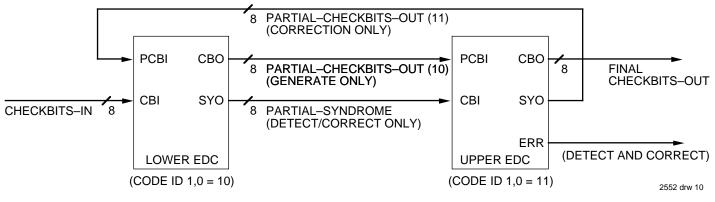


Figure 6. 64-Bit Mode — 2 Cascaded IDT49C465 Devices

64-BIT GENERATE-ONLY MODE (CODE ID 1,0=01)

If the Identity pins CODE ID 1,0=01, a single EDC is placed in the 64-bit "Generate-only" mode. In this mode, the lower 32 bits of the 64-bit data word enter the device on the MD0-31 inputs and the upper 32-bits of the 64 bit data word enter the device on the SD0-31 inputs. This provides the device with the full 64-bit word from memory. The resultant generated checkbits are output on the CBO0-7 outputs. The generate time is less than that resulting from using a 2-chip cascade.

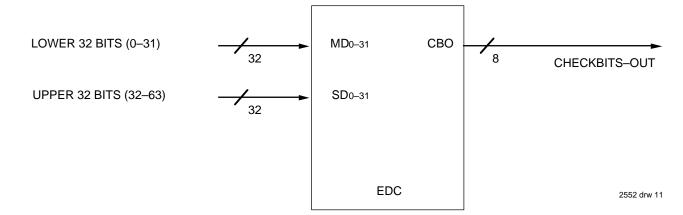


Figure 7. 64-Bit "Generate-Only" Mode (Single Chip)

PIN DESCRIPTIONS

Symbol	I/O		Name and Function
Symbol I/O Buses a	I	ontrole	
		Shtrois	Sustan Data Busy Data from MDass appears at these pine corrected if MODE 2.0 will or upper
SD0-7 SD8-15 SD16-23 SD24-31	1/0		 System Data Bus: Data from MD0-31 appears at these pins corrected if MODE 2-0 = x11, or uncorrected in the other modes. The BEn inputs must be high and the SOE pin must be low to enable the SD output buffers during a read cycle. (Also, see diagnostic section.) Separate I/O memory systems: In a write or partial-write cycle, the byte not-to-be-modified is output on SDn to n+7 for re-writing to memory, if BEn is high and SOE is low. The new bytes to be written to memory are input on the SDn pins, for writing checkbits to memory, if BEn is low. Bi-directional memory systems: In a write or partial-write cycle, the byte not-to-be-modified is re-directed to the MD I/O pins, if BEn is high, for checkbit generation and rewriting to memory via the MD I/O pins. SOE must be high to avoid enabling the output drivers to the system bus in this mode. The new bytes to be written are input on the SDn pins for checkbit generation and writing to memory. BEn must be low to direct input data from the System Data bus to the MD I/O pins for checkbit generation and writing to memory.
SLE	I		System Latch Enable : SLE is an input used to latch data at the SD inputs. The latch is transparent when SLE is high; the data is latched when SLE is low.
PLE	Ι		Pipeline Latch Enable : PLE is an input which controls a pipeline latch, which controls data to be output on the SD bus and the MD bus during byte merges. Use of this latch is optional. The latch is transparent when PLE is low; the data is latched when PLE is high.
SOE	Ι		System Output Enable : When low, enables System output drivers and Parity output drivers if corresponding Byte Enable inputs are high.
BE0-3	I		Byte Enables:In systems using separate I/O memory buses, outputs for byte n. The BEn pins also control the "Byte mux". When BEn is high, the corrected or uncorrected data from the Memory Data latch is directed to the MD I/O pins and used for checkbit generation for byte n. This is used in partial-word-write operations or during correction cycles. When BEn is low, the data from the System Data latch is directed to the MD I/O pins and used for checkbit generation for byte n. BE0 controls SD0-7 BE1 controls SD8-15BE1 controls SD24-31
MD0-31	I/O		Memory Data Bus: These I/O pins accept a 32-bit data word from main memory for error detection and/ or correction. They also output corrected old data or new data to be written to main memory when the EDC unit is used in a bi-directional configuration.
MLE	I		Memory Latch Enable : MLE is used to latch data from the MD inputs and checkbits from the CBI inputs. The latch is transparent when MLE is high; data is latched when MLE is low. When identified as the upper slice in a 64-bit cascade, the checkbit latch is bypassed.
MOE	Ι		Memory Output Enable : MOE enables Memory Data Bus output drivers when low.
P0-3	I/O		Parity I/O : The parity I/O pins for Bytes 0 to 3. These pins output the parity of their respective bytes when that byte is being output on the SD bus. These pins also serve as parity inputs and are used in generating the Parity ERRor (PERR) signal under certain conditions (see Byte Enable definition). The parity is odd or even depending on the state of the Parity SELect pin (PSEL).
PSEL	Ι		Parity SELect:If the Parity SELect pin is low, the parity is even.If the Parity SELect pin is high, the parity is odd.
Inputs	-		
CBI0-7	I		CheckBits-In (00)CheckBits-In-1 (10)Partial-Syndrome-In (11):In a single EDC system or in the lower slice of a cascaded EDC system, these inputs accept the checkbitsfrom the checkbit memory. In the upper slice in a cascaded EDC system, these inputs accept the "Partial-Syndrome" from the lower slice (Detect/Correct path).
PCBI 0-7	I		Partial-CheckBits-In (10)Partial-CheckBits-In (11):In a single EDC system, these inputs are unused but should not be allowed to float. In a cascaded EDC system, the "Partial-Checkbits" used by the lower slice are accepted by these inputs (Correction path only).In the upper slice of a cascaded EDC system, "Partial-Checkbits" generated by the lower slice are accepted by the lower slice are accepted by the lower slice are accepted by the set inputs (Generate path).
CODE ID1,0	I		CODE IDentity: Inputs which identify the slice position/ functional mode of the IDT49C465.(00) Single 32-bit EDC unit(10) Lower slice of a 64-bit cascade(01) 64-bit "Checkbit-generate-only" unit(11) Upper slice of a 64-bit cascade

PIN DESCRIPTIONS (Con't.)

Symbol	I/O		Name and Function
Inputs (Co	n't.)		
MODE 2-0	1		MODE select: Selects one of four operating modes.
		(x11) (x10)	"Normal" Mode: Normal EDC operation (Flow-thru correction and generation). "Generate-Detect" Mode: In this mode, error correction is disabled. Error generation and detection are normal.
		(000)	"Error-Data-Output" Mode: Allows the uncorrected data captured from an error event by the Error-Data Register to be read by the system for diagnostic purposes. The Error-Data Register is cleared by toggling CLEAR low. The Syndrome Register and Error-Data Register record the syndrome and uncorrected data from the first error that occurs after they are reset by the CLEAR pin. The Syndrome Register and Error-Data Register are updated when there is a positive edge on SYNCLK, an error condition is indicated (ERR = low), and the Error Counter indicates zero.
		(x01)	 All-Zero-Data Source: In Error-Data-Output Mode, clearing the Error-Data Register provides a source of all-zero-data for hardware initialization of memory, if this desired. Diagnostic-Output Mode: In this mode, the contents of the Syndrome Register , Error Counter and Error-Type Register are output on the SD bus. This allows the syndrome bytes for an indicated error to be read by the system for error-logging purposes. The Syndrome Register and the Error-Data Register are updated
		(100)	when there is a positive edge on SYNCLK, an error condition is indicated and the Error Counter indicates zero errors. Thus, the Syndrome Register saves the syndrome that was present when the first error occurred after the Error Counter was cleared. The Syndrome Register and the Error Counter are cleared by toggling CLEAR low. The Error Counter lets the system tell if more than one error has occurred since the last time the Syndrome Register or Error-Data Register was read. Checkbit-Injection Mode: In the "Checkbit-Injection" Mode, diagnostic checkbits may be input on System
	-		Data Bus bits 0-7 (see Diagnostic Features - Detailed Description).
CLEAR	I		CLEAR : When the CLEAR pin is taken low, the Error-Data Register, the Syndrome Register, the Error Counter and the Error-Type Register are cleared.
SYNCLK	I		SYNdrome CLocK : If ERR is low, and the Error Counter indicates zero errors, syndrome bits are clocked into the Syndrome Register and data from the outputs of the Memory Data input latch are clocked into the Error-Data Register on the low-to-high edge of SYNCLK. If ERR is low, the Error Counter will increment on the low-to-high edge of SYNCLK, unless the Error Counter indicates fifteen errors.
SCLKEN	1		SynCLK ENable: The SCLKEN enables the SYNCLK signal. SYNCLK is ignored if SCLKEN is high.
Outputs an	d Ena	ables	
CBO0-7	0		CheckBits-Out (00, 01) Partial-CheckBits-Out (10) Checkbits-Out (11): In a single EDC system, the checkbits are output to the checkbit memory on these outputs. In the lower slice in a cascaded EDC system, the "Partial-checkbits" used by the upper slice are output by these outputs (Generate path only). In the upper slice in a cascade, the "Final-Checkbits" appear at these outputs (Generate path only).
CBOE	Т		CheckBits Out Enable: Enables CheckBit Output drivers when low.
SYO0-7	0		SYndrome-Out (00)Partial-SYndrome-Out (10)Partial-Checkbits-Out (11):In a 32-bit EDC system, the syndrome bits are output on these pins.In the lower slice in a 64-bit cascadedsystem, the "Partial-Syndrome" bits appear at these outputs (Detect/ Correct path).In the upper slice in acascaded EDC system, the "Partial-Checkbits" appear at these outputs (Correct path only).In a 64-bitcascaded system, the "Final-Syndrome" may be accessed in the "Diagnostic-Output" Mode from either thelower or the upper slice since the final syndrome is contained in both.
ERR	0		ERROR : When in "Normal" and "Detect only" modes, a low on this pin indicates that one or more errors have been detected. ERR is not gated or latched internally.
MERR	0 0		Multiple ERRor: When in "Normal" and "Detect only" modes, a low on this pin indicates that two or more errors have been detected. MERR is not gated or latched internally. Parity ERRor : A low on this pin indicates a parity error which has resulted from the active bytes defined by
	0		the 4 Byte Enable pins. Parity ERRor (PERR) is not gated or latched internally (see Byte Enable definition).
Power Sup	ply Pi	ns	
Vcc 1-10 GND1-12	P P		+5 Volts Ground
GIND I-12	Г		2552 th 0

DIAGNOSTIC DATA FORMAT (SYSTEM BUS)

		Latche	ed Data	Data Out (Unlatched)				
Error Type	Re- served	Error Counter	Syndrome bits	Partial Checkbits	Checkbits			
	B	yte 3	Byte 2	Byte 1	Byte 0			
S M		2 ³ 2 ² 2 ¹ 2 ⁰	7 6 5 4 3 2 1 0	7 6 5 4 3 2 1 0	7 6 5 4 3 2 1 0			
31 30		27 24	23 16	5 15 8	7 0			

2552 drw 12

DIAGNOSTIC FEATURES — DETAILED DESCRIPTION

Mode 2-0	
x11	"NORMAL" Mode In this mode, operation is "Normal" or non-diagnostic.
x10	"GENERATE-DETECT" Mode When the EDC unit is in the "Generate-Detect" Mode, data is not corrected or altered by the error correction network. (Also referred to as the "Detect-only" Mode.)
000	"ERROR-DATA-OUTPUT" Mode In this mode, the 32-bit data from the Error-Data Register is output on the SD bus.
	Error Data Register : The uncorrected data from the Memory Data bus input latch is stored in the Error-Data Register if the error counter contents indicates "0" and there is a positive transition on the SYNCLK input when the ERR signal is low. Thus, the Error-Data Register contains memory data corresponding to the first error to occur since the register was cleared. This register is cleared by pulling the CLEAR input low. The register is read via the System Data bus by entering the "Error-Data-Output" Mode and enabling the System Data bus output drivers.
	All-Zero-Data: The Error-Data Register can be used as an "all-zero-data" data source for memory initialization in systems where the initialization process is to be done entirely by hardware.
x01	"DIAGNOSTIC-OUTPUT" Mode In this mode, data from the diagnostic registers, the PCBI bus and the CBI bus is output on the SD bus.
	Direct Checkbit Readback : Internal data paths allow both the "Partial-CheckBit-Input" bus and the data in the "CheckBit-Input" latch to be read directly by the system bus for diagnostic purposes. Both the Checkbit Input Bus and the Partial Checkbit Input Bus are read via the System Data bus by entering the " Diagnostic-Output " Mode and enabling the System Data bus output drivers. The checkbits are output on System Data bus bits 0-7; the Partial Checkbits are output on bits 8-15.
	Syndrome Register: After an error has been detected, the syndrome bits generated are clocked into the internal Syndrome Register if the error counter contents indicates "0" and there is a positive transition on the SYNCLK input when the ERR signal is low. This register is cleared by pulling the CLEAR input low. The register is read via the System Data bus by entering the " Diagnostic-Output " Mode and enabling the System Data bus outputs. This data is output on SD bits 16-23.
	Error Counter : The 4-bit on-board error counter is incremented if the error counter contents do not indicate FF HEX, which corresponds to a count of 15, and there is a positive transition on the SYNCLK input when the ERR signal is low. This counter is cleared by pulling the CLEAR input low. The counter is read via the System Data bus by entering the "Diagnostic-Output" Mode and enabling the System Data bus output drivers. This data is output on System Data bus bits 24-27.
	Test Register : These 2 bits are reserved for factory diagnostics only and must not be used by system software. This data is output on System Data bus bits 28-29.
	Error-Type Register : The Error-Type Register, clocked by the SYNCLK input, saves 2 bits which indicate whether a recorded error was a single or a multiple-bit error. This register holds only the first error type to occur after the last Clear operation. This data is output on System Data bus bits 30-31.
100	Direct Read-Path Checkbit Injection : In the "Checkbit-Injection" Mode , bits 0-7 of the System Data input latch are presented to the inputs of the Checkbit Input latch. If MLE is strobed, the checkbit latch will be loaded with this value in place of the checkbits from memory. By inserting various checkbit values, operation of the correction function of the EDC can be verified "on-board". Except for the "Checkbit-Injection" function, operation in this mode is identical to "Normal" Mode operation.

OPERATING MODE CHARTS SLICE IDENTIFICATION

CODE ID 1	CODE ID 0	Slice Definition					
0	0	32-bit Flow-Thru EDC					
0	1	64-bit GENERATE Only EDC					
1	0	64-bit EDC- Lower 32 bits (0-31)					
1	1	64-bit EDC- Upper 32 bits (32-63)					
		2552 tbl 0/					

SLICE POSITION CONTROL

				Checkbit Buses							
CODE ID	Slice Position/ Functional Operation	SOE	SD Bus	MOE	MD Bus	PCBI Bus	CBI Bus	CBO Bus	SYO Bus	P Bus	PERR
1 0	Width =	-	32		32	8	8	8	8	4	1
0 0	Single 32-bit EDC unit Generate ⁽¹⁾ Detect/Correct ⁽²⁾	1 0	Sys. 0–31 Pipe. latch	0 1	Sys. Byte Mux MD 0–31		 CBs in	CBs out	 Syn. out	P in P out	active
0 1	"64-bit Generate-only"	1	Sys. 32–63	1	Sys. 0–31	—	—	CBs out	—	—	
1 0	Lower word, 64-bit bus Generate ⁽¹⁾ Detect/Correct ⁽²⁾	1 0	Sys. 0–31 Pipe. latch	0 1	MD 0–31 MD 0–31	 U-SYOout	 CBs in	PCBs out	 Par.Synd	P in P out	active
1 1	Upper word, 64-bit bus Generate ⁽¹⁾ Detect/Correct ⁽²⁾		Sys. 32–63 Pipe. latch	0 1	MD 32–63 MD 32–63	L-CBOout	 L-SYOout	F.CBs out	 Par.Cbits	P in P out	active

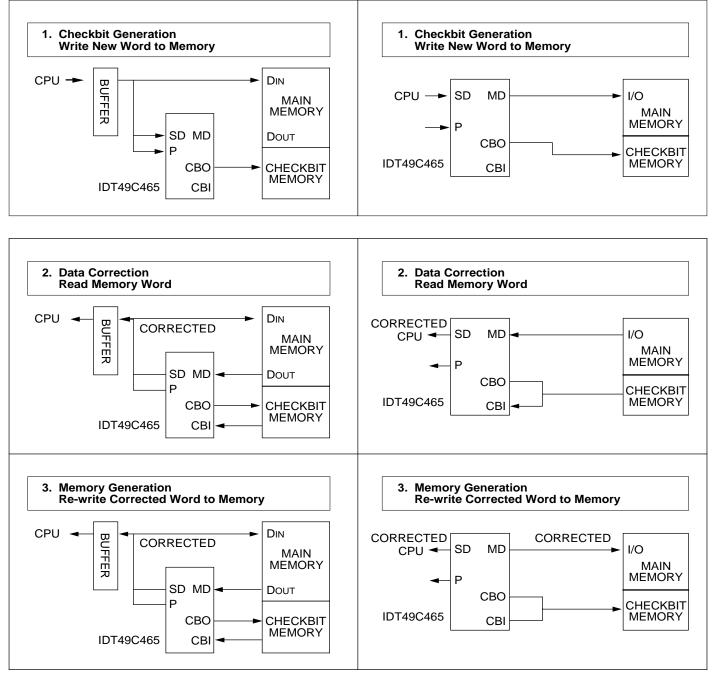
NOTES:

1. Checkbits generated from the data in the SD Latch.

2. Corrected data residing in the Pipe Latch.

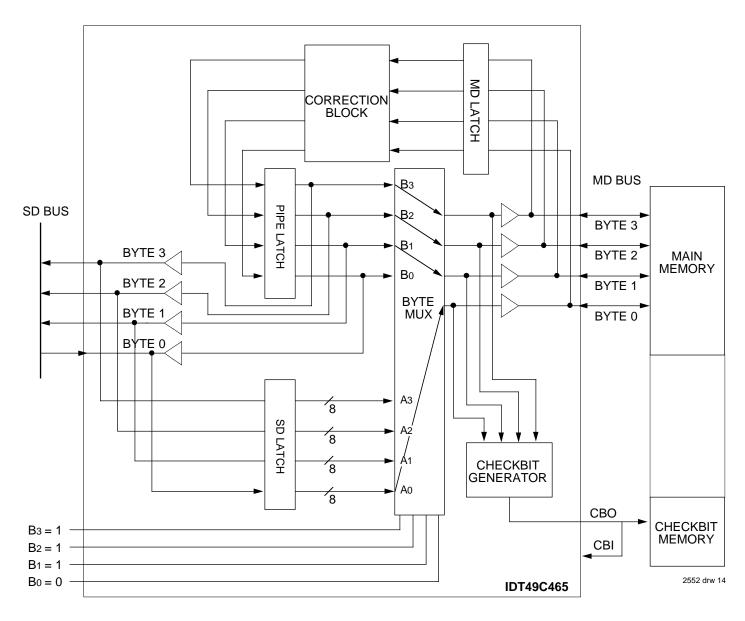
FUNCTIONAL MODE CONTROL

								Checkbit Buses					
			Functional Mode of SD Bus					РСВІ	СВІ	СВО	SYO	Р	
м	OD	ЭE		SOE	SD Bus	MOE	MD Bus	Bus	Bus	Bus	Bus	Bus	PERR
2	1	0	Width =		32		32	8	8	8	8	4	1
x	1	1	" Normal " Generate Correct	1 0	CPU Data Pipe. latch	0 1	Pipe. latch RAM Data	_	 CB in	CB out		P in P out	active
x	1	0	"Generate-Detect" Generate Detect	1 0	CPU Data Pipe. latch	0 1	Pipe. latch RAM Data		 CB in	CB out		P in P out	active
0	0	0	"Error-Data-Output"	0	Err. D. latch	—	—	—	—	—	—		—
x	0	1	"Diagnostic-Output"	0	CBin latch PCBlin bus Syn. register Err. counter Er. type reg.	_	_	PCBI in	CB in		_	_	_
1	0	0	"Checkbit-Injection" Generate Inject Checkbits Correct	1 1 0	SDin latch SD0–7 in Pipe. latch	0 0 1	Pipe. latch Pipe. latch RAM Data		— — CB in	CB out — —		P in P out	active —


2552 tbl 06

MILITARY AND COMMERCIAL TEMPERATURE RANGES

PRIMARY DATA PATH vs. MEMORY CONFIGURATION


SEPARATE I/O MEMORIES:

COMMON I/O MEMORIES:

PARTIAL-WORD-WRITE OPERATIONS

FOR COMMON I/O MEMORIES:

In order to perform a partial-word-write operation, the complete word in question must be read from memory. This must be done in order to correct any error which may have occurred in the old word. Once the complete, corrected word is available, with all the bytes verified, the new word may be assembled in the byte mux and the new checkbits generated. The example shown above illustrates the case of combining 3 bytes from an old word with a new lower order byte to form a new word. The new word, along with the new checkbits, may now be written to memory.

In the separate I/O memory configuration, the situation is similar except that the new word is output on the SD Bus instead of the MD Bus (refer to previous page).

32-BIT DATA WORD CONFIGURATION

A single IDT49C465 EDC unit, connected as shown below, provides all the logic needed for single-bit error correction, and double-bit error detection, of a 32-bit data field. The identification code (00) indicates 7 checkbits are required. The CBI7 pin should be tied high.

The 39-bit data format for four bytes of data and 7 checkbits is indicated below.

32-BIT DATA FORMAT

Syndrome bits are generated by an exclusive-OR of the generated checkbits with the checkbits read from memory. For example, Sn is the XOR of checkbits from those read with those generated. During Data Correction, the syndrome bits are used to complement (correct) single-bit errors in the data bits.

32-BIT HARDWARE CONFIGURATION

MILITARY AND COMMERCIAL TEMPERATURE RANGES

64-BIT DATA WORD CONFIGURATION

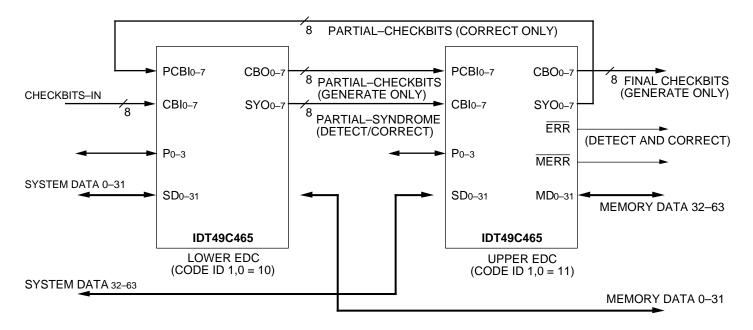
Two IDT49C465 EDC units, connected as shown below, provide all the logic needed for single-bit error correction, and double-bit error detection, of a 64-bit data field. The "Slice Identification" Table gives the CODE ID1,0 values needed for distinguishing the upper 32 bits from the lower 32 bits. Final generated checkbits, ERR and MERR (indicates multiple errors) signals come from the upper slice, the IC with CODE ID1,0=11. Control signals not shown are connected to both units in parallel.

Data-In bits 0 through 31 are connected to the same numbered inputs of the EDC with CODE ID1,0=10, while Data-In bits 32 through 63 are connected to data inputs 0 to 31, respectively, for the EDC unit with CODE ID1,0=11.

The 72-bit data format of data and checkbits is indicated below.

- - -

Correction of single-bit errors in the 64-bit configuration requires a simultaneous exchange of partial checkbits and partial syndrome bits between the upper and lower units.


Syndrome bits are generated by an exclusive-OR of the generated checkbits with the checkbits read from memory. For example, Sn is the XOR of checkbits read and checkbits generated. During data correction, the syndrome bits are used to complement (correct) single-bit errors in the data bits. For double or multiple-bit error detection, the data available as output by the Pipeline Latch is not defined.

Critical AC performance data is provided in the Table "Key AC Calculations", which illustrates the delays that are critical to 64-bit cascaded performance. As indicated, a summation of propagation delays is required when cascading these units.

64-BIT DATA FORMAT

DATA								CHECKBITS								
BYTE 7	BYTE 6	BYTE 5	BYTE 4	BYTE 3	BYTE 2	BYTE 1	BYTE 0		C7	C6	C5	C4	СЗ	C2	C1	C0
63 56	55 48	47 40	39 32	31 24	23 16	15 8	7	 0							255	52 drw 17

64-BIT HARDWARE CONFIGURATION

DEFINITIONS OF TERMS:

D0 – D31 = System Data and/or Memory Data Inputs

- CBI0 CBI7 = Checkbit Inputs
- PCBI0 PCBI7 = Partial Checkbit Inputs

FS0 – FS7 = Final Internal Syndrome bits

FUNCTIONAL EQUATIONS:

The equations below describe the terms used in the IDT49C465 to determine the values of the partial checkbits, checkbits, partial syndromes and final internal syndromes. NOTE: All " \oplus " symbols below represent the "EXCLUSIVE-OR" function.

- $\begin{array}{l} \mathsf{PA} = \mathsf{D0} \oplus \mathsf{D1} \oplus \mathsf{D2} \oplus \mathsf{D4} \oplus \mathsf{D6} \oplus \mathsf{D8} \oplus \mathsf{D10} \oplus \mathsf{D12} \oplus \mathsf{D16} \oplus \mathsf{D17} \\ \oplus \mathsf{D18} \oplus \mathsf{D20} \oplus \mathsf{D22} \oplus \mathsf{D24} \oplus \mathsf{D26} \oplus \mathsf{D28} \end{array}$
- $\begin{array}{c} \mathsf{PB} = \mathsf{D0} \oplus \mathsf{D3} \oplus \mathsf{D4} \oplus \mathsf{D7} \oplus \mathsf{D9} \oplus \mathsf{D10} \oplus \mathsf{D13} \oplus \mathsf{D15} \oplus \mathsf{D16} \oplus \mathsf{D19} \\ \oplus \mathsf{D20} \oplus \mathsf{D23} \oplus \mathsf{D25} \oplus \mathsf{D26} \oplus \mathsf{D29} \oplus \mathsf{D31} \end{array}$
- $\begin{array}{c} \mathsf{PC} = \mathsf{D0} \oplus \mathsf{D1} \oplus \mathsf{D5} \oplus \mathsf{D6} \oplus \mathsf{D7} \oplus \mathsf{D11} \oplus \mathsf{D12} \oplus \mathsf{D13} \oplus \mathsf{D16} \oplus \mathsf{D17} \\ \oplus \mathsf{D21} \oplus \mathsf{D22} \oplus \mathsf{D23} \oplus \mathsf{D27} \oplus \mathsf{D28} \oplus \mathsf{D29} \end{array}$
- $PD = D2 \oplus D3 \oplus D4 \oplus D5 \oplus D6 \oplus D7 \oplus D14 \oplus D15 \oplus D18 \oplus D19$ $\oplus D20 \oplus D21 \oplus D22 \oplus D23 \oplus D30 \oplus D31$
- $\begin{array}{l} \mathsf{PE} = \mathsf{D8} \oplus \mathsf{D9} \oplus \mathsf{D10} \oplus \mathsf{D11} \oplus \mathsf{D12} \oplus \mathsf{D13} \oplus \mathsf{D14} \oplus \mathsf{D15} \oplus \mathsf{D24} \\ \oplus \mathsf{D25} \oplus \mathsf{D26} \oplus \mathsf{D27} \oplus \mathsf{D28} \oplus \mathsf{D29} \oplus \mathsf{D30} \oplus \mathsf{D31} \end{array}$
- $\begin{array}{l} \mathsf{PF} = \mathsf{D}_0 \oplus \mathsf{D}_1 \oplus \mathsf{D}_2 \oplus \mathsf{D}_3 \oplus \mathsf{D}_4 \oplus \mathsf{D}_5 \oplus \mathsf{D}_6 \oplus \mathsf{D}_7 \oplus \mathsf{D}_{24} \oplus \mathsf{D}_{25} \\ \oplus \mathsf{D}_{26} \oplus \mathsf{D}_{27} \oplus \mathsf{D}_{28} \oplus \mathsf{D}_{29} \oplus \mathsf{D}_{30} \oplus \mathsf{D}_{31} \end{array}$
- $\begin{array}{l} \mathsf{PG} = \mathsf{D8} \oplus \mathsf{D9} \oplus \mathsf{D10} \oplus \mathsf{D11} \oplus \mathsf{D12} \oplus \mathsf{D13} \oplus \mathsf{D14} \oplus \mathsf{D15} \oplus \mathsf{D16} \\ \oplus \mathsf{D17} \oplus \mathsf{D18} \oplus \mathsf{D19} \oplus \mathsf{D20} \oplus \mathsf{D21} \oplus \mathsf{D22} \oplus \mathsf{D23} \end{array}$
- $\begin{array}{c} \mathsf{PH}_0 = \mathsf{D}_0 \oplus \mathsf{D}_4 \oplus \mathsf{D}_6 \oplus \mathsf{D}_7 \oplus \mathsf{D}_8 \oplus \mathsf{D}_9 \oplus \mathsf{D}_{11} \oplus \mathsf{D}_{14} \oplus \mathsf{D}_{17} \oplus \mathsf{D}_{18} \\ \oplus \mathsf{D}_{19} \oplus \mathsf{D}_{21} \oplus \mathsf{D}_{26} \oplus \mathsf{D}_{28} \oplus \mathsf{D}_{29} \oplus \mathsf{D}_{31} \end{array}$
- $\begin{array}{l} \mathsf{PH1}=\mathsf{D1}\oplus\mathsf{D2}\oplus\mathsf{D3}\oplus\mathsf{D5}\oplus\mathsf{D8}\oplus\mathsf{D9}\oplus\mathsf{D11}\oplus\mathsf{D14}\oplus\mathsf{D17}\oplus\mathsf{D18}\\ \oplus \mathsf{D19}\oplus\mathsf{D21}\oplus\mathsf{D24}\oplus\mathsf{D25}\oplus\mathsf{D27}\oplus\mathsf{D30} \end{array}$
- $\begin{array}{l} \mathsf{PH2}=\mathsf{D0}\oplus\mathsf{D4}\oplus\mathsf{D6}\oplus\mathsf{D7}\oplus\mathsf{D10}\oplus\mathsf{D12}\oplus\mathsf{D13}\oplus\mathsf{D15}\oplus\mathsf{D16}\oplus\\ \mathsf{D20}\oplus\mathsf{D22}\oplus\mathsf{D23}\oplus\mathsf{D26}\oplus\mathsf{D28}\oplus\mathsf{D29}\oplus\mathsf{D31} \end{array}$

CMOS TESTING CONSIDERATIONS

Special test board considerations must be taken into account when applying high-speed CMOS products to the automatic test environment. Large output currents are being switched in very short periods and proper testing demands that test set-ups have minimized inductance and guaranteed zero voltage grounds. The techniques listed below will assist the user in obtaining accurate testing results:

- All input pins should be connected to a voltage potential during testing. If left floating, the device may oscillate, causing improper device operation and possible latchup.
- 2) Placement and value of decoupling capacitors is critical. Each physical set-up has different electrical characteristics and it is recommended that various decoupling capacitor sizes be experimented with. Capacitors should be positioned using the minimum lead lengths. They should also be distributed to decouple power supply lines and be placed as close as possible to the DUT power pins.
- 3) Device grounding is extremely critical for proper device testing. The use of multi-layer performance boards with radial decoupling between power and ground planes is necessary. The ground plane must be sustained from the performance board to the DUT interface board and wiring unused interconnect pins to the ground plane is recommended. Heavy gauge stranded wire should be used for power wiring, with twisted pairs being recommended for minimized inductance.
- 4) To guarantee data sheet compliance, the input thresholds should be tested per input pin in a static environment. To allow for testing and hardware-induced noise, IDT recommends using VIL ≤ 0V and VIH ≥ 3V for AC tests.

MILITARY AND COMMERCIAL TEMPERATURE RANGES

DETAILED DESCRIPTION — CHECKBIT AND SYNDROME GENERATION vs. CODE ID

LOGIC EQUATIONS FOR THE CBO OUTPUTS

	CODE ID 1,0							
Checkbit	00	10	11					
Generation	Final Chkbits	Partial Checkbits	Final Checkbits					
CBO ₀	PH₀	PH1	PH2 ⊕ PCBI0					
CBO1	PA	PA	PA ⊕ PCBI1					
CBO ₂	PB	PB	PB					
CBO3	PC	PC	PC ⊕ PCBI3					
CBO4	PD	PD	PD					
CBO5	PE	PE	PE ⊕ PCBI₅					
CBO6	PF	PF	PF ⊕ PCBI6					
CBO7	—	PF	PG ⊕ PCBI7					

2552 tbl 07

LOGIC EQUATIONS FOR THE SYO OUTPUTS

Checkbit/	CODE ID 1,0							
Syndrome	00	10	11					
Generation	Final Syndrome	Partial Syndrome	Partial Checkbits					
SYO0	PH0 ⊕ CBI0	PH1 ⊕ CBI0	PH2					
SYO1	PA ⊕ CBI1	PA ⊕ CBI1	PA					
SYO2	PB ⊕ CBI2	PB ⊕ CBI2	PB					
SYO3	PC ⊕ CBI3	PC ⊕ CBI3	PC					
SYO4	PD ⊕ CBI4	PD ⊕ CBI4	PD					
SYO5	PE ⊕ CBI5	PE	PE					
SYO6	PF ⊕ CBI6	PF ⊕ CBI6	PF					
SYO7	—	PF ⊕ CBI7	PG					

2552 tbl 08

LOGIC EQUATIONS FOR THE FINAL SYNDROME (FSn)

Final		CODE ID 1,0
Syndrome	00	10, 11
Generation	Final Syndrome	Final Internal Syndrome
FS0	PH₀ ⊕ CBI₀	PH1 (L) ⊕ PH2 (U) ⊕ CBI0
FS1	PA ⊕ CBI1	PA (L) ⊕ PA (U) ⊕ CBI1
FS2	PB ⊕ CBI2	$PB(L)\oplusPB(U)\oplusCBI_2$
FS3	PC ⊕ CBI3	$PC(L) \oplus PC(U) \oplus CBI_3$
FS4	PD ⊕ CBI4	PD (L)⊕ PD (U) ⊕ CBI₄
FS5	PE ⊕ CBI₅	$PE\;(L)\oplusPE\;(U)\oplusCBI_5$
FS6	PF ⊕ CBI6	PF (L) ⊕ PF (U) ⊕ CBI6
FS7	—	PF (L) ⊕ PG (U)⊕ CBI7

2552 tbl 09

32-BIT SYNDROME DECODE TO BIT-IN-ERROR⁽¹⁾

32-DI	131					- 10	DII	-114-				
				HEX	0	1	2	3	4	5	6	7
				S 6	0	0	0	0	1	1	1	1
	S	yndr	ome	e S5	0	0	1	1	0	0	1	1
		Bit	s	S4	0	1	0	1	0	1	0	1
HEX	S 3	S2	S 1	S0								
0	0	0	0	0	*	C4	C5	Т	C6	Т	Т	30
1	0	0	0	1	C0	Т	Т	14	Т	М	М	Т
2	0	0	1	0	C1	Т	Т	М	Т	2	24	Т
3	0	0	1	1	Т	18	8	Т	М	Т	Т	М
4	0	1	0	0	C2	Т	Т	15	Т	3	25	Т
5	0	1	0	1	Т	19	9	Т	М	Т	Т	31
6	0	1	1	0	Т	20	10	Т	М	Т	Т	М
7	0	1	1	1	М	Т	Т	М	Т	4	26	Т
8	1	0	0	0	C3	Т	Т	М	Т	5	27	Т
9	1	0	0	1	Т	21	11	Т	М	Т	Т	М
Α	1	0	1	0	Т	22	12	Т	1	Т	Т	М
В	1	0	1	1	17	Т	Т	М	Т	6	28	Т
С	1	1	0	0	Т	23	13	Т	М	Т	Т	М
D	1	1	0	1	Μ	Т	Т	М	Т	7	29	Т
E	1	1	1	0	16	Т	Т	М	Т	М	Μ	Т
F	1	1	1	1	Т	М	М	Т	0	Т	Т	М

NOTES:

 The table indicates the decoding of the seven syndrome bits to identify the bit-in-error for a single-bit error, or whether a double or triple-bit error was detected. The all-zero case indicates no error detected.
 * = No errors detected

2552 tbl 12

= The number of the single bit-in-error

T = Two errors detected

M = Three or more errors detected

2552 tbl 10

DETAILED DESCRIPTION — 32-BIT CONFIGURATION

32-BIT MODIFIED HAMMING CODE — CHECKBIT ENCODING CHART⁽¹⁾

Generated								Partic	cipatir	ng Dat	a Bits						
Checkbits	Parity	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CB0	Even (XOR)	Х				Х		Х	Х	Х	Х		Х			Х	
CB1	Even (XOR)	Х	Х	Х		Х		Х		Х		Х		Х			
CB2	Odd (XNOR)	Х			Х	Х			Х		Х	Х			Х		Х
CB3	Odd (XNOR)	Х	Х				Х	Х	Х				Х	Х	Х		
CB4	Even (XOR)			Х	Х	Х	Х	Х	Х							Х	Х
CB5	Even (XOR)									Х	Х	Х	Х	Х	Х	Х	Х
CB6	Even (XOR)	Х	Х	Х	Х	Х	Х	Х	Х								

							Partic	ipatir	g Dat	a Bits	5					
Parity	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
Even (XOR)		х	х	х		х					х		х	х		х
Even (XOR)	Х	Х	Х		Х		Х		Х		Х		Х			
Odd (XNOR)	Х			Х	Х			Х		Х	Х			Х		Х
Odd (XNOR)	Х	Х				Х	Х	Х				Х	Х	Х		
Even (XOR)			Х	Х	Х	Х	Х	Х							Х	Х
Even (XOR)									Х	Х	Х	Х	Х	Х	Х	Х
Even (XOR)									Х	Х	Х	Х	Х	Х	Х	Х
	Even (XOR) Even (XOR) Odd (XNOR) Odd (XNOR) Even (XOR) Even (XOR)	Even (XOR)Even (XOR)XOdd (XNOR)XOdd (XNOR)XEven (XOR)Even (XOR)	Even (XOR)XEven (XOR)XXXOdd (XNOR)XOdd (XNOR)XEven (XOR)Even (XOR)	Even (XOR)XXEven (XOR)XXOdd (XNOR)XXOdd (XNOR)XXEven (XOR)XXEven (XOR)X	Even (XOR) X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X	Even (XOR) X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X	Parity 16 17 18 19 20 21 Even (XOR) X X X X X X X Even (XOR) X X X X X X X Odd (XNOR) X X X X X X X Odd (XNOR) X X X X X X X Odd (XNOR) X X X X X X X Even (XOR) X X X X X X X Even (XOR) I X X X X X X	Parity 16 17 18 19 20 21 22 Even (XOR) X X X X X X X X Even (XOR) X X X X X X X X Odd (XNOR) X X X X X X X Odd (XNOR) X X X X X X X Odd (XNOR) X X X X X X X Even (XOR) X X X X X X X Even (XOR) X X X X X X X	Parity 16 17 18 19 20 21 22 23 Even (XOR) X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X	Parity 16 17 18 19 20 21 22 23 24 Even (XOR) X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X <td>Parity 16 17 18 19 20 21 22 23 24 25 Even (XOR) X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X<td>Even (XOR) X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X</td><td>Parity 16 17 18 19 20 21 22 23 24 25 26 27 Even (XOR) X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X<</td><td>Parity 16 17 18 19 20 21 22 23 24 25 26 27 28 Even (XOR) X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X</td><td>Parity 16 17 18 19 20 21 22 23 24 25 26 27 28 29 Even (XOR) X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X</td><td>Parity 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Even (XOR) X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X <td< td=""></td<></td></td>	Parity 16 17 18 19 20 21 22 23 24 25 Even (XOR) X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X <td>Even (XOR) X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X</td> <td>Parity 16 17 18 19 20 21 22 23 24 25 26 27 Even (XOR) X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X<</td> <td>Parity 16 17 18 19 20 21 22 23 24 25 26 27 28 Even (XOR) X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X</td> <td>Parity 16 17 18 19 20 21 22 23 24 25 26 27 28 29 Even (XOR) X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X</td> <td>Parity 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Even (XOR) X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X <td< td=""></td<></td>	Even (XOR) X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X	Parity 16 17 18 19 20 21 22 23 24 25 26 27 Even (XOR) X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X<	Parity 16 17 18 19 20 21 22 23 24 25 26 27 28 Even (XOR) X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X	Parity 16 17 18 19 20 21 22 23 24 25 26 27 28 29 Even (XOR) X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X	Parity 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Even (XOR) X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X <td< td=""></td<>

NOTE:

2552 tbl 11 1. The table indicates the data bits participating in the checkbit generation. For example, checkbit C0 is the Exclusive-OR function of the 16 data input bits marked with an X.

DETAILED DESCRIPTION — 64-BIT CONFIGURATION 64-BIT MODIFIED HAMMING CODE - CHECKBIT ENCODING CHART^(1, 2)

Generated								Partic	cipatir	ng Dat	a Bits	;					
Checkbits	Parity	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CB0	Even (XOR)		Х	Х	Х		Х			Х	Х		Х			Х	
CB1	Even (XOR)	Х	Х	Х		Х		Х		Х		Х		Х			
CB2	Odd (XNOR)	Х			Х	Х			Х		Х	Х			Х		Х
CB3	Odd (XNOR)	Х	Х				Х	Х	Х				Х	Х	Х		
CB4	Even (XOR)			Х	Х	Х	Х	Х	Х							Х	Х
CB5	Even (XOR)									Х	Х	Х	Х	Х	Х	Х	Х
CB6	Even (XOR)	Х	Х	Х	Х	Х	Х	Х	Х								
CB7	Even (XOR)	Х	Х	Х	Х	Х	Х	Х	Х								
	1	1	· · · · · ·	1	1	1	1	l		1	1	1			l	2	552 tbl 1

Generated								Partic	ipatir	ng Dat	a Bits	5					
Checkbits	Parity	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
CB0	Even (XOR)		Х	Х	Х		Х			Х	Х		Х			Х	
CB1	Even (XOR)	Х	Х	Х		Х		Х		Х		Х		Х			
CB2	Odd (XNOR)	Х			Х	Х			Х		Х	Х			Х		Х
CB3	Odd (XNOR)	Х	Х				Х	Х	Х				Х	Х	Х		
CB4	Even (XOR)			Х	Х	Х	Х	Х	Х							Х	Х
CB5	Even (XOR)									Х	Х	Х	Х	Х	Х	Х	Х
CB6	Even (XOR)									Х	Х	Х	Х	Х	Х	Х	Х
CB7	Even (XOR)									Х	Х	Х	Х	Х	Х	Х	Х
						1						1				2	552 tbl

Generated								Partic	cipatir	ng Dat	a Bits	;					
Checkbits	Parity	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47
CB0	Even (XOR)	Х				Х		Х	Х			Х		Х	Х		Х
CB1	Even (XOR)	Х	Х	Х		Х		Х		Х		Х		Х			
CB2	Odd (XNOR)	Х			Х	Х			Х		Х	Х			Х		Х
CB3	Odd (XNOR)	Х	Х				Х	Х	Х				Х	Х	Х		
CB4	Even (XOR)			Х	Х	Х	Х	Х	Х							Х	Х
CB5	Even (XOR)									Х	Х	Х	Х	Х	Х	Х	Х
CB6	Even (XOR)	Х	Х	Х	Х	Х	Х	Х	Х								
CB7	Even (XOR)									Х	Х	Х	Х	Х	Х	Х	Х
			I			I	1	I		I		I	I	1	I	2	552 tbl

Generated								Partic	ipatir	ng Dat	a Bits						
Checkbits	Parity	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63
CB0	Even (XOR)	Х				Х		Х	Х			Х		Х	Х		Х
CB1	Even (XOR)	Х	Х	Х		Х		Х		Х		Х		Х			
CB2	Odd (XNOR)	Х			Х	Х			Х		Х	Х			Х		Х
CB3	Odd (XNOR)	Х	Х				Х	Х	Х				Х	Х	Х		
CB4	Even (XOR)			Х	Х	Х	Х	Х	Х							Х	Х
CB5	Even (XOR)									Х	Х	Х	Х	Х	Х	Х	Х
CB6	Even (XOR)									Х	Х	Х	Х	Х	Х	Х	Х
CB7	Even (XOR)	Х	Х	Х	Х	Х	Х	Х	Х								

NOTES:

1. The table indicates the data bits participating in the checkbit generation. For example, checkbit C0 is the Exclusive-OR function of the 64 data input bits marked with an X.

2. The checkbit is generated as either an XOR or an XNOR of the 64 data bits noted by an "X" in the table.

DETAILED DESCRIPTION — 64-BIT CONFIGURATION (Con't.)

64-BIT SYNDROME DECODE TO BIT-IN-ERROR⁽¹⁾

04 BH	• • • •			-00		5															
					HEX	0	1	2	3	4	5	6	7	8	9	А	В	С	D	Е	F
					S 7	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
					S 6	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
		Synd	rome		S5	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
·		Bi	ts		S 4	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
HEX	S3	S2	S 1	S 0																	
0	0	0	0	0		*	C4	C5	Т	C6	Т	Т	62	C7	Т	Т	46	Т	М	М	Т
1	0	0	0	1		C0	Т	Т	14	Т	М	М	Т	Т	М	М	Т	М	Т	Т	30
2	0	0	1	0		C1	Т	Т	М	Т	34	56	Т	Т	50	40	Т	М	Т	Т	М
3	0	0	1	1		Т	18	8	Т	М	Т	Т	М	М	Т	Т	М	Т	2	24	Т
4	0	1	0	0		C2	Т	Т	15	Т	35	57	Т	Т	51	41	Т	М	Т	Т	31
5	0	1	0	1		Т	19	9	Т	М	Т	Т	63	М	Т	Т	47	Т	3	25	Т
6	0	1	1	0		Т	20	10	Т	М	Т	Т	М	М	Т	Т	М	Т	4	26	Т
7	0	1	1	1		М	Т	Т	М	Т	36	58	Т	Т	52	42	Т	М	Т	Т	М
8	1	0	0	0		C3	Т	Т	М	Т	37	59	Т	Т	53	43	Т	М	Т	Т	М
9	1	0	0	1		Т	21	11	Т	М	Т	Т	М	М	Т	Т	М	Т	5	27	Т
A	1	0	1	0		Т	22	12	Т	33	Т	Т	М	49	Т	Т	М	Т	6	28	Т
В	1	0	1	1		17	Т	Т	М	Т	38	60	Т	Т	54	44	Т	1	Т	Т	М
С	1	1	0	0		Т	23	13	Т	М	Т	Т	М	М	Т	Т	М	Т	7	29	Т
D	1	1	0	1		М	Т	Т	М	Т	39	61	Т	Т	55	45	Т	М	Т	Т	М
Е	1	1	1	0		16	Т	Т	М	Т	М	М	Т	Т	М	М	Т	0	Т	Т	М
F	1	1	1	1		Т	М	М	Т	32	Т	Т	М	48	Т	Т	М	Т	М	М	Т

NOTES:

1. The table indicates the decoding of the seven syndrome bits to identify the bit-in-error for a single-bit error, or whether a double or triple-bit error was detected. The all-zero case indicates no error detected.

* = No errors detected

= The number of the single bit-in-error

T = Two errors detected

M = Three or more detected

KEY AC CALCULATIONS — 64-BIT CASCADED CONFIGURATION

	64-Bit Pi	ropagation Delay	Total AC Delay for IDT49C465 in 64-bit Mode
Mode	From	То	(L) = Lower slice (U) = Upper slice
Generate	SD Bus	Checkbits out	SD to CBO(L) + PCBI to CBO(U) t SC(L) + t PCC(U)
Detect	MD Bus MD Bus	ERR for 64-bits	$\begin{array}{rcl} MD \text{ to } SYO(L) &+& CBI \text{ to } \overline{ERR} (U) \\ & t \; MSY(L) &+& t \; CE \; (U) \\ MD \; to \; SYO(L) &+& CBI \; to \; \overline{M} \; \overline{ERR} \\ & t \; MSY(L) &+& t \; CME \; (\overline{U}) \end{array}$
Correct	MD Bus	Corrected data out	$\begin{array}{rrrr} \mbox{MD to SYO(L)} & + & \mbox{CBI to SD(U)} \\ & t \mbox{MSY(L)} & + & t \mbox{CS (U)} \\ (or) \rightarrow \mbox{MD to SYO(U)} & + & \mbox{PCBI to SD(L)} \\ & t \mbox{MSY(U)} & + & t \mbox{PCS(L)} \end{array}$

Symbol	Rating	Com'l.	Mil.	Unit
Vcc	Power Supply Voltage	-0.5 to +7.0	-0.5 to +7.0	V
Vterm	Terminal Voltage with Respect to Ground	-0.5 to Vcc + 0.5	–0.5 to Vcc + 0.5	<
TA	Operating Temperature	0 to +70	-55 to +125	°C
TBIAS	Temperature Under Bias	-55 to +125	-65 to +135	°C
Tstg	Storage Temperature	-55 to +125	-65 to +150	°C
Ιουτ	DC Output Current	30	30	mA

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

NOTE:

2552 tbl 19

 Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to Absolute Maximum Ratings for extended periods of time may affect reliability.

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

The following conditions apply unless otherwise specified:

Commercial: TA = 0°C to +70°C, VCC = $5.0V \pm 5\%$; Military: TA = -55°C to +125°C, VCC = $5.0V \pm 10\%$

Symbol	Parameter	Test Co	nditions ⁽¹⁾		Min.	Typ. ⁽²⁾	Max.	Unit
Vін	Input HIGH Level ⁽⁴⁾	Guaranteed Logic HIGH	Normal Inputs		2.0	_	_	V
			Hysteresis Inputs		3.0	_		
VIL	Input LOW Level ⁽⁴⁾	Guaranteed Logic LOW				_	0.8	V
Іін	Input HIGH Current	Vcc = Max., VIN = Vcc				_	5.0	μA
lı∟	Input LOW Current	Vcc = Max., VIN = GND			_	—	-5.0	μA
loz	Off State (Hi-Z)	Vcc = Max.	V0 = 0V			_	-10	μA
			Vo = 3V		_	—	10	
los	Short Circuit Current	Vcc = Max. ⁽³⁾			-20	_	-150	mA
Vон	Output HIGH Voltage	Vcc = Min.	Iон = –6mA	COM'L.	2.4	—	_	V
		VIN = VIH or VIL	Iон = -4mA	MIL.	2.4	—	_	
Vol	Output LOW Voltage	Vcc = Min.	IOL = 12mA	COM'L.	_	—	0.5	V
		VIN = VIH or VIL	IOL = 6mA	MIL.		_	0.5	
Vн	Hysteresis	CLEAR, MLE, PLE, SLE,		_	200	_	mV	

NOTES:

1. For conditions shown as min. or max., use appropriate value specified above for the applicable device type.

2. Typical values are at Vcc = 5.0V, +25°C ambient temperature and maximum loading.

3. Not more than one output should be shorted at one time. Duration of the short circuit test should not exceed one second.

4. These input levels provide zero noise immunity and should only be static tested in a noise-free environment.

MILITARY AND COMMERCIAL TEMPERATURE RANGES

CAPACITANCE (TA = +25°C, f = 1.0MHz)

			·····,		
Symbol	Parameter ⁽¹⁾	Conditions	Pkg.	Тур.	Unit
CIN	Input	VIN = 0V	PGA	10	рF
	Capacitance		PQFP	5	
Соит	Output	Vout = 0V	PGA	12	pF
	Capacitance		PQFP	7	

NOTE:

1. This parameter is sampled and not 100% tested.

2552 tbl 21

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE (Con't.)

The following conditions apply unless otherwise specified:

Commercial: TA = 0°C to +70°C, VCC = 5.0V \pm 5%; Military: TA = -55°C to +125°C, VCC = 5.0V \pm 10%

Symbol	Parameter	Test Conditions ⁽¹⁾		Min.	Typ. ⁽²⁾	Max.	Unit
ICCQ	Quiescent Power Supply Current CMOS Input Levels	VIN = Vcc or GND Vcc = Max. All Inputs Outputs Disabled	Vcc = Max. All Inputs Outputs Disabled				
ICCQT	Quiescent Power Supply Current TTL Input Levels	VIH = 3.4V, VIL = 0V Vcc = Max. All Inputs Outputs Disabled		_	_	1	mA/ input
ICCD1	Dynamic Power Supply Current f = 10MHz	fcp = 10MHz, 50% Duty Cycle VIH = Vcc, VIL = GND	COM'L.	_	_	100	mA
		Read Mode, Outputs Disabled	MIL.		_	115	
ICCD2	Dynamic Power Supply Current f = 20MHz	fcp = 20MHz, 50% Duty Cycle VIH = Vcc, VIL = GND	COM'L.			200	mA
		Read Mode, Outputs Disabled	MIL.	_	_	230	

NOTES:

1. For conditions shown as Min. or Max., use appropriate value specified above for the applicable device type.

2. Typical values are at Vcc = 5.0V, +25°C ambient temperature, and maximum loading.

3. Total supply current is the sum of the Quiescent current and the dynamic current and is calculated as follows:

ICC = ICCQ + ICCQT (NT x DT) + ICCD (fop)

where: NT = Total # of quiescent TTL inputs DT = AC Duty cycle - % of time high (TTL)foP = Operating frequency

AC PARAMETERS - 49C465A

PROPAGATION DELAY TIMES

				32-			-bit	(64-bit S	Systen	n		
				Syst Stand Sli	alone	on	nerate Iy" ice		wer ice		per ice		
				CODE	ID=00	CODE	ID=01	CODE	ID=10	CODE	ID=11		
		Parameter	Description	Com.	Mil.	Com.	Mil.	Com.	Mil.	Com	. Mil.		Refer to
Number	Parameter Name		To Output (edge)	Max.	Max.	Max.	Max.	Max.	Max.	Max.	Max.	Unit	Timing Diagram Figure
GENER	ATE (WRITE	E) PARAMETE	ERS										
01	t BC	BEN	СВО	15	20	—		15	20	15	20	ns	_
02	t BM	BEN	MDout	15	20	—		15	20	15	20	ns	_
03	t MC	MDIN	СВО	—	—	15	18	_	—	—	_	ns	10
04	t PCC	РСві	СВО	_	_	_	_	_	_	12	18	ns	7
05	t PPE	Pxin	PERR	12	18	—	—	12	18	12	18	ns	—
06	t sc		СВО	14	18	14	18	14	18	14	18	ns	7
07	t SM	SDIN	MDout	12	18	—		12	18	12	18	ns	7
08	tSPE		PERR	12	18	—	—	12	18	12	18	ns	—
DETECI	(READ) PA	ARAMETERS											
09	t CE		ERR Low	14	18	—	—	—	—	12	18	ns	8,10
10	t CME	СВІ	$\overline{\text{MERR}}$ = Low	15	20	_	_	—	—	15	20	ns	8,10
11	t CSY		SYO	12	18	_	_	12	18	_	—	ns	8,10
12	t ME		ERR	12	18	—	—	—	—	12	18	ns	8,10
13	t MME	MDIN	MERR	16	20	_	_	—	—	16	20	ns	8,10
14	t MSY		SYO	16	20	—	_	12	18	12	18	ns	8,10
CORRE	CT (READ)	PARAMETER	S					1			1		•]
15	t CS	CBI	SDout	16	20	—	—	—	—	16	20	ns	8,11
16	t MP	1	Px	18	22		—	18	22	18	22	ns	8,11
17	t MS	MDIN	SDOUT	14	18	_	—	—	—			ns	8,11
18	t MSY		SYO	16	20	—	—	12	18	1 2	18	ns	8,11
19	t PCS	РСВІ	SDout		—		—	13	18	—		ns	11
DIAGNC	STIC PAR	METERS	•	•			1	•			•		
20	t CLR	CLEAR = Low	SDOUT	15	20	—	—	15	20	15	20	ns	15
1	1		1	1	1	1	1		1		1	1	1

21 NOTES:

1. Where "edge" is not specified, both HIGH and LOW edges are implied.

SDOUT

15

20

_

15

20

15

20

ns

MODE ID

2. **BOLD** indicates critical system parameters.

t MIS

2552 tbl 24

15

MILITARY AND COMMERCIAL TEMPERATURE RANGES

AC PARAMETERS - 49C465A

PROPAGATION DELAY TIMES FROM LATCH ENABLES

			Parameter	Description		Com.'l.	Mil.		Refer to
Number	Parameter Name	From Input	(edge)	To Output	(edge)	Max.	Max.	Unit	Timing Diagram Figure
22	t MLC			CBO	*	16	20	ns	13
23	t MLE			ERR	*	13	18	ns	8, 10, 11
24	t MLME	MLE =	HIGH	MERR	*	16	20	ns	8
25	t MLP			Px	*	18	22	ns	8, 11
26	t MLS			SDOUT	*	18	22	ns	8, 10, 11
27	t MLSY			SYO	*	15	20	ns	8, 10
28	t PLS	PLE =	LOW	SDOUT	*	10	12	ns	8, 11
29	t PLP	PLE =	LOW	Px	*	13	18	ns	8, 11
30	t SLC	SLE =	HIGH	CBO	*	16	20	ns	7, 9
31	t SLM	SLE =	HIGH	MDout	*	12	18	ns	7, 9
NOTE:					•		•	•	2552 tbl 27

"*" = Both HIGH and LOW edges are implied.

ENABLE AND DISABLE TIMES

Number N 32 t B 33 t B 34 t B 35 t B 36 t c	BESZX BESZX BEPZX BEPXZ	From Input BEN = BEN =	(edge) HIGH LOW HIGH LOW	To Output (edg SDout * Hi - Pout * Hi -	- Z	Min. 2 2 2	Max. 13 11 13	Min. 2 2 2	Max. 16 14 16	Unit ns ns ns	Timing Diagram Figure 8, 10, 11 8, 11
33 t в 34 t в 35 t в 36 t с	BESxZ BEPZx		LOW HIGH	Hi – Pout *	- Z	2	11 13	2	14	ns	
34 tB 35 tB 36 tC	BEPZx	BEN =	HIGH	POUT *		2	13			_	8, 11
<u>35 tв</u> 36 tс		BEN =	-	POUL			-	2	16	ns	8, 11
36 t.c	BEPxZ		LOW	Hi –	7	0					
					- 2	2	11	2	14	ns	
37 t.c	CECZx	CBOE =	LOW	CBO *		2	13	2	16	ns	7, 9
	CECxZ		HIGH	Hi –	- Z	2	11	2	14	ns	
38 t M	MEMZx	MOE =	LOW	MDout *		2	13	2	16	ns	7, 9
39 t M	MEMxZ		HIGH	Hi –	- Z	2	11	2	14	ns	8, 10
40 ts	SESZx	SOE =	LOW	SDout *		2	13	2	16	ns	8, 10
41 ts	SESxZ		HIGH	Hi –	- Z	2	11	2	14	ns	7, 9

NOTE:

"*" = Delay to both edges.

		Parameter D	escription	Com.'l.	Mil.		Refer to
Number	Parameter Name	From Input (edge)	To Output (edge)	Min.	Min.	Unit	Timing Diagram Figure
42	t SSLS	SDIN Set-up *	before SLE = LOW	3	4	ns	7, 9
43	t SSLH	SDIN Hold *	after SLE = LOW	3	4	ns	7, 9
44	t MMLS	MDIN Set-up *	before MLE =LOW	3	4	ns	8, 10, 11
45	t MMLH	MDIN Hold *	after MLE = LOW	3	4	ns	8, 10, 11
46	t CMLS	CBI Set-up *	before MLE = LOW	3	4	ns	8, 10, 11
47	t CMLH	CBI Hold *	after MLE = LOW	3	4	ns	8, 10, 11
48	t MPLS	MDIN Set-up *	before $\overline{PLE} = HIGH$	10	12	ns	_
49	t MPLH	MDIN Hold *	after PLE = HIGH	0	0	ns	_
50	t CPLS	CBI Set-up *	before PLE =HIGH	10	12	ns	—
51	t CPLH	CBI Hold *	after PLE = HIGH	0	0	ns	_
52	t PCPLS	PCBI Set-up *	before $\overline{PLE} = HIGH$	10	12	ns	—
53	t PCPLH	PCBI Hold *	after PLE = HIGH	0	0	ns	_

SET-UP AND HOLD TIMES - 49C465A

DIAGNOSTIC SET-UP AND HOLD TIMES

54	t cscs	CBI Set-up *		10	12	ns	15
55	t MSCS	MDIN Set-up *	before SYNCLK=HIGH	10	12	ns	15
56	t MLSCS	MLE Set-up =HIGH		10	12	ns	15
57	t SESCS	SCLKEN Set-up =LOW		3	4	ns	15
58	t SESCH	SCLKEN Hold =LOW	after SYNCLK =HIGH	3	4	ns	15

NOTE:

"*" = Where "edge" is not specified, both HIGH and LOW edges are implied.

MINIMUM PULSE WIDTH

								Refer to
	Parameter	Minimum Pulse	Width		Com'l.	Mil.		Timing Diagram
Number	Name	Input		Conditions	Min.	Min.	Unit	Figure
59	t CLEAR	Min. CLEAR LOW time	to clear diag. registers	Data = Valid	8	10	ns	14
60	t MLE	Min. MLE HIGH time	to strobe new data	MD, CBI = Valid	5	6	ns	—
61	t PLE	Min. PLE LOW time	to strobe new data	SD = Valid	5	6	ns	—
62	t SLE	Min. SLE HIGH time	to strobe new data	SD = Valid	5	6	ns	—
63	t SYNCLK	Min. SYNCLK HIGH time	to clock in new data	SCKEN = LOW	5	6	ns	14 2552 tbl 33

Input Pulse Levels	GND to 3.0V
Input Rise/Fall Times	1V/ns
Input Timing Reference Levels	1.5V
Output Reference Levels	1.5V
Output Load	See Figure 18

2552 tbl 34

AC PARAMETERS - 49C465

PROPAGATION DELAY T	IMES
----------------------------	------

				32-			-bit	(64-bit	System	n		
				Syst Stand Sli	alone ce	on SI	ierate Iy" ice	SI	wer ice	Sli	per ice	-	
	1	1		CODE			ID=01		ID=10		ID=11		
	_		Description	Com.	Mil.	Com.	Mil.	Com.	Mil.	Com.	Mil.	-	Refer to
Number	Parameter Name	-	To Output (edge)	Max.	Max.	Max.	Max.	Max.	Max.	Max.	Max.	Unit	Timing Diagram Figure
GENER	ATE (WRITE	E) PARAMETE	RS										
01	t BC	BEN	СВО	20	25	_		20	25	20	25	ns	_
02	t BM	BEN	MDout	20	25			20	25	20	25	ns	_
03	t MC	MDIN	СВО	—	_	17	20	_	—	—	—	ns	10
04	t PCC	РСві	СВО	_	_	_		_	_	15	20	ns	7
05	t PPE	Pxin	PERR	15	20			15	20	15	20	ns	_
06	t sc		СВО	16	20	16	20	16	20	16	20	ns	7
07	t SM	SDIN	MDout	15	20	—		15	20	15	20	ns	7
08	tSPE		PERR	15	20	—	—	15	20	15	20	ns	_
DETECT	(READ) P	ARAMETERS											
09	t CE		ERR = LOW	16	20	—	—	—	—	15	20	ns	8,10
10	t CME	СВІ	$\overline{MERR} = LOW$	20	24	—		—	—	20	24	ns	8,10
11	t CSY		SYO	15	20	—	—	12	18	—	—	ns	8,10
12	t ME		ERR = LOW	15	20	—	_	_	—	15	20	ns	8,10
13	t MME	MDIN	$\overline{MERR} = LOW$	20	24	—	—	—	—	20	24	ns	8,10
14	t MSY		SYO	18	22	—	—	15	20	15	20	ns	8,10
CORRE	CT (READ)	PARAMETER	S		1	1		1		1		1	•
15	t CS	СВІ	SDOUT	20	24	-	—		—	20	24	ns	8,11
16	t MP		Px	20	26	—		20	26	20	26	ns	8,11
17	t MS	MDIN	SDOUT	16	20	—	—			_	—	ns	8,11
18	t MSY		SYO	18	22	-	—	15	20	15	20	ns	8,11
19	t PCS	РСВІ	SDout			—		15	20	_	—	ns	11
DIAGNC	STIC PARA	AMETERS	1				1	1					4
20	t CLR	CLEAR = LOW	/ SDout	20	24	—	_	20	24	20	24	ns	15
21	t MIS	MODE ID	SDOUT	20	24	_	_	20	24	20	24	ns	15

NOTES:

1. Where "edge" is not specified, both HIGH and LOW edges are implied.

2. BOLD indicates critical system parameters.

MILITARY AND COMMERCIAL TEMPERATURE RANGES

AC PARAMETERS - 49C465

		Parameter I	Description	Com.'l.	Mil.		Refer to
Number	Parameter Name	From Input (edge)	To Output (edge)	Max.	Max.	Unit	Timing Diagram Figure
22	t MLC		CBO *	20	24	ns	13
23	t MLE		ERR *	15	20	ns	8, 10, 11
24	t MLME	MLE = HIGH	MERR *	20	24	ns	8
25	t MLP		Px *	20	25	ns	8, 11
26	t MLS		SDout *	20	25	ns	8, 10, 11
27	t MLSY		SYO *	18	22	ns	8, 10
28	t PLS	PLE = LOW	SDOUT *	12	16	ns	8, 11
29	t PLP	$\overline{PLE} = LOW$	Px *	16	20	ns	8, 11
30	t SLC	SLE = HIGH	CBO *	20	24	ns	7, 9
31	t SLM	SLE = HIGH	MDout *	15	20	ns	7, 9

PROPAGATION DELAY TIMES FROM LATCH ENABLES

NOTE:

"*" = Both HIGH and LOW edges are implied.

ENABLE AND DISABLE TIMES

		Para	meter De	escription		Co	m'l.	Mi	I.		Refer to	
Number	Parameter Name	From Input	(edge)	To Output	(edge)	Min.	Max.	Min.	Max.	Unit	Timing Diagram Figure	
32	t BESZx	BEN =	HIGH	SDOUT	*	2	15	2	18	ns	8, 10, 11	
33	t BESxZ		LOW		Hi – Z	2	13	2	16	ns		
34	t BEPZx	BEN =	HIGH	Pout	*	2	15	2	18	ns	8, 11	
35	t BEPxZ		LOW		Hi – Z	2	13	2	16	ns		
36	t CECZx	CBOE =	= LOW	CBO	*	2	15	2	18	ns	7, 9	
37	t CECxZ		HIGH		Hi – Z	2	13	2	16	ns		
38	t MEMZx	MOE =	LOW	MDout	*	2	15	2	18	ns	7, 9	
39	t MEMxZ		HIGH		Hi – Z	2	13	2	16	ns	8, 10	
40	t SESZx	SOE =	LOW	SDOUT	*	2	15	2	18	ns	8, 10	
41	t SESxZ		HIGH		Hi – Z	2	13	2	16	ns	7, 9	

NOTE:

"*" = Delay to both edges.

2552 tbl 26

		Parameter D		Description	Com.'l.	Mil.		Refer to
Number	Parameter Name	From Input	(edge)	To Output (edge)	Min.	Min.	Unit	Timing Diagram Figure
42	t SSLS	SDIN Set-up	*	before SLE =LOW	4	5	ns	7, 9
43	t SSLH	SDIN Hold	*	after SLE = LOW	4	5	ns	7, 9
44	t MMLS	MDIN Set-up	*	before MLE =LOW	4	5	ns	8, 10, 11
45	t MMLH	MDIN Hold	*	after MLE = LOW	4	5	ns	8, 10, 11
46	t CMLS	CBI Set-up	*	before MLE =LOW	4	5	ns	8, 10, 11
47	t CMLH	CBI Hold	*	after MLE = LOW	4	5	ns	8, 10, 11
48	t MPLS	MDIN Set-up	*	before PLE =HIGH	12	15	ns	_
49	t MPLH	MDIN Hold	*	after PLE = HIGH	0	0	ns	—
50	t CPLS	CBI Set-up	*	before PLE =HIGH	12	15	ns	—
51	t CPLH	CBI Hold	*	after PLE = HIGH	0	0	ns	—
52	t PCPLS	PCBI Set-up	*	before PLE =HIGH	12	15	ns	—
53	t PCPLH	PCBI Hold	*	after PLE = HIGH	0	0	ns	—

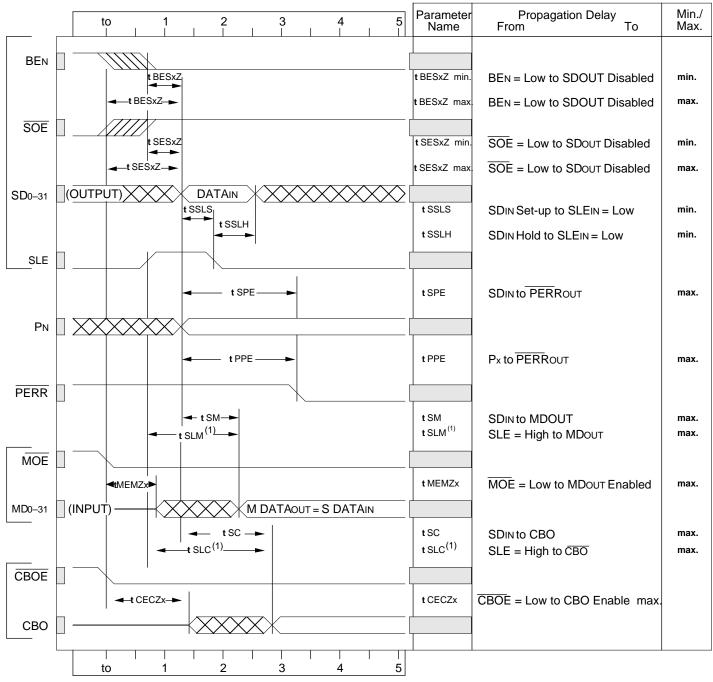
SET-UP AND HOLD TIMES - 49C465

DIAGNOSTIC SET-UP AND HOLD TIMES

54	t cscs	CBI Set-up *		12	15	ns	15
55	t MSCS	MDIN Set-up *	before SYNCLK=HIGH	12	15	ns	15
56	t MLSCS	MLE Set-up = HIGH		12	15	ns	15
57	t SESCS	SCLKEN Set-up = LOW		4	5	ns	15
58	t SESCH	SCLKEN Hold = LOW	after SYNCLK =HIGH	4	5	ns	15

NOTE:

"*" = Where "edge" is not specified, both HIGH and LOW edges are implied.


MINIMUM PULSE WIDTH

								Refer to
	Parameter	Minimum Pulse Width			Com'l. Mil.			Timing Diagram
Number	Name	Input		Conditions	Min.	Min.	Unit	Figure
59	t CLEAR	Min. CLEAR LOW time	to clear diag. registers	Data = Valid	8	10	ns	14
60	t MLE	Min. MLE HIGH time	to strobe new data	MD, CBI = Valid	5	6	ns	—
61	t PLE	Min. PLE LOW time	to strobe new data	SD = Valid	5	6	ns	—
62	t SLE	Min. SLE HIGH time	to strobe new data	SD = Valid	5	6	ns	—
63	t SYNCLK	Min. SYNCLK HIGH time	SCLKEN = LOW	5	6	ns	14	

2552 tbl 30

2552 tbl 29

Input Pulse Levels	GND to 3.0V		
Input Rise/Fall Times	1V/ns		
Input Timing Reference Levels	1.5V		
Output Reference Levels	1.5V		
Output Load	See Figure 18		

NOTE:

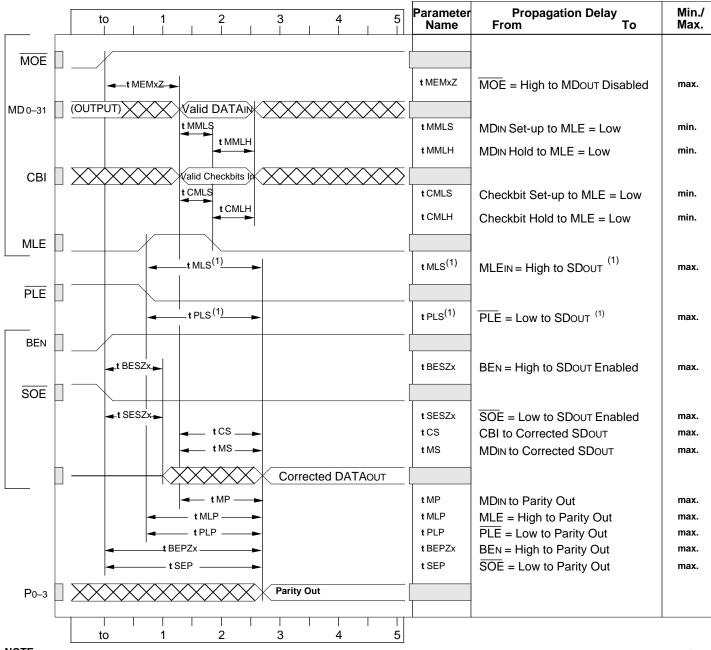
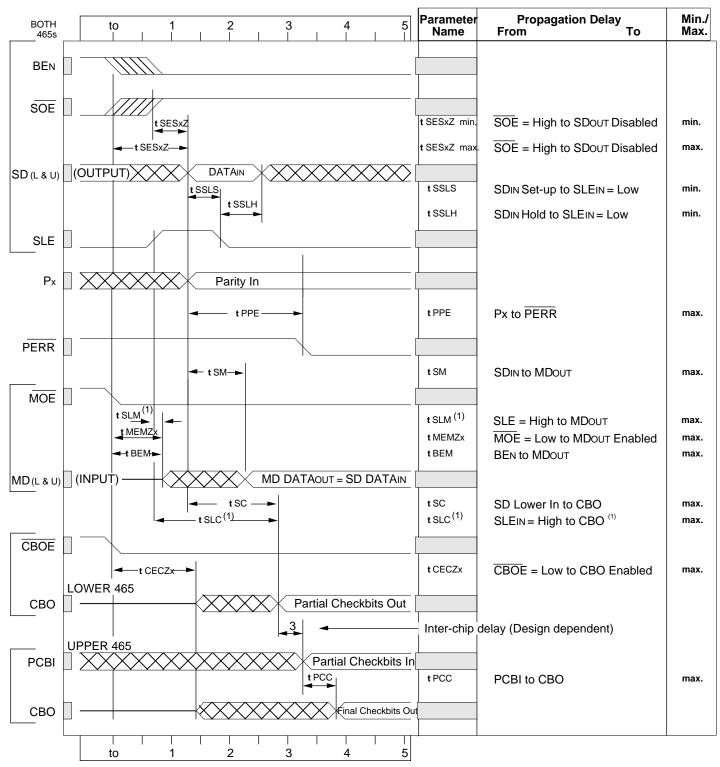

1. Assumes that System Data is valid at least 3ns (Com.) before SLE goes HIGH.

Figure 7. 32-Bit Generate Timing

r	to 1 2 3 4 5	Parameter Name	Propagation Delay From To	Min./ Max.
MOE				
		t MEMxZ	MOE = High to MDout Disabled	max.
MD 0–31				
	t MMLS	t MMLS	MDIN Set-up to MLE = Low	min.
		t MMLH	MDIN Hold to MLE = Low	min.
СВІ	t CMLS	t CMLS	Checkbit Set-up to MLE = Low	min.
		t CMLH	Checkbit Hold to MLE = Low	min.
MLE				
	✓ t MSY→	t MSY	MDIN to SYOOUT	max.
	- t CSY -	t CSY	Checkbits in to SYOOUT	max.
010		t MLSY ⁽¹⁾	MLE = High to SYOOUT	max.
SYO				
		t ME t CE	$MDIN \text{ to } \overline{ERR} = Low$	max.
	t MLEx ⁽¹⁾	t MLEx ⁽¹⁾	Checkbits in to \overline{ERR} = Low MLE = High to \overline{ERR} = Low ⁽¹⁾	max. max.
ERR				
	◄ t MME►	t MME	MDIN to $\overline{\text{MERR}}$ = Low	max.
		t CME	Checkbits in to \overline{MERR} = Low	max.
	t MLMEx ⁽¹⁾	t MLEMx ⁽¹⁾	MLE = High to $\overline{\text{MERR}}$ = Low ⁽¹⁾	max.
MERR				
NOTE:	to 1 2 3 4 5			2552 drw 20

NOTE: 1. Assumes that Memory Data and Checkbits are valid at least 3ns (Com.)/4ns (Mil,) before MLE goes HIGH. 2552 drw 20

Figure 8. 32-Bit Detect Timing

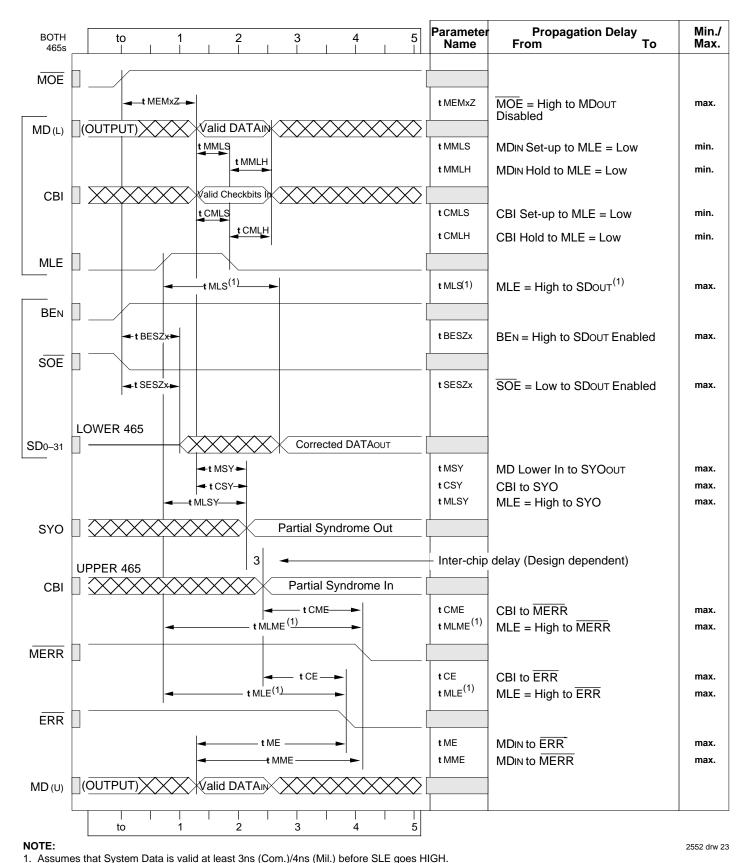


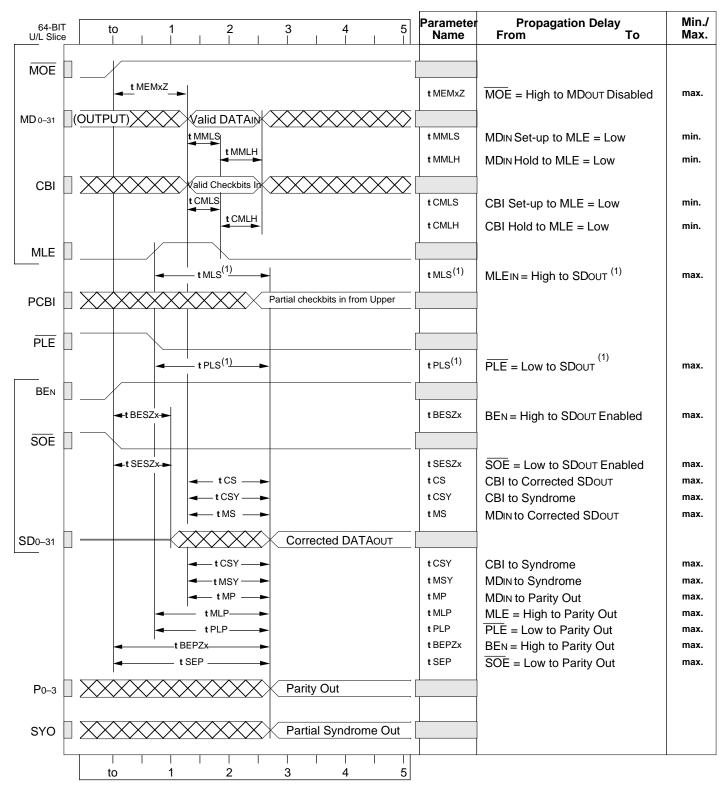
NOTE:

1. Assumes that Memory Data and Checkbits are valid at least 3ns (Com.)/4ns (Mil.) before MLE goes HIGH.

2552 drw 21

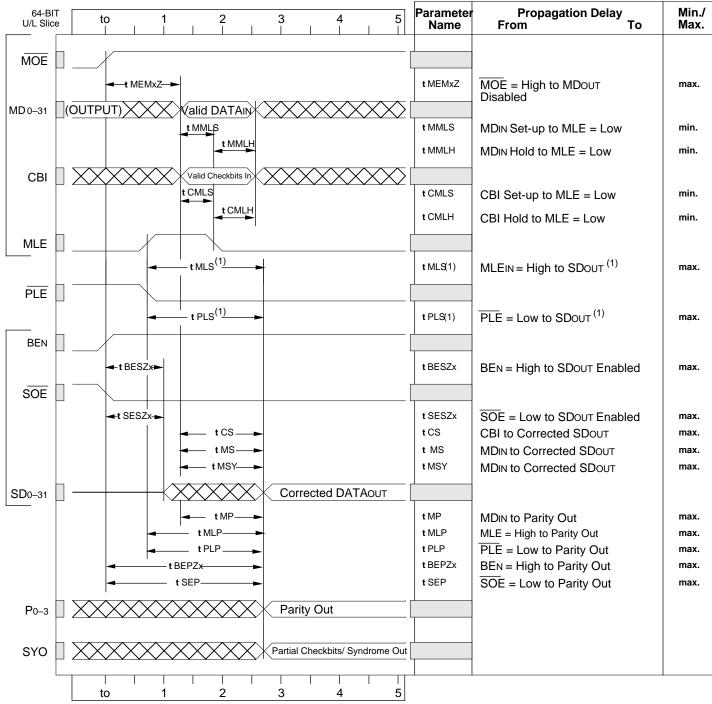
Figure 9. 32-Bit Correct Timing




NOTE:

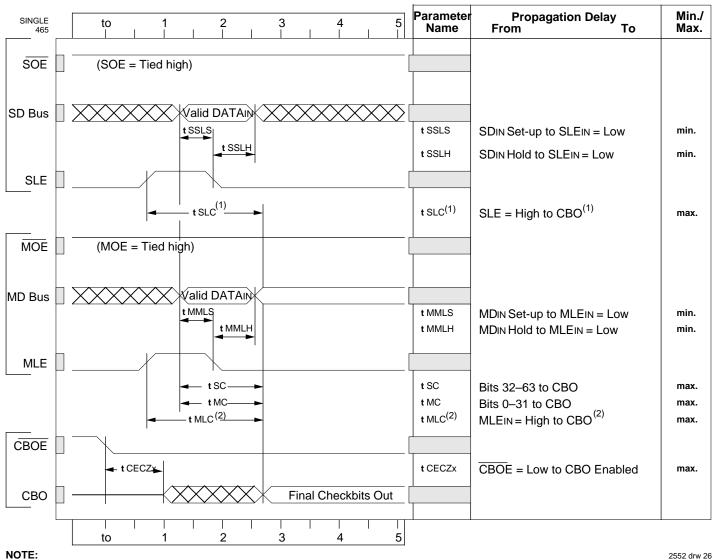
1. Assumes that System Data is valid at least 3ns (Com.)/4ns (Mil.) before SLE goes HIGH.

2552 drw 22


Figure 10. 64-Bit Generate Timing — (64-Bit Cascading System)

NOTE:

1. Assumes that Memory Data and Checkbits are valid at least 4ns (Com.) before MLE goes HIGH.



NOTE:

1. Assumes that Memory Data and Checkbits are valid at least 4ns (Com.) before MLE goes HIGH.

2552 drw 25

Figure 13. 64-Bit Correct Timing (Upper Slice)

NOTE:

1. Assumes that System Data is valid at least 3ns (Com.) before SLE goes HIGH.

2. Assumes that Memory Data is valid at least 4ns (Com.) before MLE goes HIGH.

Figure 14. 64-Bit Single Chip "Generate Only" Timing

AC TIMING DIAGRAMS — DIAGNOSTIC TIMING

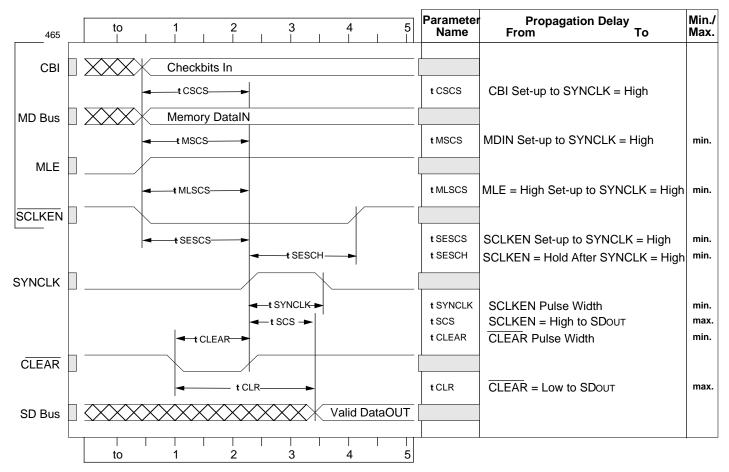
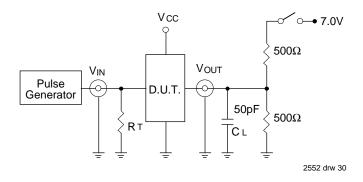
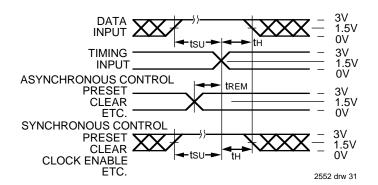
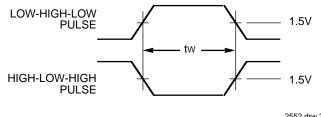




Figure 15. 32-Bit Diagnostic Timing

TEST CIRCUITS AND WAVEFORMS TEST CIRCUITS FOR ALL OUTPUTS

SET-UP, HOLD AND RELEASE TIMES

SWITCH POSITION

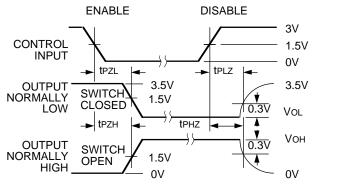

Test	Switch
Open Drain Disable Low Enable Low	Closed
All Other Tests	Open
DEFINITIONS:	2552 tbl 35

DEFINITIONS:

CL= Load capacitance: includes jig and probe capacitance.


RT = Termination resistance: should be equal to ZOUT of the Pulse Generator.

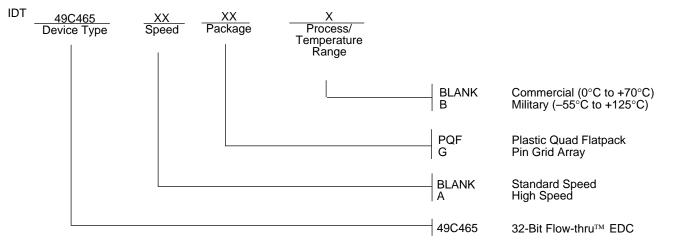
PULSE WIDTH


2552 drw 32

PROPAGATION DELAY

2552 drw 33

ENABLE AND DISABLE TIMES



2552 drw 34

NOTES:

- 1. Diagram shown for input Control Enable-LOW and input Control Disable-HIGH
- 2. Pulse Generator for All Pulses: Rate \leq 1.0MHz; tF \leq 2.5ns; tR \leq 2.5ns

ORDERING INFORMATION

