Low－Cost，CMOS，Rail－to－Rail，I／O OPERATIONAL AMPLIFIERS

FEATURES

－RAIL－TO－RAIL INPUT AND OUTPUT
－WIDE SUPPLY RANGE：
Single Supply： 4 V to 12 V
Dual Supplies：± 2 to ± 6
－LOW QUIESCENT CURRENT： $160 \mu \mathrm{~A}$
－LIMITED RANGE CMRR：96dB
－LOW OFFSET： 0.5 mV
－HIGH SPEED： $1 \mathrm{MHz}, 0.6 \mathrm{~V} / \mu \mathrm{s}$
－MicroSIZE PACKAGES：
SOT23－5，MSOP－8，TSSOP－14
－LOW INPUT BIAS CURRENT：1pA

APPLICATIONS

－AUTOMOTIVE APPLICATIONS：
Audio，Sensor Applications，Security Systems
－PORTABLE EQUIPMENT
－ACTIVE FILTERS
－TRANSDUCER AMPLIFIER
－TEST EQUIPMENT
－DATA ACQUISITION

DESCRIPTION

The OPA705 series low－cost op amps are optimized for appli－ cations requiring rail－to－rail input and output swing．Single， dual，and quad versions are offered in a variety of packages． While the quiescent current is less than $200 \mu \mathrm{~A}$ per amplifier， the OPA705 still offers excellent dynamic performance （ 1 MHz GBW and $0.6 \mathrm{~V} / \mu \mathrm{s} \mathrm{SR}$ ）and unity－gain stability．
The OPA705 series is fully specified and guaranteed over the supply range of $\pm 2 \mathrm{~V}$ to $\pm 6 \mathrm{~V}$ ．Input swing extends 300 mV beyond the rail and the output swings to within 40 mV of the rail．
The single version（OPA705）is available in the MicroSIZE SOT23－5 and in the standard SO－8 surface－mount packages． The dual version（OPA2705）is available in the MSOP－8， SO－8，and DIP－8 packages．The quad OPA4705 is available in the TSSOP－14 and SO－14 packages．All are specified for operation from $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ ．

Please be aware that an important notice concerning availability，standard warranty，and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet．

ABSOLUTE MAXIMUM RATINGS ${ }^{(1)}$

NOTES: (1) Stresses above these ratings may cause permanent damage. Exposure to absolute maximum conditions for extended periods may degrade device reliability. (2) Input terminals are diode-clamped to the power supply rails. Input signals that can swing more than 0.3 V beyond the supply rails should be current-limited to 10 mA or less. (3) Short-circuit to ground, one amplifier per package.

ELECTROSTATIC DISCHARGE SENSITIVITY

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

PACKAGE/ORDERING INFORMATION

PRODUCT	DESCRIPTION	MINIMUM RECOMMENDED GAIN	PACKAGE	PACKAGE DRAWING NUMBER	PACKAGE MARKING	ORDERING NUMBER ${ }^{(1)}$	TRANSPORT MEDIA
OPA705NA OPA705UA OPA705PA	Single, GBW $=1 \mathrm{MHz}$ Single, GBW $=1 \mathrm{MHz}$ Single, GBW $=1 \mathrm{MHz}$	$\begin{aligned} & 1 \\ & " \\ & 1 \\ & \hline 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { SOT23-5 } \\ " \\ \text { SO-8 } \\ " \\ \text { DIP-8 } \end{gathered}$	$\begin{gathered} 331 \\ " \\ 182 \\ " \\ 006 \end{gathered}$	A05 $"$ OPA705UA $"$ OPA705PA	OPA705NA/250 OPA705NA/3K OPA705UA OPA705UA/2K5 OPA705PA	Tape and Reel Tape and Reel Rails Tape and Reel Rails
$\begin{gathered} \text { OPA2705EA } \\ " \\ \text { OPA2705UA } \\ " \\ \text { OPA2705PA } \end{gathered}$	Dual, GBW $=1 \mathrm{MHz}$ Dual, GBW $=1 \mathrm{MHz}$ Dual, GBW $=1 \mathrm{MHz}$	$\begin{aligned} & 1 \\ & " \\ & 1 \\ & " \\ & 1 \end{aligned}$	$\begin{gathered} \text { MSOP-8 } \\ " \\ \text { SO-8 } \\ " \\ \text { DIP-8 } \end{gathered}$	$\begin{gathered} 337 \\ " \\ 182 \\ " \\ 006 \end{gathered}$	$\mathrm{B05}$ $"$ OPA2705UA $"$ OPA2705PA	OPA2705EA/250 OPA2705EA/2K5 OPA2705UA OPA2705UA/2K5 OPA2705PA	Tape and Reel Tape and Reel Rails Tape and Reel Rails
$\begin{gathered} \text { OPA4705EA } \\ " \\ \text { OPA4705UA } \end{gathered}$	Quad, GBW $=1 \mathrm{MHz}$ Quad, GBW $=1 \mathrm{MHz}$	1 1 1	$\begin{gathered} \text { TSSOP-14 } \\ \text { " } \\ \text { SO-14 } \\ \hline " \end{gathered}$	$\begin{gathered} 357 \\ " \\ 235 \end{gathered}$	$\begin{gathered} \text { OPA4705EA } \\ " \\ \text { OPA4705UA } \end{gathered}$	$\begin{gathered} \text { OPA4705EA/250 } \\ \text { OPA4705EA/2K5 } \\ \text { OPA4705UA } \\ \text { OPA4705UA/2K5 } \end{gathered}$	Tape and Reel Tape and Reel Rails Tape and Reel

NOTE: (1) Models with a slash (/) are available only in Tape and Reel in the quantities indicated (e.g., /3K indicates 3000 devices per reel). Ordering 3000 pieces of "OPA705NA/3K" will get a single 3000-piece Tape and Reel.

ELECTRICAL CHARACTERISTICS: $\mathrm{V}_{\mathrm{S}}=4 \mathrm{~V}$ to 12 V

Boldface limits apply over the specified temperature range, $\mathrm{T}_{\mathrm{A}}=\mathbf{- 4 0 ^ { \circ }} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
At $T_{A}=+25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=20 \mathrm{k} \Omega$ connected to $\mathrm{V}_{\mathrm{S}} / 2$ and $\mathrm{V}_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{S}} / 2$, unless otherwise noted.

PARAMETER	CONDITION	OPA705NA, UA, PA OPA2705EA, UA, PA OPA4705EA, UA			UNITS				
		MIN	TYP	MAX					
OFFSET VOLTAGE Input Offset Voltage $\quad \mathrm{V}_{\mathrm{OS}}$ Drift vs Power Supply Over Temperature Channel Separation, dc $\mathrm{f}=1 \mathrm{kHz}$	$\begin{gathered} \mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V} \\ \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{S}}= \pm 2 \mathrm{~V} \text { to } \pm 6 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{S}}= \pm 2 \mathrm{~V} \text { to } \pm 6 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V} \\ \mathrm{R}_{\mathrm{L}}=20 \mathrm{k} \Omega \end{gathered}$		$\begin{gathered} \pm 0.5 \\ \pm 4 \\ 20 \\ 100 \\ 1 \\ 98 \end{gathered}$	$\begin{gathered} \pm 5 \\ 100 \end{gathered}$	$\begin{gathered} \mathrm{mV} \\ \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \\ \mu \mathrm{~V} / \mathrm{V} \\ \mu \mathrm{~V} / \mathrm{V} \\ \mu \mathrm{~V} / \mathrm{V} \\ \mathrm{~dB} \end{gathered}$				
INPUT VOLTAGE RANGE Common-Mode Voltage Range Common-Mode Rejection Ratio CMRR over Temperature over Temperature	$\begin{gathered} \mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V},(\mathrm{~V}-)-0.3 \mathrm{~V}<\mathrm{V}_{\mathrm{CM}}<\left(\mathrm{V}_{+}\right)+0.3 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{S}}= \pm 5 \mathrm{~V},(\mathrm{~V}-)<\mathrm{V}_{\mathrm{CM}}<(\mathrm{V}+) \\ \mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V},(\mathrm{~V}-)-0.3 \mathrm{~V}<\mathrm{V}_{\mathrm{CM}}<(\mathrm{V}+)-2 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{S}}= \pm 5 \mathrm{~V},(\mathrm{~V}-)<\mathrm{V}_{\mathrm{CM}}<\left(\mathrm{V}_{+}\right)-2 \mathrm{~V} \end{gathered}$	$\begin{gathered} (\mathrm{V}-)-0.3 \\ 66 \\ 66 \end{gathered}$	$\begin{aligned} & 77 \\ & 74 \\ & 96 \\ & 93 \end{aligned}$	$(\mathrm{V}+)+0.3$	V dB dB dB dB				
INPUT BIAS CURRENT Input Bias Current Input Offset Current	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V} \end{aligned}$		$\begin{gathered} \pm 1 \\ \pm 0.5 \end{gathered}$	$\begin{aligned} & \pm 10 \\ & \pm 10 \end{aligned}$	$\begin{aligned} & \mathrm{pA} \\ & \mathrm{pA} \end{aligned}$				
INPUT IMPEDANCE Differential Common-Mode			$\begin{gathered} 4 \cdot 10^{9} \\| 4 \\ 5 \cdot 10^{12} \\| 4 \end{gathered}$		$\begin{aligned} & \Omega \\| \mathrm{pF} \\ & \Omega \\| \mathrm{pF} \end{aligned}$				
NOISE Input Voltage Noise, $\mathrm{f}=0.1 \mathrm{~Hz}$ to 10 Hz Input Voltage Noise Density, $f=1 \mathrm{kHz}$ Current Noise Density, $f=1 \mathrm{kHz}$	$\begin{aligned} & V_{S}= \pm 5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V} \end{aligned}$		$\begin{gathered} 6 \\ 45 \\ 2.5 \end{gathered}$		$\mu \mathrm{Vp}$-p $\mathrm{nV} / \sqrt{\mathrm{Hz}}$ $\mathrm{fA} / \sqrt{\mathrm{Hz}}$				
OPEN-LOOP GAIN Open-Loop Voltage Gain over Temperature over Temperature	$\begin{array}{r} \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega,(\mathrm{~V}-)+0.1 \mathrm{~V}<\mathrm{V}_{\mathrm{O}}<(\mathrm{V}+)-0.1 \mathrm{~V} \\ \mathrm{R}_{\mathrm{L}}=20 \mathrm{k} \Omega,(\mathrm{~V}-)+0.075 \mathrm{~V}<\mathrm{V}_{\mathrm{O}}<(\mathrm{V}+)-0.075 \mathrm{~V} \\ \mathrm{R}_{\mathrm{L}}=20 \mathrm{k} \Omega,(\mathrm{~V}-)+0.075 \mathrm{~V}<\mathrm{V}_{\mathrm{O}}<(\mathrm{V}+)-0.075 \mathrm{~V} \\ \mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \Omega,(\mathrm{~V}-)+0.15 \mathrm{~V}<\mathrm{V}_{\mathrm{O}}<(\mathrm{V}+)-0.15 \mathrm{~V} \\ \mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \Omega,(\mathrm{~V}-)+0.15 \mathrm{~V}<\mathrm{V}_{\mathrm{O}}<(\mathrm{V}+)-0.15 \mathrm{~V} \end{array}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 120 \\ & 110 \\ & 106 \\ & 110 \\ & 106 \end{aligned}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \end{aligned}$				
OUTPUT Voltage Output Swing from Rail	$\begin{gathered} \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega, \mathrm{~A}_{\mathrm{OL}}>80 \mathrm{~dB} \\ \mathrm{R}_{\mathrm{L}}=20 \mathrm{k} \Omega, \mathrm{~A}_{\mathrm{OL}}>100 \mathrm{~dB} \\ \mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \Omega, \mathrm{~A}_{\mathrm{OL}}>100 \mathrm{~dB} \\ \left\|\mathrm{~V}_{\mathrm{S}}-\mathrm{V}_{\text {OUT }}\right\|<1 \mathrm{~V} \end{gathered}$		40 $\begin{aligned} & \pm 10 \\ & \pm 40 \end{aligned}$ cal Performa	$\begin{gathered} 75 \\ 150 \end{gathered}$ Curves	$\begin{gathered} \mathrm{mV} \\ \mathrm{mV} \\ \mathrm{mV} \\ \mathrm{~mA} \\ \mathrm{~mA} \end{gathered}$				
FREQUENCY RESPONSE	$\begin{gathered} \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF} \\ \mathrm{G}=+1 \\ \mathrm{~V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, \mathrm{G}=+1 \\ \mathrm{~V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, 5 \mathrm{~V} \text { Step, } \mathrm{G}=+1 \\ \mathrm{~V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, 5 \mathrm{~V} \text { Step, } \mathrm{G}=+1 \\ \mathrm{~V}_{\text {IN }} \cdot \text { Gain }=\mathrm{V}_{\mathrm{S}} \\ \mathrm{~V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=3 \mathrm{Vp}-\mathrm{p}, \mathrm{G}=+1, \mathrm{f}=1 \mathrm{kHz} \end{gathered}$		$\begin{gathered} 1 \\ 0.6 \\ 15 \\ 20 \\ 3 \\ 0.02 \end{gathered}$		MHz V/ $\mu \mathrm{s}$ $\mu \mathrm{s}$ $\mu \mathrm{s}$ $\mu \mathrm{s}$ \%				
POWER SUPPLY Specified Voltage Range, Single Supply V_{S} Specified Voltage Range, Dual Supplies $\quad V_{S}$ Operating Voltage Range Quiescent Current (per amplifier) over Temperature	$\mathrm{I}_{\mathrm{O}}=0$	$\begin{gathered} 4 \\ \pm 2 \end{gathered}$	$\begin{gathered} 3.6 \text { to } 12 \\ 160 \\ \mathbf{2 0 0} \end{gathered}$	$\begin{aligned} & 12 \\ & \pm 6 \\ & \\ & 250 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~V} \\ \mathrm{~V} \\ \mu \mathrm{~A} \\ \mu \mathrm{~A} \end{gathered}$				
TEMPERATURE RANGE Specified Range Operating Range Storage Range Thermal Resistance SOT23-5 Surface-Mount MSOP-8 Surface-Mount TSSOP-14 Surface-Mount SO-8 Surface Mount SO-14 Surface Mount DIP-8		$\begin{aligned} & -40 \\ & -55 \\ & -65 \end{aligned}$	$\begin{aligned} & 200 \\ & 150 \\ & 100 \\ & 150 \\ & 100 \\ & 100 \end{aligned}$	$\begin{gathered} 85 \\ 125 \\ 150 \end{gathered}$	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \\ & \\ & { }^{\circ} \mathrm{C} / \mathrm{W} \end{aligned}$				

TYPICAL CHARACTERISTICS

At $T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}$, and $\mathrm{R}_{\mathrm{L}}=20 \mathrm{k} \Omega$, unless otherwise noted.

PSRR vs FREQUENCY

TYPICAL CHARACTERISTICS (Cont.)

At $T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}$, and $\mathrm{R}_{\mathrm{L}}=20 \mathrm{k} \Omega$, unless otherwise noted.

TOTAL HARMONIC DISTORTION PLUS NOISE (Load $=5 \mathrm{k} \Omega, \mathrm{BW}=8 \mathrm{kHz}, 1.0 \mathrm{Vrms}, \mathrm{G}=+1$)

TYPICAL CHARACTERISTICS (Cont.)

At $T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}$, and $\mathrm{R}_{\mathrm{L}}=20 \mathrm{k} \Omega$, unless otherwise noted.

TYPICAL CHARACTERISTICS (Cont.)

At $T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}$, and $\mathrm{R}_{\mathrm{L}}=20 \mathrm{k} \Omega$, unless otherwise noted.

Voltage Offset $\left(\mu \mathrm{V} /{ }^{\circ} \mathrm{C}\right)$

LARGE SIGNAL STEP RESPONSE
$\left(\mathrm{G}=+1 \mathrm{~V} / \mathrm{V}, \mathrm{R}_{\mathrm{L}}=20 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}\right)$

APPLICATIONS INFORMATION

OPA705 series op amps can operate on $160 \mu \mathrm{~A}$ quiescent current from a single (or split) supply in the range of 4 V to 12 V ($\pm 2 \mathrm{~V}$ to $\pm 6 \mathrm{~V}$), making them highly versatile and easy to use. The OPA705 is unity-gain stable and offers 1 MHz bandwidth and $0.6 \mathrm{~V} / \mu$ s slew rate.
Rail-to-rail input and output swing helps maintain dynamic range, especially in low supply applications. Figure 1 shows the input and output waveforms for the OPA705 in unitygain configuration. Operation is from a $\pm 5 \mathrm{~V}$ supply with a $100 \mathrm{k} \Omega$ load connected to $\mathrm{V}_{\mathrm{S}} / 2$. The input is a $10 \mathrm{Vp}-\mathrm{p}$ sinusoid. Output voltage is approximately $10 \mathrm{Vp}-\mathrm{p}$.

FIGURE 1. Rail-to-Rail Input and Output.

Power-supply pins should be bypassed with 1000 pF ceramic capacitors in parallel with $1 \mu \mathrm{~F}$ tantalum capacitors.

OPERATING VOLTAGE

OPA705 series op amps are fully specified and guaranteed from +4 V to +12 V over a temperature range of $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Parameters that vary significantly with operating voltages or temperature are shown in the Typical Characteristics.

RAIL-TO-RAIL INPUT

The input common-mode voltage range of the OPA705 series extends 300 mV beyond the supply rails at room temperature. This is achieved with a complementary input stage-an N channel input differential pair in parallel with a P-channel differential pair, as shown in Figure 2. The N-channel pair is active for input voltages close to the positive rail, typically $(\mathrm{V}+)-2.0 \mathrm{~V}$ to 300 mV above the positive supply, while the $\mathrm{P}-$ channel pair is on for inputs from 300 mV below the negative supply to approximately $(\mathrm{V}+)-1.5 \mathrm{~V}$. There is a small transition region, typically $(\mathrm{V}+)-2.0 \mathrm{~V}$ to $(\mathrm{V}+)-1.5 \mathrm{~V}$, in which both pairs are on. This 500 mV transition region can vary $\pm 100 \mathrm{mV}$ with process variation. Thus, the transition region (both stages on) can range from ($\mathrm{V}+$) -2.1 V to $(\mathrm{V}+$) -1.4 V on the low end, up to $(\mathrm{V}+)-1.9 \mathrm{~V}$ to $(\mathrm{V}+)-1.6 \mathrm{~V}$ on the high end. Within the 500 mV transition region PSRR, CMRR, offset voltage, and offset drift, and THD may vary compared to operation outside this region.

FIGURE 2. Simplified Schematic.

INPUT VOLTAGE

Device inputs are protected by ESD diodes that will conduct if the input voltages exceed the power supplies by more than approximately 300 mV . Momentary voltages greater than 300 mV beyond the power supply can be tolerated if the current is limited to 10 mA . This is easily accomplished with an input resistor, as shown in Figure 3. Many input signals are inherently current-limited to less than 10 mA ; therefore, a limiting resistor is not always required. The OPA705 features no phase inversion when the inputs extend beyond supplies if the input current is limited, as seen in Figure 4.

FIGURE 3. Input Current Protection for Voltages Exceeding the Supply Voltage.

FIGURE 4. OPA705-No Phase Inversion with Inputs Greater than the Power-Supply Voltage.

RAIL-TO-RAIL OUTPUT

A class AB output stage with common-source transistors is used to achieve rail-to-rail output. This output stage is capable of driving $1 \mathrm{k} \Omega$ loads connected to any point between V+ and ground. For light resistive loads (> $100 \mathrm{k} \Omega$), the output voltage can swing to 40 mV from the supply rail. With moderate resistive loads ($20 \mathrm{k} \Omega$), the output can swing to within 75 mV from the supply rails while maintaining high open-loop gain (see the typical performance curve "Output Voltage Swing vs Output Current").

CAPACITIVE LOAD AND STABILITY

The OPA705 series op amps can drive up to 1000 pF pure capacitive load. Increasing the gain enhances the amplifier's ability to drive greater capacitive loads (see the typical performance curve "Small Signal Overshoot vs Capacitive Load").
One method of improving capacitive load drive in the unitygain configuration is to insert a 10Ω to 20Ω resistor inside the feedback loop, as shown in Figure 5. This reduces ringing with large capacitive loads while maintaining DC accuracy.

FIGURE 5. Series Resistor in Unity-Gain Buffer Configuration Improves Capacitive Load Drive.

APPLICATION CIRCUITS

The OPA705 series op amps are optimized for driving medium-speed sampling data converters. Figure 6 shows the OPA2705 in a dual-supply buffered reference configuration for the DAC7644. The DAC7644 is a 16-bit, low-power, quad-voltage output converter. Small size makes the combination ideal for automatic test equipment, data acquisition systems, and other low-power space-limited applications.

FIGURE 6. OPA705 as Dual Supply Configuration-Buffered References for the DAC7644.

PACKAGING INFORMATION

ORDERABLE DEVICE	STATUS(1)	PACKAGE TYPE	PACKAGE DRAWING	PINS	PACKAGE QTY
OPA2705EA/250	ACTIVE	VSSOP	DGK	8	250
OPA2705EA/2K5	ACTIVE	VSSOP	DGK	8	2500
OPA2705PA	ACTIVE	PDIP	P	8	50
OPA2705UA	ACTIVE	SOIC	D	8	100
OPA2705UA/2K5	ACTIVE	SOIC	D	8	2500
OPA4705EA/250	ACTIVE	TSSOP	PW	14	250
OPA4705EA/2K5	ACTIVE	TSSOP	PW	14	2500
OPA4705UA	ACTIVE	SOIC	D	14	58
OPA4705UA/2K5	ACTIVE	SOIC	D	14	2500
OPA705NA/250	ACTIVE	SOP	DBV	5	250
OPA705NA/3K	ACTIVE	SOP	DBV	5	3000
OPA705PA	ACTIVE	PDIP	P	8	50
OPA705UA	ACTIVE	SOIC	SOIC	D	8
OPA705UA/2K5	ACTIVE		D	8	2500

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to Tl's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using Tl components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other Tl intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI .

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. Tl is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products

Amplifiers	amplifier.ti.com
Data Converters	dataconverter.ti.com
DSP	dsp.ti.com
Interface	interface.ti.com
Logic	logic.ti.com
Power Mgmt	power.ti.com
Microcontrollers	microcontroller.ti.com

Applications

Audio	www.ti.com/audio
Automotive	www.ti.com/automotive
Broadband	www.ti.com/broadband
Digital Control	www.ti.com/digitalcontrol
Military	www.ti.com/military
Optical Networking	www.ti.com/opticalnetwork
Security	www.ti.com/security
Telephony	www.ti.com/telephony
Video \& Imaging	www.ti.com/video
Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments
Post Office Box 655303 Dallas, Texas 75265

